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Synopsis 
With the development of ocean engineering, the stability evaluation of submarine 

slopes has become more essential for the problems relating the stability of submarine 
foundations and the safety of offshore structures. The properties of marine sediments 
vary spatially in nature, and because of the depositional processes and the effective 
overburden pressure, there is an increasing trend with depth for the undrained shear 
strength of marine clay. To consider the spatial variability of soil strength in the stability 
evaluation of submarine slopes, the random field method and the limit equilibrium 
method are integrated in our study. A novel response surface method is proposed based 
on the Gaussian process regression to reduce the number of calls for direct slope 
stability analysis in the Monte Carlo simulations. Then illustrative examples of an 
infinite clay slope model and a two-dimensional submarine slope model are analyzed, 
taking the spatial variability of soil strength into consideration. The computational 
burden of the analysis using the surrogate model is significantly reduced making the 
prediction of submarine landslides more efficient. 

Keywords: submarine slope, reliability analysis, spatial variability, random field, 
response surface method, Monte Carlo simulation 

1. Introduction

The stability evaluation of submarine slopes 
plays an important role in ocean engineering. The 
process of submarine landsides involves many 
uncertainties, and not all failure mechanisms are 
fully understood. Therefore, probabilistic methods 
have been proposed and applied to the stability 
evaluation of submarine slopes. For example, Yang 
et al. (2007) used several reliability methods such 
as first-order second moment (FOSM) method, 
point estimate method, and response surface 
method (RSM) for the stability evaluation of 
submarine slopes; Zhu et al. (2018) analyzed the 
stability of submarine slopes using RSM along with 
the advanced FOSM method. However, in these 

studies using the traditional reliability methods, soil 
properties are just treated as random variables 
ignoring the spatial variability. It has been indicated 
that soil properties possess spatial variability for the 
reason of geological process and loading history 
(Phoon and Kulhawy, 1999). 

In this study, the spatial variability of soil 
strength was taken into consideration in the 
evaluation of the stability of submarine slopes by 
integrating the random field method and limit 
equilibrium method (LEM). The spatial variability 
of the soil strength is described by means of 
stationary and non-stationary random fields 
simulated by the method of Karhunen-Loeve (K-L) 
expansion. A novel RSM is proposed based on the 
Gaussian process regression (GPR) to construct a 
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surrogate model for the direct slope stability 
analysis. Then the failure probability of the 
submarine slope is effectively obtained from Monte 
Carlo simulation (MCS) with the GPR-based 
surrogate model. Illustrative examples of an infinite 
clay slope model and a two-dimensional submarine 
slope model are analyzed. The computational 
burden of the MCS using the proposed method is 
significantly reduced, making the prediction of 
submarine landslides more efficient. 

 
2. Random Field Simulation 

 
In nature, soil properties vary from point to 

point over space as the result of geologic process. It 
is commonly recognized that marine sediments 
possess inherent spatial variability. The spatial 
characteristics are determined by the statistic 
parameters and the correlation structure. The 
correlation structure of the random field is 
described by autocorrelation functions, and the 
squared exponential autocorrelation function is the 
most commonly used, which is expressed in the 
two-dimensional space as: 
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where lh and lv are the correlation lengths in the 
horizontal and vertical directions, respectively. 
 
2.1 Karhunen-Loeve expansion 

Some methods have been proposed for the 
simulation of random fields. Among these methods, 
K-L expansion is one of the most commonly used, 
which is a series-expansion method based on the 
spectral decomposition of the autocorrelation 
function of the soil properties. In most cases, soil 
shear strength is simulated by a stationary random 
field, which means that the average value and 
standard deviation of the shear strength are constant 
with depth. The stationary Gaussian random field 
with mean value μ and standard deviation σ can be 
expressed by the truncated K-L expansion as: 
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where ξi (θ) is a set of uncorrelated random 
variables with zero mean and unit standard 
deviation. The number N of truncated terms relies 
on the ratio of the correlation distance to the 
geometry size. Based on the fact that soil properties 
are expected to vary smoothly in the domain of 
interest, most of the uncertainties could be captured 
by only a few terms of the K-L expansion. λi and 
fi(x) in Eq. (2) are the eigenpairs of the 
autocorrelation function, which can be obtained by 
solving the homogeneous Fredholm integral 
equation of the second kind. For most 
autocorrelation functions, the numerical methods 
are used to obtain the eigenpairs. 
 
2.2 Non-Gaussian Random Field 

The distributions of soil properties are often 
taken as log-normal in the probability analysis to 
avoid negative values of parameters (Cho 2010). 
Lacasse and Nadim (1996) also indicated that the 
undrained shear strength of soil tends to obey a 
log-normal distribution. In the log-normal case, the 
standard deviation and mean value should firstly be 
normalized as follows: 

 

2ln[1 ( / ) ]   = +                  (3) 

 

2ln / 2   = −               (4) 

 
The random field of the property with log-normal 
distribution is then obtained from the exponential of 
the Gaussian random field as 
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2.3 Non-stationary Random Field 

Although the stationary random field is 
commonly used, it has been indicated that shear 
strength of soil in nature increase along depth with 
a statistically linear trend as the result of the 
effective overburden pressure. 

There are three different types of spatial 
variability of a soil parameter varying with depth. 
Type 1: the mean and standard deviation are 
constants and independent of depth, i.e., the spatial 
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variability that can be described by the stationary 
random field. Type 2: the mean value increases 
linearly with depth but its standard deviation is 
independent of depth. Type 3: both the mean and 
standard deviation increase linearly with depth. 
Some studies have considered type 3 to represent 
the undrained shear strength of actual soil (Li et al., 
2015). In our study, the spatial variability of soil 
strength in type 3 is simulated with a non-stationary 
random field as 
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where Hcu0 is a stationary random field that is 
discretized with the mean and standard deviation of 
the shear strength at the seabed surface, i.e., μcu0 and 
σcu0. The non-stationary random field Hcu is 
adjusted by a multiplicative scaling factor that is a 
function of z. In this case, the mean and standard 
deviation of the shear strength both increase with 
depth z as 
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while the coefficient of variation (COV) of the 
undrained shear strength is spatially constant 
(COVcu = COVcu0 = σcu0 / μcu0). 
 
3. GPR-based surrogate model 

 
In our study, a GPR -based surrogate model is 

proposed for the reliability analysis to reduce the 
number of direct slope stability evaluations in the 
MCS. The GPR method is one of the most 
advantageous tools among Bayesian methods. The 
surrogate model is built using a set of training data. 
The training set including a multi-dimensional input 
vector xi and the corresponding output yi. The GPR 
algorithm obtains the relationship between the input 
and output of the training database, whereupon the 
distribution of the predictive function f*(xi) is 
provided. Then the predicted output y* can be 
obtained with high accuracy given a new input x*. 

A schematic of GPR is shown in Fig. 1. With the 
mean function M(x) and Kernel function K(x, x'), a 
Gaussian process function f(x) can be specified 
completely as: 
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The joint distribution of the training outputs and 

the predicted outputs under the prior can be 
expressed as 
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Then the posterior probability with given input 

matrix X* = [x*
1, x*

2,…x*
N] and training data is 

obtained based on Bayes’ rule. y* is assumed to 
follow the Gaussian distribution and the 
corresponding mean and standard deviation could 
be obtained. 

 

 
Fig. 1 Schematic of Gaussian process regression 

 
3.1 Iterative algorithm for the surrogate model 

To reduce the required number of total training 
samples and increase the fitting accuracy, an 
iterative algorithm is proposed for updating the 
response surface dynamically. The key to such 
updating lies in finding the new training point that 
makes the most significant contribution to the 
failure probability. If we want the response surface 
to approximate the actual performance function 
well, the sampling points for training should be 
selected on or near the limit state hypersurface. 
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3.2 Verification of the GPR-based RSM 
An explicitly nonlinear bivariate function is 

used for the verification of the GPR-based RSM in 
this section: 

 

1 2( ) exp(0.4 7) exp(0.3 5) 200g x x= + − + −x  (11) 

 
The independent random variables x1 and x2 

both obey a standard normal distribution. Some 
researchers have also studied this case using 
different reliability analysis methods. Kim and Na 
(1997) proposed an RSM involving vector projected 
sampling points for this case, and the result of MCS 
with 106 samplings was considered as the true value 
for comparison (Pf = 3.63×10-3). Kaymaz (2005) 
proposed a kriging-based RSM, and the result of 
adaptive MCS was considered as the exact solution 
(Pf = 3.58×10-3). Deng (2006) analyzed this 
problem using a radial basis function (RBF) 
network. Lu and Yang (2006) used an artificial 
neural network (ANN) to solve this problem, and 
the result of direct MCS was again taken as the true 
value (Pf = 3.63×10-3). 

Direct MCS with 108 samplings is conducted 
and the result of which is taken as the benchmark in 
this study (Pf = 3.62×10-3). The proposed GPR 

-based RSM is also used to calculate the failure 
probability. Ten initial training points are generated 
as uniformly distributed random numbers. One new 
design point is determined and added to the training 
database at each iterative step. After eight steps, 
convergence is achieved (|Pf (n+1) −Pf (n)| < 0.01×
10-3). Fig. 2 shows the surfaces of the actual 
performance function (transparent) and the response 
surface fitted by the proposed GPR method. These 
two surfaces almost overlap in space, and the 
training points added during the iteration are all 
either on or near the limit state function. 

 

 
Fig. 2 Fitting results of the verification case using 
the GPR-based RSM with iterative algorithm 

 

Table 1 Results of the verification case from various reliability methods 

Probabilistic methods 
Failure probability 

Pf (10-3) 
Relative 
error (%) 

No. of 
function calls 

Reference 

Direct MCS 3.62 - 108 Benchmark 
Linear RSM 2.74 24.31 - 

Kim and Na 
(1997) 

Second-order RSM 3.45 4.70 - 
RSM with vector projected 

sampling points 
3.56 1.66 31 

Second-order polynomial 
based RSM 

3.89 7.46 - 
Kaymaz (2005) 

Kriging-based RSM 3.47 4.14 - 
FORM (analytical 

derivatives) 
3.37 6.91 - 

Deng (2006) 
RBF-based FORM 3.37 6.91 289 
RBF-based MCS 3.84 6.08 289 

ANN-based MCS 3.67 1.38 - 
Lu and Yang 

(2006) 
GPR-based MCS 3.61 0.28 18 This study 
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The results of this verification case obtained 
from the proposed GPR-based RSM and other 
methods from the literature are summarized in 
Table 1. Only 18 function calls are needed in our 
study, and the result is very close to that of direct 
MCS with 108 samplings. We can see that the 
proposed GPR-based method in MCS has the 
highest efficiency and accuracy compared with 
other reliability methods listed in Table 1. See Zhu 
et al. (2019b) for more details about the GPR-base 
RSM. 
 

Start

Stationary Gaussian RF via K-L expansion

• Mean value
• Standard deviation
• Autocorrelation function

Stationary non-Gaussian RF

Non-stationary RF with the linearly increased 
trend

Generation of Random Field

Calculate the performance function G(z) at 
each height z

Find the min (G(z)) and the potential failure 
surface 

Reliability analysis with 1-D RF

Calculate the Pf using MCS 

End

Obtain Fs via LEM with the discrete function 
of soil strength simulated by RF

Generate the GPR-based RSM with 
samplings from deterministic analysis 

Reliability analysis with 2-D RF

 
 
4. Reliability analysis of submarine slopes 

 
Illustrative examples for both 1-D and 2-D 

reliability analyses of submarine slopes with 
spatially variable shear strength are analyzed in this 
section. The flowchart of the process is shown in 
Fig. 3. The reliability analysis consists the 
following steps: 
(1) Generate the random field to simulate the 
soil strength either in the 1-D or 2-D space using 
the K-L expansion as described in section 2. 
(2) Calculate safety factor (Fs) using the LEM 
combined with the random field to consider the 
spatial variability of soil strength. 
(3) Conduct MCS to obtain the failure 
probability. In the two-dimensional case, the 

GPR-based RSM is applied to reduce the number of 
direct analysis of slope stability and improve the 
calculation efficiency. 
 
4.1 Infinite slope model 

The infinite slope model is often used when the 
depth of the potential failure surface is much less 
than the length of the slope, which is a common 
situation for submarine slopes. For reasons of 
simplicity and clarity, many studies have used the 
infinite slope model to evaluate the stability of 
submarine slopes ignoring the complexities in the 
analysis. However, in most studies, the spatial 
variability of soil parameters was not considered. 

Fs of the infinite clay submarine slope model 
can be expressed as  

 

sin cos
uc

Fs
z  

=


  (12) 

 
where cu is the undrained shear strength of the 
marine clay which is simulated by the random field 
in our study. α is the slope angle and γ' is the 
effective unit weight of the soil. In the traditional 
LEM for an infinite slope model, the depth z of the 
slip surface is always predetermined. However, in 
the present study combining the LEM with random 
fields, the potential slip surface is located by 
seeking the position at which Fs achieves its 
minimum. 

The thickness of marine sediments is set to 30 m 
in this case study. The slope angle and the effective 
unit weight in Eq. (12) are set to α = 5° and γ' = 7 
kN/m3, respectively. The unit weight of soil is 
treated as a constant value, because its COV is 
generally less than 0.1 (Phoon and Kulhawy, 1999). 
All three types of shear-strength described in 
Section 2.3 are simulated by 1-D random fields. For 
the stationary random field described by type 1, μcu 
and σcu are set to 30 kPa and 6 kPa, respectively. 
For the non-stationary random fields, the rate of 
increase of the shear strength with depth is set to k 
= 1. In type 2, namely the non-stationary random 
field with constant standard deviation with depth, 
the statistical parameters of the random field are set 
to μcu0 = 15 kPa and σcu = 6 kPa. In type 3, namely 
the non-stationary random field with increasing 

Fig. 3 Flowchart of reliability analysis of 

submarine slopes integrating random fields and 

limit equilibrium method 
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standard deviation, the statistical parameters are set 
to μcu0 = 15 kPa and σcu0 = 3 kPa, making the COV 
of cu a constant and equal to 0.2, which is the same 
as in type 1. In the 1-D random fields, the sediment 
is discretized into 600 strips in the depth direction 
and the autocorrelation length is set to lv = 0.3 m. 
The Gaussian random fields are used in this case 
study. One generation of each of these three types 
of random fields is shown in Fig. 4. 

 

 
Fig. 4 One simulation of undrained shear strength 
of marine sediments using three types of one-D 
random fields 
 

The statistics of the slip-surface depths obtained 
by MCS using the three types of random fields are 
shown in Fig. 5. If the shear strength is independent 
of depth as in type 1, then clearly the failure surface 
is most likely to be located at the bottom of the 
sediments, which is determined by Eq. (12): if cu is 
independent of depth, then Fs is inversely 
proportional to depth. However, this phenomenon is 
alleviated in types 2 and 3 because the shear 
strengths increase with depth. In addition, the 
distribution of the failure surface is more even in 
type 2 than in type 3. 

We then changed the correlation distance in the 
vertical direction in each case to study how it 
affects the probability of submarine slope failure. 
The results are shown in Fig. 6. In all three cases, 
probability of failure (Pf) clearly decreases with the 
correlation distance and converges to a certain 
value. The failure probability is overestimated if the 
linearly increasing trend of shear strength is ignored, 
and it is more conservative for the stability 
evaluation using the random field in type 2 than in 

type 3. 
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Fig. 5 Histograms of positions of failure surface 
using three types of random fields 
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Fig. 6 Failure probabilities with different vertical 
correlation distances using three types of random 
fields 
 
4.2 Two-dimensional slope model 

The analysis of a simplified 2-D submarine 
slope with a non-stationary random field is 
conducted in this section. The basic parameters of 
this example are listed in Table 2. In this submarine 
slope case, the squared exponential autocorrelation 
function is used and the linearly increasing trend of 
the undrained shear strength is simulated in the 
random field. The distribution of the soil shear 
strength is set to log-normal to avoid negative 
values. One generation of the random field of soil 
strength for the two-dimensional illustrative 
example is shown in Fig. 7. After generating the 
random field, we combine it with the traditional 
LEM using simplified Bishop method to evaluate 
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the stability of submarine slope with consideration 
of the spatial variability of the soil shear strength. 
 

Table 2 Parameters used in the two-dimensional 
submarine slope case study 

Parameter Value Unit 
lh 25 m 
lv 0.5 m 
α 10 ° 

μcu0 2 kPa 
Covcu 0.5 - 

k 0.7 - 
 

 
Fig. 7 Geometric illustration and one simulation of 
the random filed of the linearly increased soil shear 
strength for the submarine slope 
 

For submarine slopes with gentle slope angle, 
the probabilities of instability are often very small. 
In this case, the tremendous computing workload 
makes it extremely difficult to use direct MCS, 
because a large sampling amount is needed to attain 
accurate results. Therefore, the proposed 
GPR-based RSM has shown superiority and 
potential in the reliability analysis of submarine 
slope. 

The Fs values of the training samplings 
obtained from the surrogate model and the actual 
LEM analysis of the submarine slope are plotted in 
Fig. 8. The goodness of fit is R2 = 0.9405, which 
indicates that the approximation accuracy of the 
GPR-based RSM is reasonably high. Iteration is 
used to find new training points closest to the limit 
state hypersurface. The added training points in the 
iteration are also plotted in Fig. 8. The histogram 
and cumulative distribution function (CDF) curve 
of Fs obtained from the MCS with GPR-based RSM 
are shown in Fig. 9. The distribution of Pf is close 
to a normal distribution. The failure probability of 
this case obtained from the reliability analysis is Pf 

= 0.93%, and the COV of Pf is 0.0103. For more 
details about the reliability analysis of submarine 
slopes considering the spatial variability of soil 
strength, please refer to Zhu et al. (2019a). 
 

 

Fig. 8 Approximation accuracy of the GPR-based 
RSM 
 

 

Fig. 9 Frequency and cumulative distribution 
function (CDF) of Fs obtained from MCS 
 
5. Conclusions 
 

In this study, the reliability analysis was 
performed to evaluate the stability of submarine 
slopes using the LEM coupled with random fields 
both in one-D and two-D spaces. The GPR-based 
surrogate model was used in MCS for the 
complicated implicit performance function in slope 
stability analysis. Therefore, computation 
associated with the analysis is decreased. The 
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following conclusions are drawn based on our 
study. 
(1) The spatial variability of sediment shear 
strength, which is commonly ignored in the 
traditional analysis of submarine slope, has a 
significant effect on the result of the stability 
evaluation. 
(2) The failure probability of the submarine 
slope decreases with the vertical correlation 
distance and tends to converge to a certain value in 
the infinite slope model. 
(3) The computational efficiency is significantly 
increased by incorporating the GPR-based surrogate 
model into the MCS. Therefore, the proposed 
GPR-based method has shown superiority and 
potential in the reliability analysis of submarine 
slope. 
(4) Random finite element method which 
integrates the random field theory and finite 
element model will be applied to the stability 
analysis of submarine slopes for more complicated 
cases in our future study. 
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