1924年西表海底火山噴火による軽石漂流のシミュレーション

Simulation of Drift of Pumice Erupted by Explosion of Iriomote Submarine Volcano in 1924

井口敬雄・榎本剛・吉田聡

Takao IGUCHI, Takeshi ENOMOTO and Akira YOSHIDA

Synopsis

Pumice erupted from the explosion of Iriomote submarine volcano in 1924 was cast ashore all over Japan over a year. We developed a drift transport model and simulated the drift of pumice from the volcano using 1980s wind and current re-analysis data. The results of the simulations suggest that the pumice erupted from 1924 explosion stayed within the East China Sea for a few months and then moved northward. If Kuroshio current flowed just above the volcano, there could have been extensive damage by pumice across a wide area of Pacific coast of Japan.

キーワード:火山, 軽石, 漂流シミュレーション **Keywords:** volcano, pumice, simulation of drift

1. はじめに

2021年に福徳岡ノ場で発生した海底火山の噴火で は、噴出した大量の軽石が海上を漂流して奄美群島 や南西諸島に漂着し、海運、漁業、観光に大きな打撃 を与えたことにより、軽石の問題が再認識されるこ とになった.日本は火山大国であり、他にも将来大 噴火を起こす可能性がある海底火山や海に近い火山 が存在する.これらの火山から噴出した軽石の漂着 による被害の範囲や到達時期を事前に予測すること ができれば、早期の対応によって損害を最小限に食 い止めることができる.

井口他(2023)は火山噴火に伴う軽石の漂流と漂着 をシミュレーションすべく,漂流輸送モデルを開発 し,2021年の福徳岡ノ場で発生した火山噴火で噴出 した軽石の漂流シミュレーションを行った.今回は 引き続き,1924年に発生した西表海底火山の噴火に よる軽石の漂流シミュレーションを行った.

1924年の西表海底火山噴火に伴う軽石の 漂流

1924年10月31日未明に発生したと推定(加藤, 1982)

される西表海底火山の噴火では,噴出して海面を漂 流した軽石が全国各地に漂着し,果ては1年かけて北 海道にまで到達した.海洋気象台彙報(1927)に記録 されている主な到達地点と日付をFig.1に示す.Fig. 1に示された通り,軽石到達の早さは火山からの距離 と必ずしも一致しない.また,沖縄本島付近では11 月には軽石の到達が確認されているが,その後,1月 と3月にも大量の軽石が到達したとある.したがって, 軽石がどの集団に属していたか,また速い海流に乗 ったか,遅い沿岸流や風で運ばれたかによって到達 日時は違ってくると思われる.特に,比較的火山に 近い沖縄で,どのような経緯で軽石が複数の集団に 分かれたのかは興味深いところである.

噴火後の軽石の動きを推測するため, 漂流輸送モ デルによるシミュレーションを行ってみた. その手 法と結果について次章以降で述べる.

3. 軽石漂流のシミュレーション

本研究におけるシミュレーションでは,井口他 (2023)で開発した漂流輸送モデルを用いた.

モデルの入力値となる風と海流のデータについて は、1924年の海流の再解析データが入手できなかっ

Fig. 1 Locations and dates where and when pumice was observed. All dates are in 1925. The red cross is the location of the volcano. The data was extracted from Seki(1927).

たため、1982年以降のNCEP/NCAR再解析データの地 表風(10m)データとNEAR-GOOS海流データを用いた.

火山噴火の正確な開始時間と終了時間は判ってい ない. 今回のシミュレーションでは,加藤(1982)を参 考に開始時間を1924年10月31日午前0時0分とした. また,噴火の終了時間を11月3日午前0時0分としたが, これについては特に根拠はなく,2021年の福徳岡ノ 場の海底火山の噴火と同じくらいの3日間とした.

4. シミュレーションの結果

1980年代の再解析データを用いたシミュレーショ ンの結果の中から,1982~1983年,1986~1987年,お よび1987~1988年の再解析データを用いたシミュレ ーションにおける軽石漂流の経過をFig. 2~Fig. 4に 示す.噴火後の軽石の動きには大きく分けて以下の2 つのパターンが見られた.

- [1] 軽石は黒潮に乗って一気に北上し、日本列島の 太平洋側の各地に漂着.(Fig. 3)
- [2] 軽石は西に向かって移動した後,東シナ海近辺 に滞留して一部は近辺の島や大陸に漂着,その

後北上を始めて九州以北の日本列島にも漂着. (Fig. 4)

また, Fig. 2のように, 噴出した軽石が一斉に西進 し, 拡散することなくそのまますべて漂着して動か なくなるという結果も見られた.

5. 考察

5.1 シミュレーションの結果と1924~1925年 の観測記録との比較

第4章の[1][2]のパターンについては,噴出した軽 石がすぐに黒潮に乗った場合は[1],乗らなかった場 合は[2]のパターンで漂流すると思われる.井口他 (2023)で述べた通り,黒潮の様に大規模で速い海流が 無い場所では風の影響が大きいと考えられる.Fig. 3(a)では軽石がわずか1か月後には本州の沖にまで到 達しており,1925年の観測記録と比較しても早すぎ る.一方,Fig.4(a)では東シナ海南部での2か月の滞 留の後,徐々に北に動き始めており,日本各地(特に 太平洋側)に接近・漂着する時期も観測記録と合致 するとまではいかなくとも,近いと言える.また,一

Fig. 2 (a)1 month and (b)2 months after the explosion of Iriomote submarine volcano in the simulation using 1982 and 1983 re-analysis data. The red dots are drifted pumice, and the red cross is the location of the volcano.

Fig. 3 (a)1 month and (b)6 months after the explosion in the simulation using 1986 and 1987 re-analysis data.

Fig. 4 (a)2 months and (b)1 year after the explosion in the simulation using 1987 and 1988 re-analysis data.

部の軽石は対馬海峡まで達しており、このシミュレ ーションでは結局その大部分は海峡近辺の大陸や島 に漂着してしまった(Fig. 4(b))が、軽石が日本海を北 上する可能性もあることが示唆された.以上より、 1924年の噴火では軽石の漂流経路は第4章の[2]のパ ターンではなかったかと推測される.黒潮の経路は 年によって変化するため、もしこの年の黒潮が西表 海底火山の真上を通っていたならば、日本の太平洋 側の広い範囲に軽石の被害が及んだ可能性がある.

5.2 軽石漂流モデルに関する問題点

Fig. 2では噴出した軽石がすべて漂着して動かな くなってしまったが、これはやはり非現実的な結果 と言わざるを得ない.現状のモデルでは、陸地のグ リッドエリアに達した軽石はすべて着岸したものと して漂流をストップさせている.しかし現実には漂 流が止まるのは砂浜に打ち上げられた軽石など一部 で、それ以外は着岸せずに海岸線に沿った流れで移 動したり、着岸しても再び離岸して漂流を続けたり していると考えられる.そういった過程をどうモデ ルに取り入れるかは難しい課題であるが、Fig.4(b)か らも理解されるように日本海を軽石が北上するため には狭い海峡を着岸せずに通過する必要があり、解 決すべき問題と言える.

また,軽石の拡散も現状では不十分と思われる. Fig. 2のシミュレーションでは軽石は固まって移動 したし,Fig.3(a)でも北上の過程でもっと進行方向の 横への拡散があっても良い様に思われる.この点に ついては井口他(2023)でも指摘している通り,使用し ている風の再解析データの解像度が粗いことがひと つの大きな要因として考えられる.また今回は1分間 に数cm程度のランダムな動きを与えたが,明確な根 拠がある訳ではなく,今後も適切な値の検討が必要 である.

また,軽石は漂流を続けているうちに砕けて粒子 が小さくなることも知られており,その効果の考慮 も今後の改良点として挙げられる.

6. まとめ

今回行った西表海底火山の噴火で噴出した軽石の 漂流シミュレーションでは、1924年の噴火では軽石 が一旦西に流されて東シナ海の海域内に滞留し、 徐々に拡散してから海流に乗って北上することによ り、時間をかけて日本各地に漂着したのではないか という仮説が得られた.その一方で現状の漂流輸送 モデルについては、軽石の着岸や拡散といった様々 な過程の扱いについて課題を残した.

今後はモデルの改良を進め、より解像度の高い再 解析データを導入することによって軽石漂流の再現 を目指したい.

謝 辞

本研究は気象庁NEAR-GOOS海流データおよび, NCEP/NCAR再解析データを用いて行いました.本論 文における図は地球電脳倶楽部の電脳ライブラリを 用いて作成しました.以上の機関およびグループに 感謝します.

参考文献

井口敬雄, 榎本 剛, 吉田 聡(2023): 2021年8月福 徳岡ノ場の海底火山噴火で噴出した軽石の漂流シ ミュレーション, 京都大学防災研究所年報, No. 66B, pp. 147-150.

加藤祐三(1982):琉球列島西表海底火山の位置と噴 出物量,琉球列島の地質学研究,第6巻,pp.41-47.

関 和男(1927): 軽石の漂流に就て, 海洋気象台彙 報, 第拾号, pp.1-44.

(論文受理日: 2024年8月31日)