Xバンド偏波レーダーRHI観測による融解層内の偏波パラメータと 降水粒子の粒径の比較に関する研究

Comparison of Polarimetric Parameters in Melting Layer and Particles Diameter Using X-band Polarimetric Radar RHI Observation

高見和弥⁽¹⁾・鈴木賢士⁽²⁾・山口弘誠・中北英一

Kazuya TAKAMI⁽¹⁾, Kenji SUZUKI⁽²⁾, Kosei YAMAGUCHI and Eiichi NAKAKITA

(1) (公財)鉄道総合技術研究所(2) 山口大学

(1) Railway Technical Research Institute, Japan
 (2) Yamaguchi University, Japan

Synopsis

In this study, we compared the relationship between the polarimetric parameters in melting layer (ML) and the size of precipitation particles using the data obtained from the RHI observation of the X-band polarimetric radar at Niigata City in 2019 winter. The maximum value of $Z_{\rm H}$ and $Z_{\rm DR}$ or the minimum value of $\rho_{\rm HV}$ in ML corresponded well to the mass-weighted diameter from disdrometer observation. In particular, the maximum value of $Z_{\rm DR}$ was confirmed to be below the empirical threshold in ML for the case of small particle size. In addition, a comparison was made using indices corresponding to the mass-weighted diameter of snow particles calculated from $Z_{\rm H}$ and $K_{\rm DP}$ above ML, and it was found that there was more variation than in the mass-weighted diameter of raindrop on the ground. Therefore, a method to estimate the density of snowfall particles is necessary because the value of the polarimetric parameter in melting layer is considered to depend on the melting diameter.

キーワード: 融解層, 偏波レーダー Keywords: Melting layer, Polarimetric radar

1. はじめに

日本の国土の約半分は豪雪地帯に指定されており, 鉄道の運行においても毎年種々の雪害による障害が 発生している.雪害による運行障害を軽減するため, 着雪ハザードの推定手法の開発を行っているが,そ の精度向上のためには計算の初期条件となる降水の 雨雪及び降雪の乾湿の判別が重要となる.雨雪を判 別する方法として,降水粒子の温度に近い湿球温度 を用いる方法がよいとされているが(近藤.など), 実用上は観測点の多い気温の閾値を設定して雨雪を 判別することが多い.しかしながら,地上での降水 の形態には粒子が落下する過程での熱収支が影響す るため,地上気温だけを用いた雨雪の判別精度はそ れほど高くない.上空での熱収支を考慮して地上で の降水の形態を判別する手法としては,松尾・佐粧 (1981)により単一雪片の融解過程に関する計算モ デルが提案されている.このモデルでは0℃高度から の雪片の落下中の融解を計算するため、初期値とし て0°C高度を与える必要がある. 直接0°C高度を観測 する方法としてはゾンデによる観測が考えられるが、 気象庁の観測は1日2回(12時間間隔)であることか ら鉄道の運行などでリアルタイムに運用することを 想定すると観測間隔が粗い. そこで高見ら(2020) では 0°C高度を偏波レーダーの観測値から推定する 手法を構築した. この手法では、偏波レーダーで融 解層を観測したときに動径方向の分布に現れる、「ブ ライトバンド」と呼ばれる $Z_{\rm H}$ [dBZ](レーダー反射因 子)、 $Z_{\rm DR}$ [dB](レーダー反射因子差)が極大値、 $\rho_{\rm HV}$ (偏波間相関係数)の極小値となる区間を検出し、 その上端を0°C高度とした. 推定した0°C高度を初期 値として、新潟市で観測した降水が雨から雪に変化 した事例で融解モデルの計算を行い、地上での降水

の形態の変化を定性的に表現できることを示した. 一方で高見ら(2020)で構築した手法では、0℃高 度より上空での降雪粒子を単純に典型的な雪片と仮 定している点に課題があった.融解層の検出にあた り、融解層内で取りうる偏波パラメータの値の範囲 を経験的な閾値で一意的に設定しているが、実際に は降雪粒子の粒径によって融解層内の偏波パラメー タの値は変化すると考えられる.そこで、本研究で は手法の改良に資する知見を得ることを目的として、 2019年度冬期に新潟市内で実施したXバンド偏波レ ーダーによるRHI観測データを用いて、融解層内およ びその上空での偏波パラメータの値を、降水粒子の 粒径分布の中心値(mass-weighted diameter)を指標 として整理し比較を行った.

2. 新潟市での観測と対象事例

新潟市内(139.031E、37.755N)に設置したXバン ド偏波レーダー(FURUNO:WR-2100)を用いて,2019 年度冬期(2019/12/1~2020/2/29)に方位角25°,仰角 3~177°でRHI観測(回転速度2.0rpm,約3回/分)を 実施した.また,RHIを観測した方位角上,レーダー の設置地点から約9.65km離れた地点(139.076E, 37.833N)にて、マイクロレインレーダー(METEK, 以下MRR),ディスドロメータ(OTT: Parsivel,以 下,Parsivel)を設置して観測を行った.Table 1,2 にレーダー,MRRの諸元を整理する.

1 a 0 10 1. Specification of $W IC = 210$	Table	1.	St	pecification	of	WR	-21	0
---	-------	----	----	--------------	----	----	-----	---

Frequency	9.65GHz
Sampling resolution	150m
Maximum coverage range	50km
Antenna diameter	φ0.75m

Table 2. Specification of MRR

Frequency	24.1GHz
Sampling resolution	75m
Maximum coverage height	2325m
Antenna diameter	φ0.6m

対象事例の抽出にあたり、まず地上観測で毎正時 の前1時間の雨量が1mm以上で、MRRによる観測で 10dBZ以上の降水が30分以上続いていた事例を抽出 した. 次いで、地上観測点上空でのレーダーの最低 観測高度が約600mであることを考慮して、後述する MRRを用いた0℃高度の判定にて、0℃高度が750m~ 1500mと判定された20事例を本研究の対象事例とし た.

3. 検討の方法

MRRでは鉛直1次元での落下速度の分布が得られ るため、降雪粒子の融解による落下速度の増加に着 目することで偏波レーダーによる観測より明瞭に融 解層の高度を確認することができる.本研究では MRRの観測データから判定した0°C高度を真として、 0°C高度上空と融解層内での偏波レーダーの観測値 を整理する.偏波レーダーの観測値は地上観測点の 上空から距離方向に±1kmの範囲で、事例ごとに、 MRRの観測高度に合わせた高度75m間隔で前1時間 の中央値を求めて鉛直1次元の分布を作成した.なお、 Z_{DR} の観測値はバイアスを持つため天頂観測によっ て求めたバイアス値を用いて補正した.

0℃高度の推定に用いる偏波パラメータ($Z_{\rm H}$, $Z_{\rm DR}$, $\rho_{\rm HV}$)の融解層内での値に対し,降水粒子の粒径を表 す指標を,地上でのParsivelによる観測及び0℃高度 上空での偏波パラメータから推定して比較を行い, 高見ら(2020)で設定した閾値の妥当性や改善が可 能な点を検討する.なお,降水粒子の粒径に対応す るパラメータとしては,地上での降水粒子の粒径分 布の中心値(mass-weighted diameter, Parsivelの観測 値から計算)と,0℃高度上空での降雪粒子の粒径分 布の中心値に比例する指標(偏波パラメータから計 算)を用いた.

本章ではMRRによる0℃高度の判定,ディスドロメ ータによる粒径分布の中心値の計算,偏波パラメー タを用いた0℃高度上空での降雪粒子の粒径分布の 中心値に比例する指標の計算について述べる.

3.1 0°C高度の判定(MRR)

MRRでは1分間ごとに平均したレーダー反射因子 (以下Z)および落下速度(落下速度,以下V)の高 度分布(75m分解能)を得ることができる.Fig.1に 示すようにマイクロレインレーダーで融解層(Fig.1 の高度500以下)を観測すると,降雪粒子の融解によ るZの極大値(Fig.1 (a))を伴う地上方向へのV(Fig.1 (b))の増加が確認できる.

そこで、本研究では以下に示す手順で0℃高度の判定 を行った.

- 各時刻(1分ごと)のVの鉛直分布から落下速度の 増加率(∂V/∂Z,地上にむかって速度が増加する 方向が正)を求める(Fig.2).
- ② 各時刻で∂V/∂Zが最大となる高度を求める.
- ③ ②の高度から上空に向かって∂V/∂Zが正の値で 単調減少,かつVが単調減少している範囲を調べ その上端を0℃高度と判定する.
- ④ 1分ごとに判定した③の0℃高度の、事例ごと(1
 時間)の中央値を当該事例の0℃高度とする.

Fig.2 Time – altitude cross section of increasing rate in fall speed at case of Fig.1.

3.2 地上での降水粒子の粒径分布の中心値

Parsivelによる観測ではシート状のレーザービー ムを通過した降水粒子の粒子数が観測され、粒径、 落下速度それぞれ32クラスのビンで記録される.事 例ごとの粒径分布 $N[mm^{-1}m^{-3}]$ は式(1)で求まる.

$$N(l) = \sum_{i=1}^{32} \frac{n(i,l)}{A \cdot T \cdot v(i,l) \cdot dD(l)}$$
(1)

ただし, n(i,l)はParsivelの粒径・落下速度のビンごとの粒子数, $A[m^2]$ はParsivelのビームの断面積, T[s]は 観測時間(3600s), dD[mm]はParsivelのクラスごとの粒径幅, l, iはそれぞれ粒径, 落下速度のクラスである.式(1)の粒径分布を事例ごと(前1時間の積算) に求め, 粒径分布の中心値 $D_m[mm]$ を式(2)で計算した.

$$D_m = \frac{\sum_{l=1}^{32} N(l) \cdot D(l)^4}{\sum_{l=1}^{32} N(l) \cdot D(l)^3}$$
(2)

なお,本研究の対象事例は,全ての降雪粒子が地上 に達するまでに融解を完了して,地上で雨となった 事例である.

3.3 0℃高度上空での降雪粒子の粒径分布の 中心値に対応する指標

降雪粒子の粒径分布とレーダーの観測値の関係は 降雪粒子の形状などに依存するが、雨の場合と異な り降雪粒子の形状は粒子の種別によって大きく変化 する.そこで粒子の粒径だけでなく形状に依存する 偏波間位相差の変化率 K_{DP} [deg./km]を利用した指標 を利用する.偏波パラメータのうち、 Z_H は粒径の6 乗に、 K_{DP} は粒径の3乗に関するパラメータであるた め、式(3)のように $Z_h \ge K_{DP}$ の比は、降雪粒子の粒径 分布の中心値 D_m' [mm]の3乗に比例する(Ryzhkov and Zrnic, 2019).

$$D_m'^3 \propto \frac{Z_h}{K_{\rm DP}\lambda}$$
 (3)

 λ [mm]はレーダーの波長で、レーダー反射因子はlog スケールでないものを Z_h [mm⁶m⁻³](= 10^(Z_H/10))と表 記している.また、 D_m 'は融解前の降雪粒子の粒径分 布の中心値で、雨滴の、あるいは融解直径を対象と した粒径分布の中心値 D_m と区別している.以下、 D_m ' に対応する指標を式(4)のように α とおく.

$$\alpha = \left(\frac{Z_{\rm h}}{K_{\rm DP}\lambda}\right)^{\frac{1}{3}} \tag{4}$$

4. 結果と考察

高見ら (2020) で構築した0°C高度の判定手法では $Z_{\rm H}$, $Z_{\rm DR}$ の極大区間, $\rho_{\rm HV}$ の極小区間の判定にTable 3 の閾値を設定している. なお, 閾値のうち, $Z_{\rm H}$, $Z_{\rm DR}$ の最大値, $\rho_{\rm HV}$ の最小値は既往研究の手法で設定され た観測による経験的なパラメータ, $Z_{\rm DR}$ の増加量, $\rho_{\rm HV}$ の減少量は高見ら (2020) での手法の構築時に試行 錯誤的に決定したパラメータである.

T 1 1 A	TC1 1 1 1	0	1 1		.1 1
Table 4	Threshold	ot.	deve	loning	method
raule J	1 m conora	U1	ucvu	loping	memou

	Maximum value>30dBZ or,
$Z_{\rm H}$	Maximum value>20dBZ and corresponds to
	maximum value of the azimuth
	Minimum value < 0.97 and
$ ho_{ m HV}$	Diff. from terminate of extracted section >
	0.04
	Maximum value >0.8dB and
$Z_{\rm DR}$	Diff. from terminate of extracted section >
	0.5dB

まず、融解層内での $Z_{\rm H}$ 、 $Z_{\rm DR}$ の最大値、 $\rho_{\rm HV}$ の最小 値を、判定した0℃高度から-300mの範囲を対象に求 めて地上での D_m (Fig.3) と比較した. 各図には線形 を仮定した近似線(赤点線)とR²値(赤字)を示し ている. Fig.3に示したように、融解層内の偏波パラ メータは、地上でのDmと対応して増減していること が確認できた.一方でTable 2に示した各パラメータ の最大値あるいは最小値の閾値と比較すると、Z_H、 $\rho_{\rm HV}$ は観測結果が閾値として設定した下限値, あるい は上限値を満たしているが、ZDRは特に粒径が小さい 範囲で閾値として設定した下限値を下回る事例が確 認された.これは融解中の降雪粒子の扁平率が,粒 径の小さい事例では1に近いためであると考えられ る. ただし、 0℃高度上空(+225m) でのZ_{DR}と, 融解層内の最大値の差を確認すると(Fig.4),粒径 の小さい事例でも、高見ら(2020)で採用したZDBの 増加量に対する下限値(0.5dB)を上回っていること が確認できた.よって高見ら(2020)で新たに設定 したZDRの増加量に対する条件はおおむね妥当であ るが、 Dmを何らかの形で推定できる場合、 Dmに応 じて閾値を変えることで0℃高度の推定精度が向上 する,または、粒径の小さい事例で推定が可能とな る可能性があることが示された.

Fig.3 Comparison between mass-weighted diameter on the ground and polarimetric parameter in melting layer (a) $Z_{\rm H}$, (b) $\rho_{\rm HV}$, (c) $Z_{\rm DR}$

Fig.4 Comparison between D_m and difference in Z_{DR} above and within melting layer

上述した D_m は地上での観測や雨滴に対するレー ダー反射因子などから推定が必要となるパラメータ である.また融解中の粒子に対して雨滴と同様の方 法では求めることが難しいため、0°C高度上空での偏 波レーダーの観測値から推定できることが望ましい. そこで、0°C高度上空(0°C高度+225m)での3.3節で 述べた α と、融解層内での $Z_{\rm H}$, $Z_{\rm DR}$ の最大値、 $\rho_{\rm HV}$ の 最小値を比較した(Fig.5).

Fig.5 Comparison between index corresponding to mass-weighted diameter (α) on the ground and polarimetric parameter in melting layer (a) $Z_{\rm H}$, (b) $\rho_{\rm HV}$, (c) $Z_{\rm DR}$

αに対する融解層内の偏波パラメータの最大値,最 小値のばらつきは、Fig.5に示したR²値より、地上で の雨滴のDmに対するばらつきより大きいことが分 かった. つまり, 融解層内の偏波パラメータの値は 融解前の降雪粒子の粒径ではなく、融解後の融解直 径への依存度が高いと考えられる.よって、0℃高度 上空での偏波レーダーの観測値を用いて融解層内の 偏波パラメータの閾値を決めるためには、実直径に 対するパラメータではなく,降雪粒子の密度を与え て融解直径に変換する必要がある.ただし降雪粒子 の密度はその種別によって大きく変化するため、粒 子の種別の判定が重要となる. Fig.6に0℃高度上空 (+22 5m) でのMRRの落下速度の事例ごとの中央値 と、 D_m と α の比を示す. Fig.6より、落下速度が大き い、つまり降雪粒子の密度が大きい事例ほどDmとa の比は小さくなる傾向がみられた. MRRで観測をせ ず, 偏波レーダーの観測値のみを用いる場合は落下 速度を得ることができないため、 今後の課題として 0℃高度上空での降雪粒子の密度に対応する指標を 偏波レーダーの観測データから推定することを検討 する必要がある.

5. まとめ

本研究では高見ら (2020) で構築した0℃高度の推 定手法の改良に資する知見を得ることを目的として, 2019年度冬期に新潟市内で実施したXバンド偏波レ ーダーによるRHI観測データを用いて,融解層内およ びその上空での偏波パラメータの値を,降水粒子の 粒径分布の中心値Dmを指標として整理した.結果を 以下に整理する.

- ・融解層内の Z_H, Z_{DR}の最大値, ρ_{HV}の最小値は地 上で観測した降水粒子の粒径分布の中央値に対 応して増減していることが確認できた.
- ・融解層内での偏波パラメータの閾値について, $Z_{\rm H}$, $\rho_{\rm HV}$ は観測結果が閾値として設定した下限値,あ るいは上限値を満たしているが, $Z_{\rm DR}$ は特に粒径 が小さい範囲で閾値として設定した下限値を下 回る事例が確認された.ただし, $Z_{\rm DR}$ の増加量に 関する下限値は妥当であったため, $Z_{\rm DR}$ を D_m に応 じて変えることで0℃高度の精度を向上できる可 能性がある.
- ・0℃高度上空でのZ_H, K_{DP}から計算する融解前の降 雪粒子の粒径分布の中央値に比例するパラメー タαに対する融解層内でのZ_H, Z_{DR}の最大値, ρ_{HV} の最小値は,地上でのD_mに比べてばらつきが大 きかったことから,融解層内の偏波パラメータは 融解直径の粒径分布に対応するものであると考 えられる.

今後は偏波レーダーの観測値のみを用いた手法と するために、0℃高度より上空での降雪粒子の密度 を偏波レーダーの観測値から推定する手法の検討を 行うことが必要である.

参考文献

- 高見和弥,鈴木賢士,山口弘誠,中北英一 (2020):冬期の降水形態の判別を目的とした偏 波レーダーを用いた 0℃高度推定手法,土木学 会論文集 B1 (水工学), Vol.76, No.2, pp.205-210.
- Ryzhkov, A. V., and D. S. Zrnic (2019): Radar Polarimetry for Weather Observations. Springer International Publishing, 486pp.
- S. Giangrand, J. M. Krause, and A. V. R. Ryzhkov (2006): Automatic Designation of the Mleting Layer with a Polarimetric Prototype of the WSR-99D RADAR, J. Appl. Meteor. Climatol., 47, pp.1354-136.
- T. Matsuo and Y. Sasyo: Melting of snowflakes below freezing level in the atmosphere, J. Meteor. Soc. Japan 59, pp.10-25, 1981.

(論文受理日: 2021 年 8 月 31 日)