宇治田原及び和東盆地における微動を用いた地盤構造調査

Microtremor Measurements in Ujitawara and Wazuka Basins, Kyoto, Japan

浅野公之・岩田知孝・関口春子

Kimiyuki ASANO, Tomotaka IWATA and Haruko SEKIGUCHI

Synopsis

Microtremor measurements were conducted in the Ujitawara and Wazuka basins, southern part of Kyoto Prefecture. The H/V spectra were obtained at 42 sites in Ujitawara and 37 sites in Wazuka. The peak frequency of H/V spectra was 0.9-1.4 Hz at sites in the western part of the Ujitawara Basin, whereas it was high (7-10 Hz) in the Iwayama area, the eastern part of the basin. The H/V peak frequency was high (2.5-16 Hz) in the valley bottom lowland along the Wazuka River. It was 1.0-2.3 Hz in hills of the Osaka Group, and it indicates that the thickness of sediments deepens towards the Wazukadani Fault. The estimated bedrock depth by the microtremor array survey was 165 m in the western part of the Ujitawara Basin. Small-sized microtremor array surveys were also conducted in the Ujitawara and Wazuka basins. The estimated phase velocities were relatively high, suggesting that the alluvium low-velocity sediments are thin in these two basins.

キーワード: 宇治田原盆地, 和束盆地, 微動H/Vスペクトル比, 微動アレイ探査 **Keywords:** Ujitawara Basin, Wazuka Basin, microtremor H/V spectral ratio, microtremor array survey

1. はじめに

京都府南部では、木津川右岸の木津川低地(山城 盆地)と山地・丘陵との境界に沿って、奈良盆地東縁 断層帯(京都盆地-奈良盆地断層帯)が認定されて いる(地震調査研究推進本部地震調査委員会,2001). 同断層帯の東側(上盤側)には、醍醐山地や信楽山地 が広がり、その中にいくつかの盆地が形成されてい る.このうち、本論では、宇治田原盆地と和束盆地を 対象とする.これらの盆地では、盆地の基盤形状や 堆積層の速度構造などに関する地球物理学的情報が これまで十分に得られているとはいえないため、現 地での微動観測を多数実施した.

2. 宇治田原盆地における微動アレイ探査

2.1 調査の概要

脇田ら(2013)によって取り纏められた5万分の

1 地質図幅「京都東南部」によれば、宇治田原盆地は 谷状の凹地に大阪層群下部〜最下部が堆積し、宇治 田原丘陵とも呼ばれている。宇治田原丘陵に分布す る大阪層群は長山層と禅定寺層である。長山層は泥 層と礫層が主体である。禅定寺層は砂礫層が主体で あり、宇治丘陵の長池層の一部と同じ層準とされて いる(脇田ら,2013)。また、田原川、犬打川、禅定 寺川などの河川沿いには、段丘堆積物及び沖積層が 分布する。山地と丘陵の境界には新生代の断層は確 認されておらず、大阪層群堆積以前に作られた谷地 形をその後の堆積物が埋積した地形と考えられてい る(脇田ら,2013).

既存の地質図及び次節で述べる単点微動観測の結 果から堆積層厚が相対的に厚いと推測された宇治田 原町郷之口(TWR)において,最大アレイ半径112m の微動アレイ探査を実施した(Fig.1).微動アレイ 探査は堆積盆地のS波速度構造推定を目的に各地で 広く利用されている(例えば,浅野ら,2015,2021; Asano et al., 2022; 地震調査研究推進本部地震調査委 員会, 2017).本研究では,浅部地盤から深部地盤ま でのS波速度構造を捉えることを目的に,半径 6 m から112 m までの4式の異なるアレイ半径での観測 を実施した.各アレイのアレイ形状は正三角形アレ イ(4点アレイ)とし,三角形の各頂点と外接円の中 心1点に地震計を設置した.

半径 6 m (N アレイ) 及び 20 m (S アレイ)の微動 アレイ観測では,白山工業製のポータブル微動観測 装置 JU410 を 4 式使用した.JU410 は日本航空電子 工業製サーボ加速度計 JA-40GA (感度 2V/G) を 3 成 分内蔵している.内蔵増幅器の倍率を 100 倍,A/D 変 換器の形式分解能を 24 bit,サンプリング周波数を 200 Hz と設定した.デシメーションフィルターは線 形位相とし、カットオフ周波数は 80 Hz (機器の仕様 によりサンプリング周波数の 40%に固定)である. 半径 40 m (M アレイ) 及び 112 m (L アレイ)の 微動アレイ観測では、アカシ製のポータブル地震観 測装置 SMAR-6A3P を 4 式使用した. SMAR-6A3P で は、アカシ製過減衰型動コイル加速度計 JEP-6A3 (1.1 V/G)の出力を SMAR-6A3P 内蔵のアナログ増幅器で 5,000 倍に増幅し、白山工業製 LS-8800 を用いて形式 分解能 24 bit、サンプリング周波数 100 Hz で収録し た. デシメーションフィルターは線形位相とし、カ ットオフ周波数は 40 Hz (機器の仕様によりサンプリ ング周波数の 40%に固定) である.

現地での微動観測は2022年2月17日に実施した. ただし、半径40mのMアレイについては、観測実施状況に不備があったため、同年3月17日に同一地 点で再観測して取得したデータを使用した. 観測中 は、地震計の上にプラスチックコンテナを被せるこ とで風除けとした. アレイ中心点の座標をハンディ

Fig. 1 Map of the microtremor observation sites in the Ujitawara Basin. The circles and squares indicate the single-station microtremor observation sites and the small-aperture microtremor array observation sites, respectively. The symbol color corresponds to the peak frequency of the H/V spectral ratio. The base map is drawn based on the Seamless Digital Geological Map of Japan V2 1:200,000 by Geological Survey of Japan (2020) and Digital Map (Basic Geospatial Information) by the Geospatial Information Authority of Japan. Ar: Araki, Gk: Gonokuchi, Ip: Industrial Park, Iw: Iwayama, Mj: Meijodai, Mm: Minami, Nd: Neda, Ry: Ryokuenzaka, Tk: Tachikawa, TWR: Tawara array site, Yy: Yuyadani, Zn: Zenjoji.

Site	A	Radius (m)	Center of array		Observation namiad	
Sile	Array		Latitude (°N)	Longitude (°E)	Observation period	
TWR	Ν	6	34.85045	135.85228	2022/02/17 11:32-12:02	
	S	20	34.85043	135.85224	2022/02/17 10:18-11:26	
	М	40	34.85031	135.85223	2022/03/17 10:38-12:00	
	L	112	34.84999	135.85218	2022/02/17 11:25-13:00	
N155	S	0.6	24 95022	125 05241	2021/05/12 09:36-09:51	
	Μ	6	54.85022	155.65541	2021/05/12 09:57-10:17	
N156	S	0.6			2021/05/12 10:30-10:45	
	А	2	34.83824	135.85856	2021/05/26 10:33-10:48	
	М	5			2021/05/12 10:49-11:04	
N157	S	0.6	24 05200	125 95702	2021/05/12 11:22-11:37	
	М	5	34.83288	135.85705	2021/05/12 11:44-12:00	
N159	S	0.6	24.95(22	125.96615	2021/05/26 11:45-12:00	
	М	5	34.83622	135.80015	2021/05/26 12:21-12:40	
N160	S	0.6	24.07420	125.07521	2021/05/26 14:22-14:37	
	М	5	34.8/438	135.8/521	2021/05/26 14:40-14:55	
N161	S	0.6			2021/06/22 10:47-11:02	
	А	2	34.80234	135.91284	2021/12/10 10:44-11:04	
	М	5			2021/06/22 11:05-11:18	
N162	S	0.6		125 00510	2021/06/22 14:06-14:21	
	М	5	34.79805	135.90519	2021/06/22 14:24-14:39	

Table 1 List of the microtremor array observation information

GPS で測量した. すべての地震計設置場所で観測実施状況の写真を撮影した. Table 1 にアレイ半径,中心点座標,観測日時の情報をまとめた. N アレイは 30 分間, S アレイは 68 分間, M アレイは 82 分間, L アレイは 95 分間測定した.

このほかに,浅部地盤の速度構造に関わる情報取 得のため,小半径(0.6~6m)の微動アレイ観測を, 郷之口(N155),南(N156),荒木(N157),岩山 (N159),禅定寺(N160)の5地点で実施した.こ れらの観測では,いずれもJU410を4式用いた.各 観測では,15分以上連続観測した.

2.2 位相速度の推定

上下動成分の微動記録に対して,空間自己相関 (SPAC)法(Aki, 1957)を適用し,各半径,各周波 数の SPAC 係数を求めた.解析対象とするアレイ半 径を増やすため、中心点と正三角形の頂点(半径r) を組み合わせた解析に加え, 正三角形の辺を使った 解析(半径 $\sqrt{3}r$ に相当)も実施した.各アレイに対し、 通過交通などの非定常ノイズの影響がなく,同一ア レイ内のパワースペクトルが類似している区間を25 区間以上抽出し、5 区間ずつ1 セットにしてパワー スペクトルやクロススペクトルのアンサンブル平均 を計算した. それぞれのスペクトルは Konno and Ohmachi (1998)の方法を用いて平滑化した(平滑化の 幅を規定する b の値は 30 に設定).スペクトルを計 算する際のウィンドウ長については、記録中のノイ ズ状況やアレイ半径などを考慮して、5.12 秒または 10.24 秒とした. Fig.2 に各半径のアレイに対して得 られた位相速度及び SPAC 係数を示す.最後に,各 半径で得られた SPAC 係数を周波数毎に統合して拡 張 SPAC法(凌・岡田,1993)により位相速度の分散 曲線を得た.その際,ブートストラップ法により各 周波数の位相速度の推定値とその標準誤差を求めた. 微動アレイ観測によって得られた位相速度は,10~ 20 Hz でも 0.3 km/s を超えており,沖積層が厚く分布 するような他地域に比べて,相対的に大きい.

2.3 S波速度構造の推定

微動アレイ観測によって得られた位相速度分散曲線を Rayleigh 波の基本モードの位相速度でモデル化

Fig. 2 SPAC coefficients and phase velocities for each array radius for the TWR site.

することにより、その地点のS波速度(Vs)構造を 推定した.浅部地盤から上部マントルまでを水平成 層構造でモデル化し、堆積層の各層(Vs < 2.7 km/s) の層厚を未知パラメータとして、観測位相速度を説 明できるように推定した.上部地殻の構造は国立研 究開発法人防災科学技術研究所の地震ハザードステ ーション(J-SHIS)の深部地盤モデル V2(藤原ら、 2012)、上部地殻と下部地殻の境界から上部マント ルまでの構造は全国1次地下構造モデル(JIVSM、

Koketsu et al., 2012)から,アレイ中心点直下の構造 を一次元モデルとして取り出したモデルをそのまま 与えた. Table 2 に TWR における各層のパラメータ 及び探索範囲をまとめた.

未知パラメータの推定は、浅野ら(2021)と同様 に、マルコフ連鎖モンテカルロ法(MCMC法)で行 い、Metropolis-Hastings アルゴリズム(Metropolis et al., 1953; Hastings, 1970)を用いてマルコフ連鎖を生 成した.全部で 50,000回の試行を実施し、最初の 5,000サンプルを burn-in 期間として棄却した後、残 る 45,000サンプルの中央値を最終的なモデル推定結 果として採用した.Fig.3にMCMC法でサンプリン グされた各パラメータの分布について、TWR での例 をヒストグラムで示す.堆積層を構成するそれぞれ の速度層の層厚は精度よく決定されている.

Fig.4にTWRにおけるS波速度構造モデルの推定 結果を示す.S波速度構造モデルの推定には位相速 度情報のみを使用したが,確認のため,H/Vスペク トル比の比較も行った.理論H/Vスペクトル比は, 工学院大学久田嘉章教授が公開しているプログラム を使用して,Rayleigh波の理論位相速度,ミディアム レスポンス及び理論R/V比を計算し,基本モードか ら4次モードまでのR/V比をを合成することにより

 Table 2 Model parameters and search ranges in modeling of velocity structure for the TWR site

Laver	Vp	Vs	Density	Thickness
Layer				
	(Km/s)	(Km/s)	(Kg/m ⁻)	(m)
1	1,500	200	1,800	0-100
2	1,550	250	1,800	0-100
3	1,600	300	1,800	0-100
4	1,600	350	1,850	0-200
5	1,600	400	1,850	0-200
6	1,800	550	1,900	0-200
7	2,000	600	1,900	0-200
8	5,000	2,700	2,500	fixed
9	5,500	3,100	2,600	fixed
10	5,700	3,300	2,700	fixed
11	6,000	3,400	2,750	fixed
12	6,400	3,800	2,800	fixed
13	7,500	4,500	3,200	fixed
14	8,000	4,700	3,200	half space

得た. S 波速度構造モデル推定には直接用いていな い H/V スペクトル比の再現性も高いことが分かる. 以上により, TWR での観測位相速度を適切に説明す ることのできる S 波速度構造モデルを得ることがで きたと考えている. 堆積層(大阪層群)と盆地基盤の 境界に相当する Vs=2.7 km/s 上面の深度は, 165 m と 推定された.

その他の小半径微動アレイ観測点5地点でのS波 速度構造推定結果をFig.5に示す. Vs < 250 m/sの低 速度層の層厚は、いずれの地点でも1~2mと薄い. 位相速度が5~8 Hz付近から20~30 Hzあたりまで、 ほぼフラットで、それより高周波数で急激に低下す る特徴に対応している.これにより、宇治田原盆地 での地表付近の沖積層はごく薄いことが確認された. Vsが300~600 m/sの層厚については、観測点ごとに ある程度ばらつきが見られた.段丘堆積物や大阪層

Fig. 3 Histograms of marginal posterior distribution of model parameters for the TWR site.

Fig. 4 (Top left) Comparison between the theoretical phase velocity dispersion curve (red line) and the observed phase velocity (blue circles) for the TWR site. (Top right) Estimated S-wave velocity model. (Bottom) Comparison between the theoretical (red) and observed (blue) H/V spectral ratios.

群の分布の空間的な違いによると考えられる. 堆積 層全体の厚さ(基盤深度に対応)は、宇治田原盆地西 部の田原川沿いのN155とN157で100mを超えてい るほか、同じく田原川沿いのN159で84mと推定さ れた. 一方で、犬打川に沿った盆地の南端に近い N157では43m,盆地北東部の禅定寺川沿いのN160 では40mと推定され、堆積層厚は相対的に小さい. ただし、小半径のアレイでは位相速度が0.5 km/s程 度までを対象としているため、基盤深度の推定値に ついては参考程度とする.

Fig. 5 (left) Comparison between the theoretical phase velocity dispersion curve (red line) and the observed phase velocity (blue circles) for the small-size microtremor array sites in the Ujitawara Basin. (right) Estimated S-wave velocity model.

3. 宇治田原盆地における単点微動観測

3.1 単点微動観測の概要

宇治田原盆地内の基盤深度の空間的違いを面的に 捉えるため、単点微動観測を 42 地点で実施した (Table 3). 観測は田原川や犬打川沿いに位置する 郷之口、南、荒木、贄田、立川、岩山地区を中心に実 施し、禅定寺、湯屋谷、緑苑坂の一部にも観測点を設 定した.沖積層、段丘堆積物、大阪層群の分布する地 域を中心に実施したが、比較のため、地質図上で綴 喜層群や基盤岩が分布するとされている地域でもい くつかの地点で観測した.

単点微動観測では、アカシ製ポータブル地震観測 装置 SMAR-6A3P を使用した. 微動アレイ観測時と 同じく、JEP-6A3 の出力をアナログ増幅器で 5,000 倍 に増幅し、LS-8800 を用いて形式分解能 24 bit, サン プリング周波数 100 Hz で収録した. デシメーション フィルターは線形位相とし、カットオフ周波数は 40 Hz (サンプリング周波数の 40%に固定)である. 現 地での単点微動観測は、2021 年 5 月 26 日、10 月 22 日、2022 年 2 月 17 日の 3 回に分けて実施した. 各 観測地点では、微動を 30 分以上連続観測した. 観測 中は、プラスチックコンテナを地震計に被せて風除 けとし、コーン等で安全対策を行った.

3.2 H/Vスペクトル比の解析

単点微動観測で得られた3成分の微動波形から, 交通ノイズなどの影響の少ない時間区間を少なくと も5区間以上選び,Fourier振幅スペクトルを計算し た.その際,Konno and Ohmachi (1998)の方法(*b*=40 と設定)により,スペクトルの平滑化を行った.水平 動2成分の幾何平均と上下動成分の振幅スペクトル 比を H/V スペクトル比とし,そのアンサンブル平均 を求めた.Fig.6に全地点の H/V スペクトル比とそ の対数標準偏差を示す.各観測点で得られた H/V ス ペクトル比の卓越周波数を読み取り,Fig.1の地図上 に示した.同地図中には,前述の小半径微動アレイ 観測での微動波形記録から同様に解析した H/V スペ クトル比の卓越周波数も併せて示した.

得られた H/V スペクトル比の卓越周波数には空間 的な特徴が見られた. 宇治田原盆地西部の田原地区 では, 郷之口から南, 荒木, 贄田周辺にかけて, 卓越 周波数は 0.9 Hz から 1.4 Hz の範囲の値をとってお り, 犬打川に沿った地域で最も低周波数(約 0.9 Hz) となった. 一方で, 盆地東部の宇治田原地区の岩山 周辺(UD2111, UD2112, UD2114, N158)での卓越 周波数は 7~11 Hz と田原地区に比べて高かった. 基 盤岩の分布する岩山の一部(UD2125) や緑苑坂 (UD2126)では明瞭なピークは見られない. 以上か

Sita	Latitude	Longitude	Elevation	Data	Start Times	End Time	Section
Sile	(°N)	(°E)	(m)	Date	Start Time		Section
UD2101	34.83526	135.86271	151	2021/5/26	10:19	11:01	Minami
UD2102	34.84410	135.85494	130	2021/5/26	10:23	11:07	Minami
UD2103	34.84402	135.84276	152	2021/5/26	10:06	10:53	Gonokuchi
UD2104	34.83955	135.85245	152	2021/5/26	10:18	10:57	Minami
UD2105	34.85466	135.85862	130	2021/5/26	11:27	12:47	Araki
UD2106	34.85387	135.86257	123	2021/5/26	11:35	12:50	Tachikawa
UD2107	34.85255	135.89753	190	2021/5/26	13:08	13:40	Yuyadani
UD2108	34.85258	135.88603	201	2021/5/26	13:19	13:50	Industrial Park
UD2109	34.87110	135.87428	170	2021/5/26	14:04	15:06	Zenjoji
UD2110	34.87942	135.88276	218	2021/5/26	14:15	15:02	Zenjoji
UD2111	34.85926	135.86853	134	2021/5/26	15:17	16:19	Iwayama
UD2112	34.85564	135.86855	131	2021/5/26	15:24	16:16	Tachikawa
UD2113	34.85632	135.86382	132	2021/5/26	15:43	16:26	Iwayama
UD2114	34.86048	135.87272	139	2021/5/26	15:45	16:22	Iwayama
UD2115	34.84949	135.86868	137	2021/5/26	16:45	17:47	Tachikawa
UD2116	34.84478	135.86742	157	2021/5/26	16:47	17:39	Neda
UD2117	34.84762	135.86435	141	2021/5/26	16:55	17:34	Neda
UD2118	34.85157	135.86287	126	2021/5/26	16:59	17:30	Araki
UD2119	34.85079	135.87410	153	2021/10/22	9:49	10:30	Tachikawa
UD2120	34.85451	135.87824	174	2021/10/22	10:03	10:36	Iwayama
UD2121	34.84760	135.88321	170	2021/10/22	10:11	10:48	Tachikawa
UD2122	34.85054	135.87925	157	2021/10/22	10:15	10:45	Tachikawa
UD2123	34.84887	135.89093	229	2021/10/22	10:58	11:41	Industrial Park
UD2124	34.85245	135.89186	207	2021/10/22	11:04	11:44	Industrial Park
UD2125	34.85647	135.88862	172	2021/10/22	11:11	12:51	Industrial Park
UD2126	34.86035	135.89250	234	2021/10/22	11:21	12:46	Ryokuenzaka
UD2127	34.86478	135.87850	188	2021/10/22	11:56	12:32	Zenjoji
UD2128	34.86420	135.87179	146	2021/10/22	12:07	12:37	Iwayama
UD2129	34.85377	135.86581	128	2021/10/22	13:18	14:00	Tachikawa
UD2130	34.85128	135.86013	123	2021/10/22	13:25	14:05	Neda
UD2131	34.84676	135.85728	131	2021/10/22	13:38	14:09	Minami
UD2132	34.85146	135.85488	119	2021/10/22	13:48	14:46	Minami
UD2133	34.85014	135.84986	122	2021/10/22	14:19	15:45	Gonokuchi
UD2134	34.85319	135.84796	117	2021/10/22	14:34	15:51	Gonokuchi
UD2135	34.85416	135.85087	113	2021/10/22	14:42	15:28	Gonokuchi
UD2136	34.85279	135.85242	117	2021/10/22	15:08	15:38	Gonokuchi
UD2137	34.84684	135.85307	127	2022/2/17	13:20	14:18	Minami
UD2138	34.84276	135.85247	138	2022/2/17	13:30	14:10	Minami
UD2139	34.84188	135.85719	135	2022/2/17	13:37	14:08	Minami
UD2140	34.83786	135.86441	181	2022/2/17	14:33	15:22	Minami
UD2141	34.84291	135.85881	137	2022/2/17	14:44	15:27	Minami
UD2142	34.87068	135.88344	215	2022/2/17	15:03	15:54	Zenjoji

Table 3 List of the single-station microtremor observations in the Ujitawara Basin

Fig. 6 Observed microtremor H/V spectra in the Ujitawara Basin. Thick line and thin line represent the average H/V spectra and its standard deviation, respectively.

ら、宇治田原盆地は西部(田原地区)と東部(宇治田 原地区)で堆積層厚がかなり異なっていると考えら れる.また、立川の大道寺周辺(UD2120, UD2122, UD2122)から宇治田原工業団地の一部(UD2123, UD2124)にかけての大阪層群からなる丘陵では、卓 越周波数1.7 Hzの領域が広く広がっていた.宇治田 原盆地の北東部に位置する禅定寺(UD2109, UD2127, UD2128, N160)では1.8~4 Hzの範囲で分布した. 地表地質が中新統の綴喜層群と記載されている湯屋 谷(UD2107)でもH/Vスペクトル比のピークは明瞭 ではなかった.

3.3 宇治田原盆地の基盤形状の検討

TWR での位相速度の逆解析から、この地点での盆 地基盤深度は 165 m と推定された.最大半径のアレ イの中心点で3成分記録から得た H/V スペクトル比 の卓越周期(卓越周波数の逆数)は 1.20 s であった. これにより、宇治田原盆地での基盤深度 D(m)と H/V スペクトル比卓越周期 T_P(s)の関係を

$$D = 137T_{\rm P} \tag{1}$$

と仮定し,各微動観測地点の卓越周期から基盤深度 に変換した.

以上の方法により推定した基盤深度分布を Fig. 7 の地図に示す. H/V スペクトル比や微動アレイ探査 の結果から期待されるとおり,宇治田原盆地西部で は基盤深度が約 80~170 m となっている領域が広が っている. Fig. 7 の地図中の中央付近に位置する岩山 地区周辺では,堆積層厚が極めて薄い. 盆地北東部

Fig. 7 Estimated bedrock depth in and around the Ujitawara Basin.

の禅定寺や盆地南東部の立川から宇治田原工業団地 周辺にかけての地表に大阪層群が広範に分布する地 域では,基盤深度約 50~100 m と推定された.これ らの基盤形状は, Fig.1 に示す地質の特徴とも調和的 である.

4. 和束盆地における微動観測

4.1 調査概要

和東盆地は、和東川に沿った和東谷を埋めるよう に形成された盆地であり, 主として大阪層群からな る丘陵と和束川沿いの谷底低地からなる. 丘陵は主 に茶畑として利用されている. 北東-南西の走向を もつ和束谷断層に沿った逆断層運動によって、鷲峰 山山地が和東盆地の大阪層群に衝上している. 和東 盆地の大阪層群は全体に礫層が卓越し、福田火山灰 層を境に下部(厚さ80m以上)の礫層はシルト基質 とチャート・泥岩の亜角~亜鉛の中礫で構成され, 上部(厚さ70m以上)の礫層は花崗岩質粗粒砂の基 質とチャート・泥岩・花崗岩の亜円の中礫で構成さ れる(三田村,1993). それぞれ京阪奈地域の登美ヶ 丘累層(大阪層群最下部)の東畑互層と田辺累層(大 阪層群下部)の水取礫層に対比されている(尾崎ら, 2000). 和束盆地周辺の基盤岩は領家変成岩及び木 屋花崗岩からなっている(尾崎ら,2000).

和東盆地の基盤深度分布に関する資料を得るため, 単点微動観測を 2021 年 6 月 22 日と 12 月 10 日の 2 回に分け,計 37 地点で実施した(Fig. 8, Table 4). 和東盆地と加茂盆地間の構造の連続性を把握するた め,一部の観測点は,和東川に沿う京都府道 5 号木 津信楽線沿いで設定し,最南端の観測点を木津川市 加茂町井平尾(WZ2187)とした.和東盆地周辺地域 での単点微動観測でもアカシ製ポータブル地震観測 装置 SMAR-6A3P を使用した.また,和東盆地内の 2 地点(N161 と N162)で,JU410を用いて小半径(0.6 ~5m)の微動アレイ観測を実施した(Table 1).こ れらの微動観測時の設定やデータ解析手順は宇治田 原盆地での微動観測と同じである.

4.2 解析結果

Fig.9に全37地点のH/Vスペクトル比とその対数 標準偏差を示す. 観測時の微動レベルが小さかった ために,低周波数側でH/Vスペクトル比のばらつき の大きい地点も見られるが,ピークが明瞭な地点に おいて,ピーク周波数付近のH/Vスペクトル比は安 定に求まっている. 各観測点のH/Vスペクトル比か ら読み取った卓越周波数をFig.8の地図上に示した. ここには,小半径微動アレイ観測の記録から同様に 解析したH/Vスペクトル比の卓越周波数も示した.

市街地の発達している和束川沿いの谷底低地(釜 塚,中,門前)においては,H/Vスペクトル比の卓越 周波数が 2.5~16 Hz と比較的高く, 谷底を埋めてい る堆積層はそれほど厚くないと推測される.一方で、 大阪層群からなる丘陵(別所,白栖)では,H/Vスペ クトル比の卓越周波数が 1.0~2.3 Hz の値をとり, 和 束谷断層に近いほど低周波数にピークを有している. つまり、和束盆地の北西端を限る和束谷断層によっ て、南東側の基盤が傾動しながら沈降してできた盆 地を大阪層群が埋積し, 堆積層は和束谷断層へ向か って層厚が徐々に厚くなる構造となっていると考え ることができる.これらの結果は、三田村(1993)に よる和束地域の大阪層群の地質構造に関する考察と 整合する. 白栖橋(WZ2161)から加茂町井平尾 (WZ2187)にかけての府道5号木津信楽線沿いでは, H/V スペクトル比卓越周波数は 7~18 Hz もしくは明 瞭なピークが見られないことから、和束盆地と加茂 盆地は地震動増幅に影響する堆積層構造の有無とい

う点では、繋がっていないと考えられる.

小半径の微動アレイ観測を実施した 2 地点での S 波速度構造推定結果を Fig. 10 に示す. Vs < 250 m/s の低速度層の層厚は、両地点で 0~1 m と薄く、和束 川沿いの谷底低地でも沖積層は極めて薄いことが分かった.和束盆地では、沖積層はほとんど存在せず、 盆地内の堆積物は低位~高位段丘堆積物と大阪層群 で主として構成されていると推察される.

5. おわりに

宇治田原盆地及び和東盆地において、多数の単点 微動観測及び微動アレイ観測による地盤構造調査を 実施した.宇治田原盆地では、盆地の西部で H/V ス ペクトル比卓越周波数が 0.9~1.4 Hz であったのに対 し、他地区ではそれよりも高い傾向にあった.小半 径微動アレイの結果から、浅部の堆積層は S 波速度 350~600 m/s の層が支配的であり、250 m/s 未満の低

Fig. 8 Map of the microtremor observation sites in the Wazuka Basin. The circles and triangles indicate the single-station microtremor observation sites and the small-aperture microtremor array observation sites, respectively. The symbol color corresponds to the peak frequency of the H/V spectral ratio. The base map is drawn based on the Geological Map by Ozaki et al. (2000) and Digital Map (Basic Geospatial Information) by the Geospatial Information Authority of Japan. Bs: Bessho, Eh: Erihara, Hy: Harayama, Ib: Ibirao, It: Ishitera, Kt: Kamatsuka, Ky: Koya, Mm: Minami, Mz: Monzen, Nk: Naka, Sd: Somada, Sn: Sono, Sr: Shirasu.

Site	Latitude	Longitude	Elevation	Date	Start Time	End Time	Section
	(°N)	(°E)	(m)				
WZ2151	34.80218	135.90893	133	2021/6/22	10:22	11:28	Naka
WZ2152	34.80025	135.91283	136	2021/6/22	10:34	11:24	Naka
WZ2153	34.80852	135.90872	161	2021/6/22	11:38	13:07	Sono
WZ2154	34.80683	135.91629	140	2021/6/22	11:57	13:16	Monzen
WZ2155	34.81104	135.91621	154	2021/6/22	12:25	13:03	Harayama
WZ2156	34.80614	135.91171	148	2021/6/22	12:33	13:12	Sono
WZ2157	34.79841	135.90910	144	2021/6/22	13:38	14:45	Kamatsuka
WZ2158	34.80147	135.90257	138	2021/6/22	13:47	14:53	Bessho
WZ2159	34.80525	135.90211	160	2021/6/22	13:56	14:55	Bessho
WZ2160	34.80108	135.89644	157	2021/6/22	15:10	16:15	Bessho
WZ2161	34.79499	135.90064	124	2021/6/22	15:14	16:11	Minami
WZ2162	34.78804	135.90585	139	2021/6/22	15:22	15:59	Somada
WZ2163	34.79537	135.90489	125	2021/6/22	15:34	16:03	Kamatsuka
WZ2164	34.79465	135.88730	158	2021/6/22	16:28	17:32	Shirasu
WZ2165	34.78055	135.88121	75	2021/6/22	16:54	17:48	Ishitera
WZ2166	34.78421	135.87728	140	2021/6/22	16:51	17:43	Ishitera
WZ2167	34.79040	135.88334	166	2021/6/22	17:00	17:37	Shirasu
WZ2168	34.80664	135.90954	150	2021/12/10	10:07	11:15	Sono
WZ2169	34.80423	135.91431	137	2021/12/10	10:19	11:00	Naka
WZ2170	34.80343	135.91136	133	2021/12/10	10:26	11:11	Naka
WZ2171	34.80236	135.91286	133	2021/12/10	10:44	11:07	Naka
WZ2172	34.80061	135.90853	130	2021/12/10	11:28	12:45	Naka
WZ2173	34.79320	135.90351	136	2021/12/10	11:41	12:36	Minami
WZ2174	34.79801	135.90307	127	2021/12/10	11:52	12:40	Bessho
WZ2175	34.79879	135.89775	144	2021/12/10	12:04	12:50	Bessho
WZ2176	34.80340	135.89885	147	2021/12/10	12:59	13:59	Bessho
WZ2177	34.80413	135.89766	157	2021/12/10	13:10	13:55	Bessho
WZ2178	34.80743	135.89630	191	2021/12/10	13:19	14:02	Bessho
WZ2179	34.80504	135.89482	180	2021/12/10	13:26	14:04	Bessho
WZ2180	34.80013	135.89169	181	2021/12/10	14:16	15:29	Shirasu
WZ2181	34.79665	135.89210	147	2021/12/10	14:29	15:34	Shirasu
WZ2182	34.79634	135.89542	141	2021/12/10	14:38	15:26	Shirasu
WZ2183	34.79065	135.89568	114	2021/12/10	14:50	15:21	Shirasu
WZ2184	34.79916	135.88498	212	2021/12/10	15:50	16:47	Shirasu
WZ2185	34.78450	135.88649	95	2021/12/10	16:32	17:04	Erihara
WZ2186	34.77627	135.88070	64	2021/12/10	16:32	17:10	Ishitera
WZ2187	34.76806	135.87599	47	2021/12/10	16:28	17:17	Ibirao

Table 4 List of the single-station microtremor observations in the Wazuka Basin

速度な層の層厚は 1~2 m と極めて薄いことがわか った. 堆積層の厚い郷之口地区で,最大半径112 m の微動アレイ探査を行った結果,基盤深度は 165 m と推定された.和束盆地では,大阪層群からなる丘 陵部において,北西縁の和束谷断層に向かい,H/Vス ペクトル比の卓越周波数が約 2.5 Hz から 0.9 Hz ~と 徐々に低くなる傾向がみられた. 逆断層である和束 谷断層の運動によって盆地が沈降しているためと考 えられる.一方,和東川沿いの谷底低地の堆積層は 全体的に薄いと推定された.両盆地とも,H/V スペ クトル比の卓越周波数の空間的特徴から,小規模な 盆地といえども,盆地内の堆積層厚にかなり地域性 があることが明らかとなった.取得したデータはこ の地域の地盤速度構造モデルの高度化に活用される.

Fig. 9 Observed microtremor H/V spectra in the Wazuka Basin. Thick line and thin line represent the average H/V spectra and its standard deviation, respectively.

Fig. 10 (left) Comparison between the theoretical phase velocity dispersion curve (red line) and the observed phase velocity (blue circles) for the small-size microtremor array sites in the Wazuka Basin. (right) Estimated S-wave velocity model.

謝 辞

文部科学省科学技術基礎調査等委託「奈良盆地東 縁断層帯における重点的な調査観測」の一部として 実施した.現地での微動観測では,地域の皆様にお 世話になった.国土地理院数値地図(国土基本情報), 産業技術総合研究所 20 万分の1 シームレス地質図 及び5 万分の1 地質図幅のベクトルデータを使用し た.図面の作成には Generic Mapping Tools 6.4 (Wessel et al., 2019)を使用した.以上,記して感謝する.

参考文献

- 浅野公之・岩田知孝・関口春子・杉山長志(2021): 近江盆地南部における微動アレイ探査,京都大学防 災研究所年報,第64号B, pp.9-20.
- 浅野公之・岩田知孝・関口春子・宮腰 研・西村利光 (2013):大阪堆積盆地における微動H/Vスペクト ルの多点観測による盆地速度構造モデルの検証,京 都大学防災研究所年報,第56号B, pp.117-129.
- 浅野公之・岩田知孝・宮腰 研・大堀道広(2015): 微動アレイ観測と単点微動観測による加賀平野南 部及び邑知潟平野の堆積平野速度構造モデルの検 討,日本地震工学会論文集,第15巻,第7号,pp.194-204.
- 尾崎正紀・寒川旭・宮崎一博・西岡芳晴・宮地良典・ 竹内圭史・田口雄作(2000):奈良地域の地質,地 域地質研究報告(5万分の1地質図幅),産業技術総

合研究所地質調査総合センター, 162 pp.

- 産業技術総合研究所地質調査総合センター(2020): 20万分の1日本シームレス地質図V2(地質図更新 日:2020年4月6日), https://gbank.gsj.jp/seamless.
- 地震調査研究推進本部地震調査委員会(2001):京都 盆地-奈良盆地断層帯南部(奈良盆地東縁断層帯) の評価, https://www.jishin.go.jp/regional_seismicity/r s katsudanso/f075 kyoto nara/.
- 地震調査研究推進本部地震調査委員会(2017):地下 構造モデル作成の考え方, https://www.jishin.go.jp/m ain/chousa/17apr_chikakozo/model_concept.pdf.
- 藤原広行・河合伸一・青井 真・森川信之・先名重 樹・東 宏樹・大井昌弘・はお憲生・長谷川信介・ 前田宜浩・岩城麻子・若松加寿江・井元政二郎・奥 村俊彦・松山尚典・成田 章(2012):東日本大震 災を踏まえた地震ハザード評価の改良に向けた検 討,防災科学技術研究所研究資料,第379号,349 pp. 三田村宗樹(1993):奈良盆地,市原実・編,大阪層 群,創元社, pp.87-100.
- 凌 甦群・岡田 廣(1993):微動探査法における空間自己相関法の拡張,物理探査学会第89回学術講演 会論文集,pp. 44-48.
- 脇田浩二・竹内圭史・水野清秀・小松原琢・中野聰 志・竹村恵二・田口雄作(2013):京都東南部地域 の地質,地域地質研究報告(5万分の1地質図幅), 産業技術総合研究所地質調査総合センター,124 pp.
- Aki, K. (1957): Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthq. Res. Inst., Univ. Tokyo, Vol. 35, No. 3, pp. 415-457.
- Asano, K., Iwata T., Yoshida, K., Inoue, N., Somei, K., Miyakoshi, M. and Ohori, M. (2022): Microtremor array surveys and development of the velocity model in the Hakodate Plain, Hokkaido, Japan, Earth Planets Space, Vol. 74, No. 94, doi:10.1186/s40623-022-01647-w.
- Hastings, W.K. (1970): Monte Carlo sampling methods using Markov chains and their applications, Biometrika, Vol. 57, No. 1, pp. 97-109.
- Koketsu, K., Miyake, H. and Suzuki, H. (2012): Japan Integrated Velocity Structure Model version 1, Proc. 15th World Conf. Earthq. Eng., Paper 1773.
- Konno, K. and Ohmachi, T. (1998): Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am., Vol. 88, No. 1, pp. 228-241.
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.

N. and Teller, A.H. (1953): Equation of state calculations by fast computing machines, J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092.

Wessel, P., Luis, J.F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W.H.F. and Tian, D. (2019): The Generic Mapping Tools version 6, Geochem. Geophys. Geosys., Vol. 20, No. 11, pp. 5556-5564.

(論文受理日:2022年8月31日)