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Synopsis 
This study presents an artificial neural network (ANN)-based downscaling model 

aimed at enhancing the precision of daily precipitation data. The study employed 112 
years of observed daily data, downscaling from a pseudo-coarse spatial resolution of 20 
km to a finer spatial resolution of 5 km. The area covered was a square grid of 3x3 at 20 
km resolution and the target of downscaling was the center grid of this square. The ANN 
model was trained using 85 years of data, tested over 12 years, and validated over 15 
years in five regions across four seasons in Japan. The results of the study demonstrated 
a high level of agreement between the downscaled and original daily data over all regions 
and seasons, with the highest and lowest root mean square error (RMSE) being 3.4 
mm/day and 0.12 mm/day, respectively. In addition, the ANN model successfully 
preserved the statistical properties of the original daily data, maintaining a mean and 
standard deviation bias within ±8%.  

Keywords: Artificial Neural Networks; statistical downscaling; precipitation; spatial 
correlation 

1. Introduction

The impact of climate change should be
considered for better management of energy and 
water resources. The foremost hydro-climatological 
factors, temperature and precipitation, play a crucial 
role in hydrological research and the design of 
hydraulic infrastructures. Predicting potential shifts 
in these parameters, particularly for the future, is 
crucial for mitigating the dangers posed by droughts 
and floods (Nourani et al., 2019). General circulation 
models (GCMs) were used to obtain such data. 
However, the outputs of the GCMs are at coarse 
resolution and their direct use for regional/local 
studies is difficult (Vu et al., 2016). Accordingly, the 
GCMs outputs were downscaled to a finer resolution 
to fill this gap. 

As for Japan, Meteorological Agency (JMA) and 
the Meteorological Research Institute (MRI) have 

developed Atmospheric General Circulation Models 
(AGCMs) with different spatial resolutions: globally 
60 km, locally 20 km, and ongoing 5 km for Japan 
area.  The river basins in Japan span over several 
hundred square kilometers in area. Accordingly, 
getting precipitation data at 5km resolution proves to 
be effective and useful. However, the limited 
diversity of ensemble outputs from 5 km compared 
to 20 km impedes its applicability in impact 
assessment research.  

Basically, there are two main methods for 
downscaling of precipitation: dynamical and 
statistical (Wilby et al., 1998). The former is 
physically-based and it is computationally expensive. 
Consequently, statistical downscaling is widely used. 
Many studies have discussed the hypothesis of 
statistical downscaling and its type, advantages, and 
limitations (Wilby et al., 1997; 1998; 2004; Storch 
et al., 2013; Trzaska and Schnarr, 2014). 
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Among the many statistical downscaling 
methods currently used, the artificial neural network 
(ANN) is one of the most popular tools because of 
its efficiency and prompt operation. Vu et al. (2016) 
employed an ANN to downscale the monthly 
precipitation from four GCMs over Bangkok during 
the rainy season. The ANN model was trained using 
the selected predictors from the European re-
analysis interim dataset (ERAI), and the trained 
ANN was applied to the dominant predictors from 
selected GCMs to downscale the precipitation for 
current and future predictions. This study 
demonstrates the applicability of ANN for 
precipitation downscaling, as a good agreement was 
found between downscaled and station observed data 
for the present time, with a correlation coefficient of 
0.8. Sachindra et al. (2018) used four machine 
learning techniques to downscale monthly 
precipitation over 48 stations in Australia: genetic 
programming (GP), support vector machine (SVM), 
relevance vector machine (RVM), and ANN. The 
study suggests that RVM and ANN are suitable for 
floods, whereas RVM can be recommended over 
other methods for drought problems. Nourani et al. 
(2019) applied an ANN to downscale the monthly 
precipitation and temperature for three GCMs. 
Previous studies that used ANN algorithms mainly 
focused on utilizing a large number of large-scale 
variables (predictors) from GCMs over many grids 
surrounding the area of interest to downscale 
monthly precipitation (predictand). Other 
applications use finer resolution data such as the 
normalized difference vegetation index (NDVI), 
topography or cloud information for downscaling 
satellite precipitation data (Immerzeel et al., 2008). 

In this study, we introduce a simple, but efficient 
ANN-based downscaling method that utilizes daily 
observed precipitation data of a pseudo-coarse-
resolution (20-km) and enhances its spatial 
resolution to a finer original scale (5 km). During the 
downscaling process, it is important that the original 
characteristics of the 5 km precipitation data are 
preserved and successfully generated. This includes 
maintaining the extreme values of the grid, the mean, 
the standard deviation, and other relevant parameters. 
For this purpose, long-term 20-km pseudo-coarse 
resolution data which has been derived from 
spatially averaged 5-km observed data is employed. 

Nevertheless, it remains uncertain whether the 
original 5 km data can be effectively reconstructed 
from the synthetically upscaled 20 km data using the 
ANN algorithm. The object of this study is to 
investigate the applicability and effectiveness of the 
ANN-based downscaling method for maintaining the 
original characteristics of precipitation data under 
this simple scenario. The observed data set is used in 
this study instead of GCMs data to gain a 
fundamental understanding of the ANN's 
performance. The proposed approach eliminates the 
difficulties associated with predictor selection, as it 
only relies on the precipitation data at different 
spatial scales as the input for the ANN downscaling 
process. In addition, it has a daily downscaling time 
step instead of a month.  

 
2. Overview of ANN  

 
ANN is considered as a universal mathematical 

approximator. It is efficient and robust to solve 
large-scale nonlinear problems owing to its ability to 
learn and recognize the general relationship between 
input and output vectors. A typical ANN structure 
comprises an input layer, output layer, and several 
hidden layers. The input layer receives the input 
variables, which could be temperature, rainfall, 
water levels, or other variables in hydrological 
modeling. The output layer involves the values 
predicted by networks, which could be any variable 
in the hydrological response, such as streamflow or 
rainfall. The hidden layers contain several nodes for 
data processing. The number of hidden layers and 
nodes of each hidden layer is generally obtained via 
trial-and-error process (ASCE, 2000). 

During the ANN modeling process, input and 
output data are typically divided into three sections: 
training, testing, and validation. Training aims to 
train the network to generate an output vector that is 
close to the target vector, and the weight and bias are 
optimized while minimization the error between 
input and output. The backpropagation algorithm 
with gradient descent technique is employed as one 
of the most common algorithms to train the network 
and obtain optimal weights and bias. The testing 
section selects the model with the best performance 
among various combinations of training options and 
prevents overfitting of the network. Such behavior 
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can be noticed when the network tries to mimic the 
noisy component in individual data during the 
training process, rather than learning the underlying 
general relationship. Validation evaluates the 
performance of the final model using different 
sections of data and can be quantified by the error 
percentage between the desired and predicted 
outputs (ASCE, 2000).  

 
3. Data and Methodology 

 
It is worth mentioning that Kim et al. (2014) 

developed a downscaling method called Formatted 
Regression Frame (FRF) based on observed 
precipitation data, which takes advantage of the 
unique spatial correlation to downscale observed 
precipitation data at 20-km from a synthetically 
upscaled resolution of 60 km. Also, Kim et al, (2017) 
successfully applied the FRF method for AGCM60 
data to reproduce AGCM20 precipitation data. 
However, the previous study used a simple linear 
multivariate regression, and it was for the downscaling 
of 60-km into 20-km resolution. 

For the current study, observed gridded 
precipitation data (APHR_JP; Kamiguchi et. al, 2020) 
for 112 years from 1900 to 2011 were also utilized. 
The original data comprised daily precipitation and 
had a spatial resolution of 5 km × 5 km. First, the 5km 
data were upscaled to 20 km, and then the spatial 
correlation between the two datasets was checked for 
each respective region. The ANN-based regression 
model for downscaling was established between the 
upscaled 20 km and 5 km spatial resolution data. 
Finally, the accuracy of the downscaled 5 km 
precipitation data was assessed by comparing it with 
the original 5 km precipitation data. A square of 3 × 3 
with a resolution of 20 km was considered as a 
downscaling frame, and the downscaling target was 
the center grid of this square as demonstrated in Figure. 
1 The output of this model was the daily precipitation 
data for 16 grids at a square of 4 × 4 with a resolution 
of 5 km. This model was tested for five regions across 
Japan as shown in Figure. 1 over four different months. 
January represents winter, June is the rainy season due 
to frontal rainbands, August is the season with the 
most unstable atmospheric conditions, and October 
represents the mild weather of spring and autumn. 
These five regions were also chosen to observe the 

model's behavior in diverse environments. Regions 
2~4 are the main concern as they are known for heavy 
rainfall, region 1 and 5 were chosen to assess the 
model's performance in environments with less 
rainfall and low temperatures, respectively. 
 
4. ANN Setup  
 
4.1  ANN architecture 

In this study, a simple feed-forward ANN with 
back-propagation algorithm and stochastic gradient 
descent technique was used for training, as it allowed 
the ANN to converge and reach the global minimum 
more quickly (Hitokoto & Sakuraba, 2020). It 
comprised an input layer, single hidden layer, and an 
output layer, and is a widely used ANN structure in 
hydrological studies (Ahmed et al., 2015). The 
activation function is a sigmoid function that provides 
a nonlinear response and is one of the most commonly 
used activation functions in the field of hydrology 
(Mekanik et al., 2013). 

The selection of the ANN architecture and training 
options is an important step, as the training results can 
vary based on the given ANN structures and hyper-
parameters, whereas the numbers of input and output 
nodes depend on the number of given predictors and 
predictands, as illustrated in Figure. S1. There is 
flexibility in determining the number of hidden layers 
and nodes in each hidden layer. The optimal 
architecture is usually obtained by trial and error 

Figure 1. Locations of tested regions in Japan for 
ANN model. Each region is a square of 20 km x3 grid 
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(ASCE, 2000).  
Seasonal data for each region were used, and 

divided as follows: 85 years for training (1900–1984), 
12 years for testing (1985–1996), and 15 years for 
validation (1997–2011). Table 1 presents the daily 
maximum values for each stage in each region.  

The standardization of data is a prerequisite for 
applying machine learning (ASCE, 2000). In addition, 
the output of the sigmoid function applied in the model 
ranged from 0 – 1. However, owing to the sensitivity 
of this function to very low and high values near 0 and 
1, respectively, the input data were scaled between 0.2 
and 0.8. 

 
Table 1 Maximum daily precipitation in each stage for 
each season and region 

 
4.2  Tuning of the hyperparameters                                                

In this study, different combinations of 
hyperparameters were tested during the training 
process: neuron size (9, 18, 36), learning rate (0.01, 0.1, 
0.8), epoch (100, 1000, 2000), and batch size (10, 20, 
30). The learning rate is defined as the size of the 
change in each bias and weight when updated, and it 

also controls the size of the step taken downhill within 
the gradient descent. An epoch represents a complete 
iteration through the entire training dataset, whereas 
the mini-batch size is the number of samples processed 
before the weights and biases are updated within the 
model (Kim and Tachikawa, 2018). Other types of 
training parameters, such as the momentum and 
dropout ratio, were not used in this study. 

In total, we used 81 cases to determine the best 
performance model for each season in five regions. 
During this process and for each case, training was 
conducted over a period (1900–1984), and the trained 
ANN was applied to the test data over a period (1985–
1996) for prediction. The normalized test error 
(RMSE) was calculated and checked at every step so 
that the case of the minimum test error among the 81 
cases was selected as the best combination to achieve 
the best result and deliver the best model for the season. 
This process is also important because we aimed to 
determine the optimal architecture for the ANN-based 
downscaling models for each region and calendar 
season by adjusting the hyperparameters, and also 
overcome the ANN overfitting problem as the learning 
rate, which controls the size of the updated weight and 
bias, is checked with many cases. 

 
4.3  Model validation 

Verification was performed after the training and 
testing using the best combination among 81 cases to 
determine the best performance model. The model 
performance was evaluated based on the RMSE 
criteria. Smaller values of the RMSE value indicated 
better accuracy and fitting of the data. It was calculated 
to include 0 mm/d precipitation. The RMSE indicates 
the general performance of the ANN model. Therefore, 
the bias in the average and standard deviation of the 
downscaled precipitation were calculated to measure 
the ability of the model to simulate the individual 
statistical properties for each season. Bias (as a 
percentage) for the statistic of interest is equal to the 
difference between the simulated and observed values 
divided by the observed statistic. A negative bias 
indicates an underestimation of precipitation, while a  
positive bias implies overestimation (Sachindra et al., 
2018). 

 
 

Region 
Data 

Division 
Train Test Validation 

Region_1 

January 97.48 54.83 80.03 

June 99.44 78.61 115.86 

August 172.65 195.97 120.32 

October 118.50 114.15 87.60 

Region_2 

January 64.80 56.45 61.08 

June 204.83 283.08 213.22 

August 301.43 167.16 189.82 

October 194.03 175.18 58.70 

Region_3 

January 65.27 39.97 85.77 

June 193.54 225.86 185.55 

August 211.25 124.94 182.09 

October 203.44 145.50 105.05 

Region_4 

January 74.49 50.10 102.92 

June 194.84 201.02 217.67 

August 284.62 185.73 223.10 

October 254.75 148.74 96.32 

Region_5 

January 35.03 22.45 47.27 

June 49.44 41.07 44.71 

August 155.24 86.73 90.85 

October 97.96 46.95 38.78 
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5. Results and Discussions 
 
5.1 Spatial correlation 

The main concept of the downscaling method 
proposed in this study is that the daily precipitation 
at a 5 km grid horizontal resolution is spatially 
correlated with the precipitation pattern at a 20 km 
resolution. As shown in Figure. S2, the correlation 
with 20 km grids was checked and was evidently 
high for all regions during all seasons.  

The correlation in the winter season (October) is 
stronger than in the summer (June).  This has a 
significant impact on the output of the ANN model. 
 
5.2 Tuning of the hyperparameters 

Figure. S3 shows the normalized test errors for 
all regions. The test error is presented in a 
normalized form (using scaled data within 0.2–0.8) 
to eliminate the impact of varying precipitation 
magnitudes across regions and seasons. In all the 
regions, the median of the boxplots is close to zero, 
indicating good training results. These regions are 
located in southwest Japan and experience the same 
weather and atmospheric conditions.  

Table 2 lists the optimal hyperparameter 
combinations chosen by the ANN for each region. 
Regions 1 and 2 share the same combination for all 
seasons, except August, with 36 neurons instead of 
9. In region 3, January has a different combination 
of (36, 0.01, 1000) for the neuron size, learning rate, 
and epochs, respectively. Region 4 has the same 
combination for all seasons except January and 
 
Table 2 Optimal hypermeters for each region 

  

October, with 36 neurons. Region 5 shows greater 
consistency for all seasons. They represent the 
optimal architecture for ANN-based downscaling 
models for each region and calendar season. 
 
5.2 Analysis of the validation results  
The model performance was further verified using 
15 years of separate validation data for each season 
and region. Figure. 2 illustrates the representative 
results for ANN based downscaling model from 
region 2, for some grids (r5, r6, and r15) for the two 
seasons of January and June during the validation 
stage. The red points represent the downscaled 
versus the original 5km daily precipitation data, 
while the green points represent grid R5 of 20 km 
versus the original 5km daily precipitation data. The 
red points on the graph are positioned on the 45-
degree line, indicating a close match and high 
agreement between the downscaled and original 5km 
daily precipitation data for almost all seasons in all 
regions. However, the green points are not aligned 
with the 45-degree line, indicating a difference 
between grid R5 of 20km and the original 5km daily 
precipitation data as shown in Figure. 2. This 
evidently illustrates the clear improvement owing to 
downscaling used in this study.  

Figure. 3 depicts the RMSE results for all seasons 
in the regions during the validation period. As 
illustrated in this figure, the June season had the 
highest RMSE, followed by the August season for all 
grids over most of the regions. This indicates that 
winter and wetter climates are more skillfully 
downscaled compared to summer and drier climate 
conditions, owing to their stronger connection with 
large-scale atmospheric circulation (Fowler et al., 
2007). In region 5, the January season has the highest 
error, followed by August, owing to different 
weather conditions, i.e., snowing. Regions 2, 3, and 
4 have higher RMSE than regions 1 and 5. This can 
be explained by the severe rainfall events caused by 
the frequent typhoons that occur in these regions. 
Across all regions and seasons, the RMSE varies 
between 0.12 – 3.4 mm/day, with the lowest 
observed in June in region 5, and the highest 
observed in region 2. The maximum RMSE for 
regions 1 and 5 does not exceed 1.3 mm/day and 0.5 
mm/day, respectively. Table 3 displays the values of 
RMSE as an average of 16 grids for each region. The 

Best  

hyper- 

parameters 

Neurons’ 

size  in 

the 

hidden 

layer 

learning 

rate 

Epoch 

size  

batch 

size 

Region 1 9, 36  0.8 2000 10 

Region 2 9, 36  0.8 2000 10 

Region 3 9, 36 
0.8,0.01 

1000, 

2000 
10 

Region 4 9, 36  0.8 2000 10 

Region 5 9 0.8 2000 10 
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RMSE varies between 0.17 – 1.92 mm/day. These 
reflect the temporal and spatial changes in 
precipitation owing to seasonal variations within the 
same region, as well as regional variations. These 
changes occur because of varying weather and 
climatic conditions throughout Japan. It is 
noteworthy that some grids have higher RMSE 
values than others, possibly owing to differences in 
topography, land cover, and land-use characteristics, 
as each grid has a horizontal resolution of 5 km. 

Finally, the bias in the mean and the standard 
deviation over the validation period (15 years) for all 
regions considering all seasons was within ±8%, as 
shown in Figure. S4 and Figure. S5. Some regions, 
such as region 5, show less bias in the mean with ± 
2. The highest bias in the mean was found in regions 
2 and 3. The mean is mainly underestimated in 
October, region 2 with (-8%). The standard deviation 
is evidently underestimated for the October and 
January seasons in region 3 and January in region 5 
by -6%, -8%, and -8%, respectively. Nonetheless, 
the ANN-based downscaling model successfully 
preserves the statistical properties of the original 
daily data. According to Sachindra et al. (2018), the 

mean is better estimated regardless of the climate 
regime and machine learning technique employed in 
their study, whereas the standard deviation, 
maximum values, and trend of high percentiles 
(above the 90th percentile) of monthly precipitation 
are underestimated. Our study showed that the ANN 
model effectively estimates both the mean and 
variance of the original daily data. 
 
5.3 Comparing the training, test, and validation 
RMSE. 

For all regions and seasons, it was observed that 
when the maximum precipitation value (Pmax) from 
112 years of data was included in the test stage, the 
RMSE for all the grids in this stage was higher than 
the combined RMSE of the validation and training 
stages. Similarly, if Pmax was in the validation stage, 
the RMSE exceeded the RMSE of the training and 
test stages for all grids. This affects model 
performance and downscaling results. 

Figure. S6 displays RMSE for three stages for 
three months: August, June, and January in three 
regions 1, 2 and 4, respectively, when Pmax is 

Figure 2. Scatter plot of downscaled vs original 5km daily precipitation values (red), and its own 20 km grid 
R5 vs original 5km daily precipitation (green) for some grids (r5, r6, r15) in two seasons June (first row) 
and January (second row) in region 2 in the validation stage. 
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included and excluded from the training stage. In 
August region 1 and June region 2, Pmax is included 
in the test stage while in January in region 3 Pmax is 
included in the validation stage. As shown in this 
Figure. S6 (left side), RMSE test error for all the 
grids surpassed the training and validation errors in 
August region 1 and June region 2, while RMSE 
validation errors is higher than combined training 
and test errors.  

The year with the Pmax value has been 
artificially excluded from the test or validation and 
added to the training stage. Significant improvement 
in RMSE values is observed when Pmax is included 
in the training, as shown in Figure. S6 (right side). 
Consequently, the RMSE decreased across all grids 
during the test and validation stages. Specifically, 
for June in region 2, the RMSE decreased from 3.4 
to 2.29 mm/day during the validation stage. 

Figure. S7 displays the downscaled and observed 
maximum daily precipitation for each year for June 
in region 2 before and after including Pmax in the 
training stage. The figure demonstrates that the ANN 
model is well capturing maximum daily precipitation 
for both cases, but less for very extreme cases. 
Sharifi et al. (2019) demonstrated that the ANN 
model was ineffective in accurately depicting  
extreme monthly precipitation cases.   
 

Table 3 Average RMSE values of 16 grids 
over all regions, RMSE (unit: mm/day) 

 
Finally, obtaining the maximum precipitation 
dataset at the training stage is crucial and affects  
 
 
 

Season  Jan June Aug  Oct 

Region 1 0.34 0.74 0.73 0.41 

Region 2 0.31 1.91 1.05 0.44 

Region 3 0.96 0.97 0.70 0.55 

Region 4 0.71 1.38 0.84 0.58 

Region 5 0.41 0.17 0.28 0.17 

Figure 3. Plots of RMSE for 5 km grids from (r1 to 
r16) during all seasons in all regions 1,2 ,3,4, and 5 
in the validation stage. 
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6. Concluding Remarks 
 

The current study presents a simple but efficient 
ANN method for downscaling daily observed 
precipitation at two distinct spatial resolutions: 5-km 
and synthetically upscaled 20-km. By comparing the 
downscaled 5 km precipitation data for each grid 
with its own 20 km grid, clear improvement was 
achieved by the downscaling method for almost all 
grids from r1 to r16 in the tested regions considering 
all seasons. The June season had the maximum 
RMSE of 3.4 mm/day. Additionally, the ANN model 
successfully preserved the statistical properties of 
the original daily data, maintaining bias in mean and 
standard deviation within ±8%. This model performs 
better in estimating maximum values. It effectively 
addresses several limitations and requirements 
associated with conventional downscaling methods. 
It neither utilizes a considerable number of large-
scale predictors over many grids for the area of 
interest nor depends on assumptions such as the 
normal distribution of variables and the linear 
relationship between predictors and predictands.  

Given the encouraging results obtained from the 
observed data, the proposed ANN method exhibits a 
high potential to be applied for 20-km and 5-km 
AGCMs data for our next study. However, there are 
certain limitations in this study. Firstly, the proposed 
method has been evaluated using only observed 
precipitation data. Even though the method shows 
successful reconstruction of coarse-resolution 
precipitation data into fine-resolution data, it is 
based on daily precipitation data. Application to 
hourly data might ask for more sophisticated model 
structures. Secondly, AGCM output from different 
models and resolutions would provide diverse 
characteristics of its precipitation output. Revision 
of the model structure as well as careful input 
selection might be necessary for applying the 
proposed method to AGCM output, which will be 
the focus of our future research. 
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Appendix 
 

In this appendix, we present supplementary figures 
that provide further support and information relevant 
to the main findings and discussions presented in the 
main text and contribute to a comprehensive 
understanding of our research. 
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