頻発化・激甚化・多様化する斜面災害の脅威に備えて

王 功輝

京都大学防災研究所

2021年10月19日

京都大学

KYOTO UNIVERSITY

内 容

◆ 背景

- ◆ 降雨による花崗岩地域の土砂災害
- ◆ 再活動地すべりにおける土砂災害
- ◆ 異常気象時の土砂災害発生機構
- ◆ 地震時盛土斜面における土砂災害
- ◆ 地震時火山砕屑物斜面における土砂災害

◆ まとめ

KYOTO UNIVERSITY

土砂災害:頻発化 (>1300件/年)

第載半島台里(台里第15号)経 あんなか しもまにた 群馬県安中市下間仁日

土砂災害:頻発化

令和2年の土砂災害発生件数は平均の約1.2倍

🔮 国土交通省

■令和2年の土砂災害は、46都道府県で<u>1,319件</u>発生し、集計開始以降における平均発生件数(1,105件) の約1.2倍を記録。

KYOTO UNIVERSITY

https://www.mlit.go.jp/river/sabo/jirei/r2dosha/r2doshasaigai.pdf

日本の年降水量偏差

「猛烈な雨(> 50 mm/h)」の発生回数の年変化

土砂災害:激甚化

(道窪幸雄氏撮影)

(Google earth より)

2011年奈良県十津川村付近の土砂災害

2014年8月の広島土砂災害

KYOTO UNIVERSITY

土砂災害:大規模化

2008年6月14日岩手・宮城内陸地震時の地すべり 東京ドーム(124万立米):約36個分

2008年四川大地震による大包光地すべり (約東京ドーム887個分)

土砂災害:多様化

(道窪幸雄氏撮影)

2004年中越地震による 再活動地すべり+天然ダム

2011年十津川豪雨災害 深層崩壊+天然ダム

KYOTO UNIVERSITY

雨による高速土砂流動化現象および災害軽減 -頻発する広島の土砂災害の例-

亀山地すべり

Wang et al. (2003): *Engineering geology*, 69(3-4): 309-330.

崩土の流下と災害の拡大

豪雨による花崗岩風化地域における土砂流動化現象 -2014年8月の広島土砂災害について

災害から学ぶ

源頭部から採取した土試料の非排水せん断特性

再活動地すべりと災害防止軽減

アメリカ・カリフォルニア州 La Conchita 地すべり

土砂移動現象の解明と予測

Photo by R.L. Schuster (USGS)

再活動地すべりと災害防止軽減

10

2005

January

California

La Conchita 地すべり

変化する 土砂移動現象 に対する理解 と予測は重要

KYOTO UNIVERSITY

(Chigira et al., 2013, Geomorphology)

浅層地すべりの場所特定

H30年7月7日:宍粟市一宮町公文地区の斜面崩壊

台風の来襲と土砂災害

2011年台風12号と十津川土砂災害

(道窪幸雄氏撮影)

台風の来襲と土砂災害

大気潮汐・地すべり変動

Air tide 100km above the ground . Red: High temperature and low pressure; Blue: lower temperature higher pressure (monitored by Satellite TIMED on Sept. 2005)

From: http://ja.wikipedia.org/wiki/%E5%A4%A7%E6%B0%97%E6%BD%AE%E6%B1%90

気圧の変化による地すべり変動現象

Slumgullion 地すべり 米国コロラド州

長さ: **3.9 km** 幅: **300 m** 深さ: 14 m 体積: **2.0x10⁷ m³** 移動速度: **7 m/yr** 斜面: **7-11**°

300年間変動が続いた

Schulz, W., Kean, J. Wang, G. (2009): Nature Geoscience 2:863-866.

気圧変化と地すべり移動速度

平成25年台風第26号

台風の来襲と土砂災害 台風の影響:雨+低気圧+? 2013年大島の崩壊

盛土斜面の地すべりと災害軽減 -地震時地すべりの例-

KYOTO UNIVERSITY

長距離移動した竹

地震時盛土斜面における地すべり

築館地区の地形変化

KYOTO UNIVERSITY

排水は適切に実施されたか

http://landslide.dpri.kyoto-u.ac.jp/report/2018/20180809_kansai.pdf

地震時火山砕屑物堆積斜面における地すべり

② 2018年北海道胆振東部地震

すべり面の特性:高野台地すべり

すべり面の特性:高野台地すべり

土層のせん断強度

30

地域の土砂災害履歴

地域の過去を 知ることが重要

弥生時代中頃(約6@44年前)に土砂災害による埋没された遺跡

すべり面の特性:厚真地区

(a)

Ta-d

(b

粘土層 Ta-d

40

降下火砕物(Ta-d)堆積厚と崩壊地分布(柳井清治作成) http://www.gsi.go.jp/common/000208624.pdf

Ta-d (8-9 ka)

En-a (19-21 ka)

Spfl (40-45 ka)

ハロイサイト

土砂災害の軽減対策:潜在すべり面の検出

土砂災害の軽減対策:地形改変の危険度認識

研究課題:①斜面地震動

JMA: 気象庁観測点; K-NET: 防災科学技術研究所

斜面における地震動の推測

研究課題:②地震時斜面の限界変位

斜面変形が発 生したものの, 廃滅的な地す べりに至って いなかった.

廃滅的な斜面 変動への限界 変位? 次の地震時の 安定性?

研究課題:③先行降雨の影響評価

2004年新潟中越地震:斜面崩壊と先行降雨

直前に台

風に伴う

豪雨

研究課題:③先行降雨の影響評価 2018年北海道胆振東部地震:斜面崩壊と先行降雨

流動化した者が多い

まとめ

- 土砂災害が、頻発化、激甚化、多様化している。
- 斜面の中腹や上部に発生した小さい崩壊により、大きな災害に 繋がることがある、斜面土層の状況確認が重要である。
- 盛土斜面における排水対策が不可欠である.
- 土砂災害の誘因が多様化している.
- 土砂災害現象が多様化している.
- 火山砕屑物斜面における弱い土層の検出及びその力学特性の解 明は重要である

課題

- > 異常気象時の土砂災害予測手法
- 又異なる土砂移動現象の予測:新しい移動機構,移動速度と範囲
- > 発生時刻予測

 \triangleright

- > 地震時の斜面振動予測
- > 先行降雨と複合災害

ご静聴

ありがとうございます