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Synopsis 
Rainfall occurrence prediction models were developed based on a convolutional neural 

network algorithm, which is one of the most representative machine learning algorithms 
for image recognition. Spatiotemporal map of atmospheric movement was prepared as 
image data based on ground gauged data and satellite image data. The spatiotemporal 
map contained information regarding the last 30 min of atmospheric movement to predict 
rainfall occurrence at the target area with a lead time of 30 min. The proposed model was 
developed for on-off (rain or no rain) forecasting at the target area to maximize the image 
classification functions of the CNN algorithm. Various forms of input combinations and 
hyperparameters were tested to evaluate the performance and applicability of the model. 
The evaluation index from the best model showed promising results with a detection 
probability of 0.836 and a critical success index of 0.456. This paper illustrates the 
concept of the developed model and summarizes the results from various model structures 
and input data combinations. 
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1. Introduction

Rainfall prediction is essential to hydrological
forecasting, and extensive research efforts have been 
made to achieve high accuracy in rainfall prediction. 
These efforts are conventionally based on numerical 
weather prediction (e.g., Golding, 2000; Cloke and 
Pappenberger, 2009; Shrestha et al., 2013), radar 
image extrapolation (e.g., Bowler et al., 2004; Kim 
et al., 2009; Mandapaka et al., 2012, Thorndahl et al., 
2017), or a blend of these two schemes (e.g., 
Ganguly and Bras, 2003; Cuo et al., 2011; Yu et al., 
2015; Wu and Lin, 2017). However, precise 
quantitative precipitation forecasting (QPF) remains 
one of the most challenging tasks. 

Recent progress in machine learning algorithms 
has attracted the attention of many researchers and 

provides another approach to hydrological research, 
including rainfall prediction. For example, monthly 
rainfall prediction can be achieved by training long-
term historic rainfall data and large-scale climate 
indices within a fully connected feed-forward neural 
network (e.g., He et al., 2015; Alizadeh et al., 2017) 
or long short-term memory (LSTM) algorisms (e.g., 
Ni et al., 2020; Tao et al., 2021).  

Owing to the increased computing power, 
accumulated observation data, and improved 
training techniques, recent machine learning 
algorithms are being actively tested for storm cell 
detection (Kim et al., 2019), downscaling of satellite 
images (Pan et al., 2019), and even mimicking 
numerical weather predictions (Scher, 2018; Weyn 
et al., 2019; Matsuoka et al., 2020). 

In addition to the conventional form of fully 
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connected artificial neural network (ANNs), there 
are two types of representative machine learning 
algorithms: convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs). The RNN 
was originally developed for natural language 
analysis, and the concept has evolved into the LSTM 
algorithm to be specialized in time series analysis 
and modeling sequential data (Pascanu et al., 2014). 
The time series of rainfall or streamflow data can be 
effectively reconstructed using the trained LSTM 
algorithm for short-term forecasting (e.g., Ni et al., 
2020; Tao et al., 2021; Nguyen et al., 2020; Cheng 
et al., 2020). The CNN was originally introduced for 
image recognition (LeCun et al., 1998), and owing 
to its specialized function in feature extraction from 
spatial data, it is now actively utilized in 
hydrological forecasting, such as flood mapping 
(Wang et al., 2019; Khosravi et al., 2020; Kabir et 
al., 2020) and spatial rainfall estimation (Wu et al., 
2020; Tu et al., 2021). Owing to the flexibility of 
these deep learning algorithms and improved 
computing power, it is now possible to test and 
propose many new types of modeling approaches in 
hydrological forecasting (Shen et al., 2018; Nearing 
et al., 2021). 

The CNN algorithm is specialized in the function 
of image recognition by extracting features with a 
small set of parameters, known as a filter, by 
scanning the image several times. The algorithm can 
be applied to any form of data that can be expressed 
in two- or three-dimensional images (e.g., color 
images with RGB channels). Spatiotemporal data of 
atmospheric movement can also be expressed in two- 
or three-dimensional data arrays, and CNN can be 
applied to capture specific atmospheric patterns, for 
example, atmospheric patterns before rainfall occurs. 
(Suzuki et al., 2018; Park et al., 2019; Kim et al., 
2020).  

Suzuki et al. (2018) tested three-dimensional 
input data composed of ground gauged observations 
(precipitation, temperature, wind speed, etc.) and fed 
into a CNN algorithm to classify whether the 
atmospheric movement resulted in rain at the 
predicted target area. In the proposed CNN 
algorithm, the three-dimensional input data were 
prepared by arranging the time series (vertical) of 
multiple atmospheric variables (depth) at multiple 
observation points (horizontal). The CNN algorithm 

was extensively tested with various model structures 
and training techniques in three different regions of 
Japan to evaluate its applicability (Kim et al., 2020). 
The best model performances in terms of the 
probability of detection (POD) were 0.665, 0.780, 
and 0.550 in Kyoto, Osaka, and Tokyo, respectively, 
for a 30-min prediction lead time. However, 
regarding overall performance, the upper limits of 
the critical success index (CSI) were 0.271, 0.318, 
and 0.226 respectively, in the three cities, because of 
the high false alarm ratio (FAR). It was found that 
the model tends to falsely forecast rainfall right after 
the rainfall events, showing difficulty in identifying 
the atmospheric pattern between ‘during the rain’ 
and ‘after the rain’ phases (Kim et al., 2020). 

There was a limitation in the first version of the 
CNN rainfall detection model proposed by Suzuki et 
al., 2018, because the input was only from the 
ground gauged data and it was not possible to 
consider the vertical movement of the atmosphere 
(Kim et al., 2020). To improve the prediction 
accuracy of the algorithm, it is necessary to integrate 
additional atmospheric information. In this paper, 
we introduce an improved version of the rainfall 
occurrence prediction model with the help of 
additional atmospheric information from satellite 
images.  

We have attempted to incorporate satellite 
images observed from Himawari-8 to predict rainfall 
occurrence in the Kyoto region of Japan. Himawari-
8 is a geostationary meteorological satellite operated 
by the Japan Meteorological Agency (JMA) since 
2015, which provides 16 observation bands (3 for 
visible, 3 for near-infrared, and 10 for infrared). 
These observation bands provide information on 
vertical cloud conditions with a 1 km resolution 
every 2.5 min around Japan, and all the observed 
data are available to the public through the Data 
Integration and Analysis System (DIAS) of Japan. 

In this study, to improve the rainfall prediction 
accuracy using the CNN algorithm, we first tested 
four types of input data sets: two sets were based on 
ground gauged data, and the other two sets were 
based on satellite image data (plus ground gauged 
precipitation data), which are in two different types 
of time series settings. After sensitivity analysis with 
the four input data sets, the best input data 
combination was selected to build the best model. 
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Figure 1. Schematic drawing of the CNN structure with a convolution layer for filtering, pooling layer for 
sampling, and fully connected layer to finally classify the given image input. 
 

We have tested four types of CNN algorithms: 
two algorithms based on the conventional structure 
that has convolution layers and pooling layers for 
two or three layers, and the other two algorithms 
with a simplified structure that has only convolution 
layers for two or three layers. After the sensitivity 
analysis for these four model structures that 
considered various training conditions, the best 
model structure was selected to build the ideal model. 
In summary, four types of input data sets and four 
types of CNN model structures were tested (16 
combinations) to select the best model structure and 
input combination. Furthermore, some hyper-
parameters were also tested (e.g., batch sizes and 
learning rates) for every 16 model combinations, as 
well as the finalized best model. 

This paper summarizes the sensitivity analysis 
results with various combinations of input data and 
model structures to build up the rainfall occurrence 
model with the CNN algorithm in the Kyoto region 
of Japan. The remainder of this paper proceeds as 
follows. Section 2 provides a brief overview of the 
CNN algorithm (2.1), the concept of the developed 
model (2.2), the details of the model structures and 
input data (2.3), and the details of experimental 
design. Section 3 provides sensitivity analysis 
results for the model structures (3.1) and for each 
variable in the input data (3.2) to build up the best 
model and to check the model performance (3.3). 
Finally, section 4 summarizes the results with 
concluding remarks. 

 
2. Data and Methodology 

 
2.1 Convolutional Neural Network 

The CNN algorithm was originally introduced 
for document recognition and has evolved to its 
present form to specialize in image recognition. The 
algorithm has three data processing layers, as shown 
in Fig. 1: the convolution layer for extracting 
features, the pooling layer for summarizing the 
features, and the fully connected layer to classify the 
features for the final output. 

First, the convolutional layer extracts the image 
features by applying a set of weight factors, 𝑤",$,% , 
known as a filter, for a certain input area, 𝑥',(,% , 
where (𝑝, 𝑞, 𝑘) ∈ 	 [0,𝐻 − 1] × [0,𝐻 − 1] × [1,𝐾] 
and (𝑖, 𝑗, 𝑘) ∈ 	 [1, 𝐿] × [1, 𝐿] × [1,𝐾] . Input data 
have a two- or three-dimensional array format, such 
as an image with 𝐿 × 𝐿  pixels and 𝐾  channels 
(e.g., RGB channel), and the filter also has a two- or 
three-dimensional array format (𝐻 ×𝐻 × K). 

 

𝑦',(,%= = 𝐹@AAA𝑤",$,%

BCD

$EF

𝑥'G",(G$,%
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%ED
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The extracted feature, 𝑦',(,%=, was estimated using Eq. 
(1). The convolutional process of the function 𝐹(∙) 
is applied to the entire input range by shifting (𝑖, 𝑗) 
by a definite stride (in general, the stride is one pixel). 
The result of the convolutional process is an (𝐿 −
𝐻 + 1) × (𝐿 − 𝐻 + 1) ×𝑀  feature map, where 𝑀 
is the number of convolutional processes. The size 
can be controlled to 𝐿 × 𝐿 ×𝑀  by adding zero 
values surrounding the input data, which is called 

― 224 ―



zero padding. The activation function 𝐹(∙) converts 
the filtered results, and the most common activation 
function in the CNN is the rectified linear unit 
(ReLU). 

Second, the pooling layer summarizes and 
reduces the size of the extracted features by taking 
the maximum values within a given window (max 
pooling). As shown in Eq. (2), max pooling takes 
only one maximum value within the given area, 𝑈O,P, 
where s and t are the vertical and horizontal sizes of 
the given area, respectively. If the given area of the 
input data is 2 × 2 for 𝐿 × 𝐿 ×𝑀, then the pooling 
layer provides an (𝐿/2) × (𝐿/2) ×𝑀  output. By 
conducting the max pooling process, only significant 
information is delivered to the next process, and 
unnecessary features are eliminated, improving the 
model performance, and reducing computational 
resources. 

 

𝑦',(,% = 	 max(',()∈VW,X
𝑥',(,%  (2) 

 
Third, a fully connected layer rearranges the 

three-dimensional feature map into a one-
dimensional array and connects it to the output layer 
for classification. The SoftMax function is often 
utilized as an activation function to emphasize the 
classification task, and a cross-entropy function is 
the most commonly used error function in the output 
layer. More details of the CNN algorithm can be 
found in Rawat and Wang (2017). 

The main advantage of using the CNN algorithm 
compared to the conventional fully connected neural 
network is the processing efficiency with a small 
number of parameters. The CNN algorithm can 
efficiently extract specific features from the input 
image by focusing on a limited region of the image 
using a filter. There are several hyperparameters for 
maximizing the learning process in the CNN 
algorithm, such as the number of layers, filter size, 
number of epochs, and batch size. In this study, some 
hyperparameters were fixed (e.g., filter size was set 
as 3 × 3, and pooling window was set as 2 × 2), 
while some hyperparameters were examined (e.g., 
batch size and learning rate) to maximize the model 
performance. The details of the model settings are 
given in Section 2.3. 

 

2.2 Modeling Concept for Rainfall Occurrence 
Prediction 

Rainfall is generated when precipitable water in 
the air is raised up and is condensed under various 
conditions. Air can be raised up due to frontal 
effects, orographic effects, or massive atmospheric 
movements caused by typhoons. However, these 
sophisticated atmospheric movements and rainfall 
generation are difficult to simulate correctly even 
with a very fine numerical weather prediction model 
because of the difficulty in the initial setting of the 
model and the chaotic movement of the atmosphere. 

Another type of forecasting approach can be used 
with a machine-learning algorithm by utilizing 
various types of observations. Even though the 
observations are not detailed enough to reformulate 
the atmospheric movement in our conventional 
numerical simulation model, accumulated 
observation data from various sources, such as 
ground gauge and satellite images, is valuable, and 
the machine learning approach allows us to find a 
shortcut to link those different types of observations 
and extract a possible linkage from the observed 
natural phenomena. 

We have developed a rainfall prediction model 
based on the CNN algorithm to forecast rainfall 
occurrence at a specific target area. The developed 
model is only for on-off (rain or no rain) prediction 
for a target area with a certain lead time (e.g., 30 min 
or 1 h), similar to the image classification process of 
the CNN algorithm. The CNN algorithm has been 
developed for efficient image recognition, and once 
it is trained with a sufficient number of data sets, the 
algorithm can classify images by extracting the 
necessary features. The application of this algorithm 
is not restricted to image recognition. If we can 
prepare the necessary spatiotemporal data of 
atmospheric movement, the CNN can be trained to 
capture and extract the internal features of 
atmospheric movements before it rains. 

The first version of our prediction model was 
based on ground-gauged data only (Suzuki et al., 
2018; Kim et.al., 2020). The spatiotemporal data of 
atmospheric movement were prepared by attaching 
the time series of an atmospheric variable from 
multiple observation points side by side. By 
overlapping this spatiotemporal data with multiple 
atmospheric variables, we produced a three-
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dimensional data array containing atmospheric 
movement around the target area. Based on 
extensive experiments, we confirmed that the CNN 
algorithm with this data array can be successfully 
trained to classify the spatiotemporal movements of 
the atmosphere to determine whether there will be 
rain in the next 30 min. 

However, even though the detection ratio was 
good at 0.665 in the case of Kyoto, the CSI was 
limited to 0.271 because of the high FAR (Kim et al., 
2020). Many false alarms were noticed immediately 
after the rain stopped, and the reason for this high 
FAR could be traced to two factors. One of the 
factors is of the gradually changing atmospheric 
conditions. Even after the rain stops at the target 
area, the surrounding atmospheric conditions still 
have a pattern similar to the conditions during 
rainfall; thus, the CNN algorithm tends to falsely 
forecast rain immediately after the event, resulting in 
a high FAR.  

Another reason is the limited information 
available in our previous model. The first version of 
our model only utilized ground-gauged atmospheric 
variables (precipitation, temperature, wind speed, 
wind direction vectors, and sunshine ratio), and it 
was not enough to integrate the information of air 
mass that is moving vertically. Thus, we have been 
looking for additional information sources to 
integrate three-dimensional air mass movements so 
that the CNN algorithm can classify the slight 
differences in atmospheric conditions during, and 
after the event. 

In our second version of the prediction model 
introduced in this paper, we utilize satellite images 
to incorporate additional atmospheric information 
observed from the upper layers of air mass. In this 
study, we utilized the fine resolution of satellite 
images observed from Himawari-8, which is a 
geostationary meteorological satellite operated by 
the Japan Meteorological Agency (JMA). Himawari-
8 provides 16 observation bands (3 for visible, 3 for 
near-infrared, and 10 for infrared) in 0.5-2 km 
resolution every 2.5 minutes around Japan. Among 
the many observation bands, we selected six bands 
to represent the vertical conditions of cloud and 
precipitable water and prepared 4 km spatial 
resolution data at 10 min intervals. A summary of the 
selected observation bands is presented in Table 1. 

 
Table 1. Utilized Bands from Himawari-8 

B.N. 
Wave 
length 

Observation target 

B07 3.9 𝜇𝑚 Cloud distribution 

B08 6.2 𝜇𝑚 
Precipitable water amount in 
high altitude (350 hpa) 

B09 6.8 𝜇𝑚 
Precipitable water amount in 
middle-high altitude (450 hpa) 

B10 7.3 𝜇𝑚 
Precipitable water amount in 
middle altitude (550 hpa) 

B13 10.4 𝜇𝑚 Cloud height and types 

B15 12.4 𝜇𝑚 Aerosol 

 
Subsequently, we prepared a spatial map of 

atmospheric variables from the ground gauged 
observations to be compatible with the satellite 
images. The target region is shown in Fig. 2, and 
there are 44 observation points from the Automated 
Meteorological Data Acquisition System 
(AMeDAS) of Japan. By utilizing the inverse 
distance weight method, we generated 4 km spatial 
resolution data for the target region with 34 x 34 
grids format that will be the same format to the 
satellite image data. The prepared 6 parameters of 
atmospheric data from the ground gauged 
observations were precipitation, temperature, wind 
speed, wind direction (u & v), and sunshine ratio at 
10 min intervals. Further details on the input data 
sets are given in the next section. 

 
2.3 Input Data and Model Structure 

We tested four different types of input data sets 
and four different types of model structures to select 
the best input combination and model structures. All 
four types of input data sets were tested in four types 
of model structures, and the best model structure was 
selected based on the overall model performance. 
During this test, we also examined several 
hyperparameters (batch size and learning rate). In 
this section, the details of the input data sets and 
model structures are described. 
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Figure 2. Location map of target area (134.7°E ~136.4°E; 136-km, 34.21°N ~35.34°N; 136-km). Black dots 
represent the locations of 44 ground gauge stations. 
 

Table 2. Details of Input Data Sets 
Data Sets Data Source Data Format 

A-TS 
AMeDAS, 6 variables; 
precipitation, temperature, wind speed, 
wind direction (u & v), and sunshine ratio 

Time series of t0 & t-30  
(6 variables at 2-time steps; 12 channels) 

A-DF Difference between t0 & t-30  
(6 channels) 

H-TS Himawari-8, 6 bands; 
B07, B08, B09, B10, B13, B15 
+ Precipitation (AMeDAS) 

Time series of t0 & t-30  
(7 variables at 2-time steps; 14 channels) 

H-DF Difference between t0 & t-30  
(7 channels) 

 
 

Table 3. Details of Model Structure and Training Setup 
CATEGORY ITEM VALUE 

PREDICTION TARGET 
Rainfall threshold (mm/10 min) 1.0 

Lead-time (min) 30 

MODEL STRUCTURE 

Convolution filter size 3×3 

Conv. filtering number 32-64 (2 Conv.) or 
32-64-128 (3 Conv.) 

Pooling window No pooling or 2×2 

ACTIVATION FUNCTION 
Convolution layer Leaky ReLU (𝛼 = 0.3) 

Fully connected layer Sigmoid 

TRAINING OPTION 

Optimizer ADAM 

Learning rate 1.0 × 10C^ or 1.0 × 10C_ 

Mini-batch size 32 or 96 

Epoch number (max) 50 
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For the two input data sets, Himawari-8 and 
AMeDAS, we prepared two different types of data 
formats: the time series (TS) and the difference (DF). 
The TS data format utilizes the atmospheric data at 
the current time (t0) and the data from 30 min ago (t 

-30) together, and thus the input data have 12 channels 
in the case of the AMeDAS data sets (two channels 
for six atmospheric variables). The DF data format 
utilizes the atmospheric data with the difference 
between the current time and 30 min ago (t0 - t -30), 
and thus the input data have six channels in the case 
of the AMeDAS data sets. For the Himawari-8 data 
sets, in addition to the selected six bands, we 
included precipitation data as well, which is from the 
AMeDAS data set, to include the rainfall 
information clearly. Thus, the Himawari-8 input data 
sets have 14 channels in the TS format and 7 
channels in the DF format. A summary of the input 
data sets is shown in Table 2. 

We prepared these two different types of data 
formats to check the effect of seasonal variation in 
our model. The summer season in Japan is very 
humid with high atmospheric temperatures, and this 
particular seasonal condition results in frequent 
rainfall events in summer. However, rainfall can 
occur in other seasons, as well as at lower 
temperatures and mild wind conditions. We decided 
to test two versions of the data format to understand 
the behavior and efficiency of our model under this 
seasonal effect. The DF data format (difference 
between t0 and t-30) eliminates the seasonal effect and 
provides information only for the most recent 
atmospheric change within the last 30 min. In 
contrast, the TS data format (data at t0 and t-30) 
contains information about the different seasonal 
atmospheric patterns. 

For all input data sets, we prepared 10 min 
intervals in 4 km spatial resolution data (34 x 34 
grids format). We collected data from March 2015 to 
July 2019, and we excluded winter season (from 
November to February) to avoid any possible noise 
from snowfall events in winter season. Of this data, 
the values from March 2015 to March 2019 were 
allocated for training and testing, and the testing data 
was randomly selected among this duration with the 
portion of 12.5%, which is about 4 months long data. 
Validation data is another 4 months long data from 
April to July 2019. The purpose of testing is to pick 

up the best training option while avoiding the 
overfitting problem, and the purpose of validation is 
to evaluate the trained model performance with a 
new data set. In summary, we have prepared 159,927 
input data altogether, and it is divided into 124,581 
data for training, 17,798 data for testing, and 17,548 
data for validation. And, every atmospheric variable 
was normalized to have a zero mean and one 
standard deviation, before we divided them into 
training, testing, and validation. 

For the model configuration, we tested four 
different types of model structures, which were 
combinations of “with” or “without” a pooling 
process, and two or three convolutional processes. In 
other words, we tested Type 1: C1-P1-C2-P2, Type 
2: C1-P1-C2-P2-C3-P3, Type 3: C1-C2, and Type 4: 
C1-C2-C3, where C stands for the convolutional 
process and P stands for the pooling process. For the 
filtering numbers of each convolutional process, we 
set 32 times for C1, 64 times for C2, and 128 times 
for C3. The filter size in all filtering processes was 
set as 3×3. These values were chosen based on our 
results in the first model test. We also need to check 
the efficiency of the hyperparameters to maximize 
the training efficiency. Two types of learning rates 
(1.0 × 10C^ or 1.0 × 10C_) and two types of mini-
batch sizes (32 or 96) were tested to determine the 
best training performance. The maximum epoch 
number of the training was set as 50 times, and, in 
every 10 epochs, the cross-entropy was checked with 
the testing data and the training process was 
terminated if the overfitting pattern appeared. A 
summary of the model setup and the tested model 
structure is presented in Table 3. 

 
2.4 Experimental Design and Evaluation Criteria 

In this study, we tested our rainfall prediction 
model to detect rainfall events of more than 1.0 
mm/10 min for 30 min of prediction lead time. This 
threshold corresponds to a rainfall intensity of 6.0 
mm/h. We set this threshold to identify the definite 
rainfall events and to secure a sufficient number of 
events for the proper training of the CNN algorithm. 
We are trying to develop a rainfall forecasting model 
for hydrological purposes, and thus, we might want 
to set a higher threshold. However, if we set a high 
threshold (e.g., 30 mm/h), the number of rainfall 
events to train the model is limited drastically. Once 
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we successfully confirm the model performance and 
efficiency with a sufficient amount of training data, 
it is able to test various thresholds in the following 
research, as well as considering various forecasting 
lead times.  

We developed our model in the following three 
steps: First, we prepared four types of input data sets 
and fed them into four types of CNN algorithms. 
Each CNN algorithm was trained with four types of 
hyperparameter combinations (two learning rates 
and two batch sizes) as well as two different random 
seed numbers. The random seed number is used to 
generate the initial weight and bias in each 
algorithm, and we trained every option twice with 
different random seed numbers to avoid any 
randomness in the training results. Based on these 
results, we are going to selected the best CNN 
structure. 

Second, with the results to reference from the 
first step, we carried out a sensitivity analysis for 
each input variable. In our proposing sensitivity 
analysis, we eliminated the effect of each input 
variable by setting it to zero in the input and ran the 
model again with the validation data. If the accuracy 
is drastically lower than the first-step results, we 
regard the input variable as a key factor in the model. 
By checking the changes with the zero-input test one 
by one, we can identify higher impact input variables 
(that reduce the accuracy drastically) and lower 
impact input variables (that do not reduce the 
accuracy). 

Third, we composed the best model setup with 
the best model structure selected in the first step and 
the best input combination selected in the second 
step. For a comprehensive evaluation, the best model 
setup was also trained with four types of training 
options (based on hyperparameter combinations) 
and two random seed numbers. Finally, we show the 
extent of the proposed algorithm accuracy. 

To evaluate model performance, we adopted four 
indices: accuracy (ACC), CSI, POD, and FAR. As 
shown in Table 4, CSI is the correct prediction ratio 
among the sum of model predictions and observed 
events, POD is the ratio of correct predictions among 
observed events, and FAR is the ratio of false 
predictions among the model predictions. These 
three criteria exclude the correct prediction for no-
rainfall events, to emphasize the model performance 

for rarely occurring rainfall events, and they are 
often utilized in the evaluation of the atmospheric 
prediction model. ACC is the overall ratio of correct 
predictions, including rainfall and no-rainfall events. 

 
Table 4. Evaluation Indices 

Event 
Category 

Observation 

Rain (O) 
No rain 

(X) 

Model 
Pred. 

Rain 
(P) 

PO 
Correct 

PX 
False 

No rain 
(X) 

XO 
Missing 

XX 
Correct 

𝐶𝑆𝐼 =
𝑃𝑂

𝑃𝑂 + 𝑃𝑋 + 𝑋𝑂
 

 

𝑃𝑂𝐷 =
𝑃𝑂

𝑃𝑂 + 𝑋𝑂
 

 

𝐹𝐴𝑅 =
𝑃𝑋

𝑃𝑂 + 𝑃𝑋 

 

𝐴𝐶𝐶 =
𝑃𝑂 + 𝑋𝑋

𝑃𝑂 + 𝑃𝑋 + 𝑋𝑂 + 𝑋𝑋 

 
3. Results and Discussions 
 
3.1 Selecting the Best Model Structure 

We tested four input data sets, four CNN 
structures, and four hyperparameter sets, with two 
initial random seed numbers. First, to analyze the 
performance of each model structure, the results 
from each input data set are separately illustrated in 
Fig. 3. In the figure, each panel shows 32 testing 
results from each input data set with the indices of 
POD and CSI. The 32 testing results are from the 
combination of four model structures, which is a 
combination of pooling options (CNN1: with 
pooling process, CNN2: without pooling process) 
and convolution number (N=2, N=3), the four 
hyperparameter sets (two learning rates and two 
batch sizes), and two initial random seed numbers at 
the beginning of the training. 
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Figure 3. Accuracy indices (POD & CSI) from the testing results with four input data sets; A-TS. In each 
panel, 32 results are shown with the combination of four model structures (CNN1: convolution and pooling, 
CNN2: convolution only; N=2: two times of convolution, N=3: three times of convolution; these are marked 
with the symbol of ¨, ¡, +, ×), four hyperparameter combinations (two learning rates and two batch sizes; 
these are marked with four different colors with purple, orange, blue, and green), and two initial random seed 
numbers (marked with the same color and the same shape). 
 

Table 5. Evaluation indices for validation based on the best three indices in training 

Input 
Testing Validation 

Index CSI POD FAR ACC CSI POD FAR ACC 

A-TS 

Best CSI 0.450 0.651 0.406 0.988 0.240 0.399 0.623 0.985 

Best Loss 0.379 0.688 0.542 0.983 0.237 0.448 0.665 0.983 

Best POD 0.289 0.853 0.696 0.968 0.237 0.764 0.744 0.972 

A-DF 

Best CSI 0.341 0.636 0.576 0.981 0.219 0.419 0.686 0.983 

Best Loss 0.306 0.563 0.598 0.981 0.211 0.384 0.680 0.983 

Best POD 0.209 0.893 0.786 0.948 0.148 0.793 0.847 0.947 

H-TS 

Best CSI 0.460 0.691 0.422 0.988 0.291 0.458 0.557 0.987 

Best Loss 0.422 0.684 0.476 0.986 0.290 0.443 0.543 0.987 

Best POD 0.308 0.824 0.670 0.972 0.236 0.665 0.733 0.975 

H-DF 

Best CSI 0.346 0.621 0.562 0.982 0.204 0.438 0.724 0.980 

Best Loss 0.269 0.618 0.678 0.974 0.194 0.483 0.754 0.977 

Best POD 0.225 0.846 0.766 0.955 0.167 0.734 0.822 0.958 
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Figure 4. Venn diagram of model performance from the testing results of A-DF: the best CSI (left), the best 
Loss (middle), and best POD (right) model performances, respectively. The number outside of the colored 
area (e.g., 17331) represents the events number of no-rain that is observed and correctly forecasted, the number 
in red color area (e.g., 99) is the events number of rain but failed to predict, the number in blue color area 
(e.g., 235) is the event number of no rain but model falsely predict, and the number in the intersection (e.g., 
173) is the event number of rain that is correctly predicted. 
 

If we focus on the results from the A-TS input 
(AMeDAS data with time series of t0 & t-30) shown 
in the upper panel of Fig. 3, the results from CNN1 
(marked with ¡ or ¨) show high values in CSI and 
POD compared to the results from CNN2 (marked 
with +  or ×). We can see that the results from 
CNN1 show a wide range of model performances 
depending on the training options. For example, the 
results from CNN1 with three convolutional 
processes show high CSI with low POD when it is 
trained with a batch size of 96 and learning rate of 
0.0001 (blue colored ¨), and they show high POD 
with low CSI when it is trained with a batch size of 
32 and learning rate of 0.001 (purple ¨). Most 
results with high POD show low CSI due to high 
FAR, and the results with high CSI do not show 
significantly good POD. In general, CSI is a 
comprehensive index that considers the concepts of 
POD and FAR, but we also want to consider POD as 
a valuable index separately to check how well it can 
detect rainfall events.  

The results from other input data sets show a 
pattern similar to the results from A-TS. The result 
from the A-DF input (AMeDAS data with the 
difference between t0 and t-30; down left panel in Fig. 
3) shows a similar pattern to the results from A-TS. 
The results from H-TS (Himawari-8 data; down 
middle panel) as well as the results from H-DF 
(bottom right panel) also show a similar pattern but 
with a slightly more diverse POD and CSI 
combination. For every input data set, we can see 
that the results from CNN2 (marked with + or ×), 
which are the results from the convolution process 

only, are stable regardless of the training option. 
However, the results are not good compared to those 
from CNN1 (marked with ¡ or ¨) with respect to 
the CSI or POD. It seems that the pooling process in 
CNN1 provides more flexible training results 
compared to that without the pooling process. CNN1 
is more likely to be trained to give a high CSI or POD. 
The superiority of CNN1 to CNN2 is apparent from 
the results of the H-DF input (low right panel in Fig. 
5).  

When the results from CNN1 were examined for 
the number of convolution processes (N=2 or N=3), 
CNN1 with N=3 (marked with ¨) performs slightly 
better than the one with N=2 (marked with ¡). For 
every input data set, the best CSI was achieved from 
CNN1 with N=3, and the best POD was also 
achieved with N=3. Thus, we decided to select the 
best model structure in our prediction model as 
CNN1 with N=3, which is the model with three 
convolution and pooling processes. 

Regarding the training option, it is difficult to 
decide which hyperparameter set is the best one. In 
the case of the A-TS input, it is apparent that high 
CSI values were achieved with a batch size of 96 and 
a learning rate of 0.0001 (e.g., blue color ¨), and 
high POD values were achieved with a batch size of 
32 and a learning rate of 0.001 (purple color ¨). 
However, considering the results from other input 
data sets, it is difficult to find a clear trend; four 
colors (purple, orange, blue, and green) show the 
results from four different hyperparameter sets. To 
consider this behavior of our CNN model, we 
decided to consider every hyperparameter 
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combination for every training, and picked up the 
best test results based on three parameters: a model 
with the best CSI, a model with the best POD, and a 
model with the best loss. Here, the best loss 
represents the test result with the minimum cross-
entropy values, which shows a balanced CSI and 
POD. 

The accuracy indices for the validation data are 
shown in Table 5 based on the best three indices in 
the tests (best CSI, best loss, and best POD). The best 
CSI during training was 0.460 with the input of H-
TS, and the best POD was 0.893 with the A-DF input 
data set. These indices are slightly degraded to 0.291 
and 0.793 with the validation data. To illustrate the 
model performance, a Venn diagram with the 
training results of A-DF is shown in Fig. 4. The best 
CSI model performance (Fig. 4, left) shows a CSI of 
0.341, which is the ratio of correct predictions (173) 
to the sum of model predictions and observed events 
(99 + 173 + 235). In the case of the best POD model 
performance (Fig. 4, right), the POD is very high at 
0.893 = 243/ (29+243), but the CSI is rather low at 
0.209 = 243/ (29+243+892) owing to the high FAR, 
which is 0.789 = 892/ (243+892). However, 
considering the correct prediction for the no-rain 
events (16674), the number of false alarms (892) was 
not significant. In this case, the accuracy of all 
prediction performances (ACC) was still very high, 
at 0.948.  

A more detailed analysis of the model 
performance for the input data difference is 
presented in the next section. The performance 
indices shown in Table 5 are utilized as a reference 
value for the sensitivity analysis of the input 
variables. 

 
3.2 Selecting the Best Input Data Set 

With respect to the input data format, the TS 
data set (values at t0 and t-30) shows better results 
than the DF data set (difference between t0 and t-30) 
in terms of the CSI (0.450 vs. 0.341 and 0.460 vs. 
0.346) as shown in Table 5. With respect to the POD, 
the DF data set shows better results than the TS data 
set (0.893 vs. 0.853 and 0.846 vs. 0.824). Even 
though the difference is not very significant, we 
decided to adopt the TS data format for the best input 
data set. 

Regarding the data source, it is not clear which 
source provides better results; input only with the 
AMeDAS ground gauge data and input with the 
Himawari-8 data show approximately the same 
model performance (0.450 vs. 0.460 and 0.341 vs. 
0.346 for CSI). It is reasonable to combine these two 
data sources, and we tried to select the best input 
variables from them based on a sensitivity analysis 
of each input variable.  

For the sensitivity analysis on the input 
variables, we designed a new concept of sensitivity 
analysis on a neural network. Because the ANN 
structures are highly depending on the input variable 
numbers and every ANN should be trained again 
based on various hyper parameter options, it may not 
be a good idea to build every different ANN model 
for every different input variable combination. 
Rather than that, we eliminated the effect of each 
input variable one by one from the already trained 
ANN by setting the values as zero and running the 
trained model again with the validation data. 
Because all input variables were normalized with a 
zero mean and one standard deviation, if a certain 
input value is set as zero and given to the trained 
neural network, the effect of the input to the network 
will be eliminated in the prediction performance 
since the network is not able to get any information 
from the zero-input variable.  

If the accuracy is drastically decreasing 
compared to the reference results shown in Table 5 
when a certain input variable was given with zero 
values, we regard the input variable as a key factor 
in the model, and vice versa. By checking the 
changes with the zero-input test, one by one, we can 
understand higher impact input variables (that bring 
the accuracy down drastically) and lower impact 
input variables (that do not reduce the accuracy). 

Fig. 5 illustrates the result of the sensitivity 
analysis by showing the change in accuracy indices 
for each zero-setting variable in the case of the 
Himawari-8 data (H-TS input data set). It was 
observed that precipitation input is the most valuable 
information because the prediction accuracy 
decreased drastically when the precipitation input 
value was set to zero. The CSI value decreased by 
0.42 on average, compared to the original accuracy 
(the left-most of the bottom row in Fig. 5).  
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Figure 5. Sensitivity analysis on input variables. Vertical axis shows the index change compared to the 
reference values shown in Table 4, when one of the input variables was set as zero. Box plot is the result of 
all model combinations, while the red, blue, and green marks are from the best model on the three parameters 
(best CSI, best Loss, best POD, respectively). 

 
Among the five bands adopted in our model, the 

B07 and B08 bands are not very sensitive to the 
model performance, and the B10, B13, and B15 
bands show sensitivity when these values are 
eliminated from the input data (see the CSI changes 
in Fig. 5). The effect of the B09 band is ambiguous, 
but we decided to exclude this band in the best input 
data set because it has a negative effect on the 
accuracy (ACC; second row in Fig. 5) when it is 
eliminated. 

With this sensitivity analysis, we decided to pick 
up B10 (7.3 𝜇𝑚 ; precipitable water amount in 
middle altitude), B13 (10.4 𝜇𝑚; cloud height and 
types), and B15 (12.4 𝜇𝑚; aerosol) for the best input 

data. A sensitivity analysis was also carried out for 
the AMeDAS data (A-TS input data set), and we 
confirmed that precipitation data is very important, 
and that the sunshine ratio and temperature are not 
critical information in the model performance. Thus, 
we selected precipitation, wind speed, and wind 
direction (in u & v) for the best input data. 

 
3.3 The Best Model Combination 

In the last two sections, we evaluated four types 
of model structures, four types of input data formats, 
and examined the sensitivity of each input variable. 
Based on the results, we adopted the best model 
structure as C1-P1-C2-P2-C3-P3, which is a CNN 
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with three convolution and pooling processes. The 
best input data format is adopted as the time series 
of the last 30 min data, that is, the spatial map of 
atmospheric variables at t0 and t-30. The most 
significant input variables were selected based on 
precipitation, wind speed, wind direction (u & v) 
from the AMeDAS data, and B10, B13, and B15 
bands of the Himawari-8 satellite images. A 
summary of the best model setup is presented in 
Table 6. 

We trained the best model with four types of 
training options (two types of batch sizes and two 
types of learning rates) and two different initial 
random seed numbers. Among the eight trained 
results, the best CSI, the best POD, and the best loss 
of testing results were selected, and the model 
performances are summarized in Table 7 along with 
the validation results. In the table, the results of A-

TS (input only with ground gauged data) shown in 
Table 5 are also shown again for comparison. We 
can easily find that the best model set up with the 
AH-TS input data set provides improved results in 
most cases. For example, the validation result from 
the best CSI model improved from 0.240 to 0.296 
with improved the POD (from 0.399 to 0.468) and 
decreased the FAR (from 0.623 to 0.554). The 
validation results from the best POD model and the 
best loss model also show improved CSI with the 
AH-TS input data set. Only the POD from the best 
POD model did not improve; the POD of the best 
POD model with A-TS was 0.764, and it was 0.616 
with AH-TS. However, the FAR is significantly 
improved (from 0.744 to 0.630), and thus the AH-TS 
model shows an improved CSI compared to the A-
TS option (from 0.237 to 0.300). 

 
 

Table 6. Details on the Best Model Set-up 

Input Data Source Data Format 

AH-TS 
AMeDAS; precipitation, wind speed,  
wind direction (u & v) 
and Himawari-8; B10, B13, B15 

Time series of t0 & t-30  
(7 variables at 2-time steps;  
14 channels altogether) 

  Model Structures: C1-P1-C2-P2-C2-P3 
     Convolution: filter size: 3×3, filtering numbers: 32-64-128,  
     Pooling: max pooling in 2×2 window 

 
 

Table 7. Evaluation indices for validation based on the best three indices in training 

Input 
Testing Validation 

Index CSI POD FAR ACC CSI POD FAR ACC 

A-TS 

Best CSI 0.450 0.651 0.406 0.988 0.240 0.399 0.623 0.985 

Best Loss 0.379 0.688 0.542 0.983 0.237 0.448 0.665 0.983 

Best POD 0.289 0.853 0.696 0.968 0.237 0.764 0.744 0.972 

AH-
TS 

Best CSI 0.459 0.722 0.442 0.987 0.296 0.468 0.554 0.987 

Best Loss 0.428 0.698 0.475 0.985 0.273 0.483 0.614 0.985 

Best POD 0.417 0.836 0.545 0.982 0.300 0.616 0.630 0.983 
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We tested several options of model structures, 
input data formats, and training set-ups to build a 
rainfall prediction model using the CNN algorithm. 
It is clear that the CNN algorithm can successfully 
detect rainfall occurrence for a definite forecasting 
lead time as an image classification function when it 
is properly trained with historic atmospheric data. In 
addition, the model performance was improved 
when the input data were carefully selected after a 
sensitivity analysis of each input variable.  

There might be no absolute answer for the best 
model option, such as a specific model structure or 
an absolute input data combination for a specific 
target area. The performance of the machine learning 
algorithm may differ regionally, and on various 
input data. However, once we extensively examine 
possible options with several model structures and 
carefully select the best input data combinations, the 
machine learning algorithm can provide an efficient 
way of hydrological modeling from a different 
aspect. The only thing we need to do is to test and 
evaluate the model performance repeatedly to 
improve the accuracy until we are satisfied. 
 
4. Concluding Remarks 
 

In this paper, we illustrated the development 
process of a rainfall occurrence prediction model 
using a CNN algorithm. By feeding the 
spatiotemporal information of atmospheric variables 
into the CNN algorithm, it was possible to train the 
algorithm to classify the atmospheric conditions, 
whether they are conducive for rain or not, within a 
definite forecasting lead time. In this study, we 
tested four types of CNN structures, four types of 
input data formats, and four types of hyperparameter 
sets, to build up the best model for our target area. 

Based on our modeling test on the Kyoto area of 
Japan, a CNN with three convolution and pooling 
processes provides good performance. However, we 
found that model performance was also controlled 
by the training options. Our solution to this 
performance behavior was to select a good model 
structure with respect to the overall performance and 
utilize several model options based on various 
training options. Subsequently, we checked the 
model performance on three parameters: the best 

CSI index, the best POD index, and the best loss 
index. 

For the best input data selection, we introduced a 
sensitivity analysis on the input variables rather than 
utilizing a correlation-based input selection. Based 
on the model performance with sufficient input data 
setting, we checked the change in accuracy when any 
one of the input data was missing. If the model 
accuracy decreases drastically when any one of the 
input variables is eliminated, we conclude that the 
input variable is a major variable in our model. If the 
accuracy does not change much even without a 
certain input, we decide that the input is not an 
important one in the model. Based on this input data 
sensitivity analysis, we selected the best input 
candidates for precipitation, wind speed, and wind 
direction (u and v) from ground gauged data, and 
B10, B13, and B15 bands of the Himawari-8 satellite 
image data. 

The best model shows promising performance 
with a CSI of 0.296 and POD of 0.616. Considering 
the no-rain events, the prediction accuracy was as 
high as 0.987. It is clear that the CNN algorithm can 
classify the atmospheric conditions to predict 
rainfall occurrence at a definite lead time (in this 
study, 1 mm/10 min of rainfall intensity for 30 min 
ahead of time). It was also clear that the satellite 
image data can provide further information on the 
atmospheric conditions and provide improved model 
performance, rather than only using ground-gauged 
atmospheric data. However, there is more room to 
improve prediction accuracy with additional tests 
with other input combinations and training options.  

The main purpose of this paper is not to show the 
best model structures but to show the possibility of a 
machine learning algorithm by suggesting a 
standardized modeling procedure. It will be of great 
help if this kind of modeling process is applied in 
numerous other regions with distinct options and the 
results are shared. 
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