桜島火山における繰り返し相対重力測定 (2019年5月~2020年3月)

Repeated Relative Gravity Measurements in Sakurajima Volcano (May 2019 – March 2020)

風間卓仁(1)・山本圭吾・大柳 諒(1)・岡田和見(2)・大島弘光(2)・井口正人

Takahito KAZAMA⁽¹⁾, Keigo YAMAMOTO, Ryo OYANAGI⁽¹⁾, Kazumi OKADA⁽²⁾, Hiromitsu OSHIMA⁽²⁾ and Masato IGUCHI

(1)京都大学大学院理学研究科(2)北海道大学大学院理学研究院

(1) Graduate School of Science, Kyoto University(2) Graduate School of Science, Hokkaido University

Synopsis

Relative gravity values were repeatedly measured at 21 gravity points in and around Sakurajima Volcano in May, July, September, December 2019 and March 2020, to monitor spatiotemporal mass variations associated with volcanism. The relative gravity values measured from 2006 to 2020 showed a clear increase in the central part of the volcano by up to +4.7 μ Gal/yr. The gravity increase can be explained by the point mass increase of 1.9×10^{10} kg/yr under the Kita-dake summit at the depth of 3 km below sea level. This result implies that volcanic mass continuously increases under Sakurajima Volcano, even during the quiet period of eruptive activities at the Minami-dake crater.

キーワード: 桜島火山, 相対重力, 質量移動, 地殻変動, 陸水擾乱 Keywords: Sakurajima Volcano, relative gravity, mass redistribution, crustal deformation, hydrological disturbance

1. はじめに

重力観測は火山内部の質量移動を把握するのに最 も有効な手段の1つである. 鹿児島県の姶良カルデラ 南部に位置する桜島火山では, 1975年以降数年おき にLaCoste型相対重力計による繰り返し重力測定が 実施されてきた. 南岳火口からの噴火が活発だった 1970年代~1990年代前半には,山頂部の重力値が100 μGal以上も増加する傾向が見られた(山本ら,1998). また,同時期の地殻上下変位に対する重力変化の割 合は-13 ~ -20 μGal/cmと計算されることが分かっ ており(風間ら,2014),マグマだまり収縮に伴う地 盤沈降だけでなく桜島直下における質量増加が起き ていたと考えられている(石原ら,1986).

南岳の噴火活動が静穏化した1990年代後半以降に は、それまでのような大きな重力変化が観測される ことはなくなった(山本ら,2014).しかしながら、 2006年6月には昭和火口からの噴火活動が再開し、 2015年8月にはダイク貫入イベント(Hotta et al., 2016;風間ら,2016; Morishita et al.,2016)が発生する など、桜島では依然として活発な火山活動が確認さ れている.このような火山活動の変遷を質量移動の 観点から議論するには重力観測データが不可欠であ り、現在および将来の質量移動プロセスを把握・予 測するには重力観測データの継続的な取得が必要で ある.

そこで我々は、2019年度において複数回の相対重 力測定を桜島火山およびその周辺で実施した.本稿 では2019年度に取得された相対重力値を全て示すと ともに、昭和火口活動再開(2006年)以降の経年的 な重力時空間変化について議論する.

2. 繰り返し相対重力測定

2019年度に相対重力測定を実施した重力点はFig. 1の緑色丸印であり、SVOG(桜島火山観測所;相対 重力の基準点)を含む計21点である(付録中のFig.A1 も参照).全ての重力測定はSVOGを1日の始点およ び終点とし、これ以外の重力点を数箇所回るという 往復測定にて実施した.以下,各測定日における重 力測定の実施状況を詳述する.

2019年9月10日~20日には,北海道大学の2台の LaCoste重力計(G31・G791),京都大学理学研究科 の2台の重力計(G680・D58),および桜島火山観測 所の1台の重力計(G605)によって全21点の相対重力 測定を集中的に実施した.この際,浦之前港URNM, 新島公民館SHIN-CC,新島航空標識SHIN-ASの3つの 重力点を新設し,これらの重力点でも相対重力値を 測定した.なお,例年は大正噴火口至近のS110およ びS110'(Fig.1bの黒色丸印)で重力測定を実施して いるが,今年度は測定予定日(2019年9月19日)の強 風のため重力測定を断念した.

Fig. 1 Gravity points in and around Sakurajima Volcano. Green and black circles indicate the gravity points where relative gravity values were and were not measured in FY 2019, respectively. Red triangles indicate two active craters: Minami-dake Crater (left) and Showa Crater (right). Red rectangles in the panels (a) and (b) indicate the areas of the panels (b) and (c), respectively. (a) The regional map around Sakurajima Volcano. A pink star indicates the location of Kagoshima Local Meteorological Observatory (KLMO), and a dashed line indicates the boundary of Kagoshima and Miyazaki Prefectures. (b) The topographic map of Sakurajima Volcano, contoured every 100 m altitude. The topographic data was provided by Geospatial Information Authority of Japan. (c) The satellite image of Shin-jima, derived from Google Earth Pro.

このほか、2019年5月9日と7月25日には桜島西部~ 南部の主要重力点(SVOG, S16, S206, BMSVO, HARG, ARIG10)においてG605およびD58による重力測定を 実施した.また、2019年12月16~17日と2020年3月4 ~6日においても、G605およびG680による重力測定 を主要重力点(同上)において実施した.これらの 重力測定の目的は、火山活動に伴う重力変化をより 小さな時間分解能で把握するためであり、かつ陸水 変動に伴う周期1年未満の重力擾乱(風間ら、2014) を時空間的に細かい分解能で検出するためでもある.

3. 相対重力値の算出

我々は相対重力測定データを以下の5つのプロセスに沿って解析し, SVOG基準の相対重力値を決定した.まず1つ目のプロセスは,読取値から重力値への変換である.そもそもLaCoste型相対重力計はその内部にバネを有しており,実際のフィールド測定では測定者が各重力点でバネの長さ x を読み取り記録する.フィールド測定の終了後,測定者は読取値→ 重力値の変換関数 f(x) を用いて重力値 g = f(x) を計算する.なお,この変換関数には重力計納入時に製造元から発行された変換表を用いる.

2つ目のプロセスはスケールファクター補正であ る. そもそも, 各重力点における相対重力値は全て の相対重力計の間で同じ値を取るはずであるが、実 際には観測誤差を超えるほどに乖離することが多い. これは、各々の相対重力計の変換関数 f(x) が不正 確であるため、変換後の重力値 g = f(x) が真の相 対重力値と一致しないためである.相対重力計で正 しい重力値を得るには,絶対重力計と相対重力計の 比較観測により変換関数の補正係数 c を事前に決 定しておき,各相対重力計の重力値を $g = c \cdot f(x)$ として見積もればよい. このとき, 補正係数 c をス ケールファクター, 読取値→重力値の変換時に定数 c を掛け合わせる作業のことをスケールファクター 補正と呼ぶ.本研究においては、G680重力計のスケ ールファクターに1.000305 (Fukuda et al., 2017) を, およびD58重力計のスケールファクターに0.996992 (風間ら, 2019a)を使用した. その他の重力計(G31・ G605・G791) については、これまでスケールファク ター補正が実施されてこなかったという歴史的経緯 により、今回もスケールファクター補正を実施しな い (つまり c = 1.000000 とする) こととする.

3つ目のプロセスは器械高補正である.一般に相対 重力計は重力点よりも高い位置に設置されるので, 重力点の重力値を知るためには重力点〜重力計間の 重力差を補正する必要がある.そこで我々は,現場 の重力測定時に重力点〜相対重力計間の比高(すな わち器械高)を別途測定し,重力読取値とともに野 帳に記録した.その後のデータ解析においては,地 球表面の重力鉛直勾配の代表値である3.086 µGal/cm (フリーエア勾配)を器械高に掛け合わせ,この値 を器械高補正値として重力測定値に足し合わせた.

4つ目のプロセスは潮汐補正である. そもそも地球 表面上には地球の自転や月の公転などに伴って潮汐 力が働いており,この影響で重力値は日周~半日周 の周期で最大150 μGalもの振幅で時間変化している. この値はLaCoste重力計の観測精度(10 μGal程度)よ りも十分に大きく,潮汐重力変化を補正しなければ 各重力点の重力値を正しく得ることができない.そ こで本研究は,Tamura (1982)のプログラムを用いて 各重力点および各時刻の潮汐重力変化量を予測計算 し,実際の重力測定値からこの潮汐予測値を差し引 いた.

5つ目のプロセスは器械ドリフト補正である.理想 的なバネは外力一定の状況下では常に同じ長さを保 つと期待されるが、実際の相対重力計内部のバネは 完全な弾性体ではないためにわずかなクリープが発 生する.これにより、相対重力計の重力測定値は一 定の重力下であっても時間的に見かけ変化する(器 械ドリフトと呼ばれる)ので、各重力点の正しい重 力値を得るには器械ドリフトを適切に補正する必要 がある.そこで本研究は、器械ドリフトが時間に対 して1次の関数で表現できると仮定し、相対重力の往 復測定データから器械ドリフト変化速度を推定した. その後、各重力点における重力測定値から器械ドリ フトの寄与を補正し、SVOG基準の相対重力値を見積 もった.なお、器械ドリフト補正に関する具体的な 定式化は風間ら(2019b)に記載されている.

以上のプロセスによって決定したSVOG基準の相 対重力値をTables 1-2に示す. Table 1は2019年9月に 実施した相対重力集中観測の結果を, Table 2はその 他の期間(2019年5月, 2019年7月, 2019年12月, 2020 年3月)に実施した重力測定の結果を示している.

2006年以降の重力時空間変化

桜島火山では1975年以降数年おきに相対重力測定 が実施され(e.g., 石原ら, 1986), 特に昭和火口活 動再開の2006年以降には年1回以上の頻度で重力測 定が継続されている.そこで本章では,各重力点の 相対重力値が直線的に時間変化していると仮定し, 2006年以降これまでに測定された相対重力データか ら各重力点の重力経年変化速度を以下のように推定 する(詳細は風間ら, 2018aを参照).

まず,時刻 t_i に相対重力計 j を用いて測定され た各重力点の相対重力値を g_{ii} と書くと, g_{ii} は以 下のように表現できる.

 $g_{ij} = at_i + b_j \tag{1}$

ただし, a は重力経年変化速度, b_i は時刻 t=0 に

おける重力計 j の相対重力値(すなわち切片値)で ある.本来切片値は重力変化速度と同様に重力計に 依らないはずであるが,今回はスケールファクター 補正(前章参照)の有無によって切片値が重力計ご とに異なる可能性がある.そこで本研究では,切片

Sensor	G31	G605	G680	G791	D58
Observer	Oshima	Yamamoto	Kazama	Okada	Oyanagi
SVOG	0.000	0.000	0.000	0.000	0.000
S16	+6.112	+6.157	+6.145	+6.136	+6.155
S26	-11.504	-11.508	-11.494	-11.485	-11.520
S29	-33.454	-33.447	-33.457	-33.424	-33.463
S37	-15.493	-15.463	-15.490	-15.473	-15.497
S8	-15.356	-15.294	-15.338	-15.316	-15.339
BMSVO	-89.158	-89.127	-89.150	-89.094	-89.128
HARG	-89.325	-89.287	-89.320	-89.254	-89.279
S202	-60.780	-60.737	-60.755	-60.720	-60.762
S206	-29.879	-29.793	-29.797	-29.796	-29.828
ARIG10	-14.116	-14.093	-14.115	-14.086	-14.119
SK04g	-76.249	-76.284	-76.304	-76.208	-76.280
S423	-141.599	-141.657	-141.666	-141.546	-141.315
KOMG		-37.205	-37.227		-37.253
KURG		-19.585	-19.611		
URNM			-17.144		-17.144
SHIN-CC			-24.789		-24.793
SHIN-AS			-24.489		-24.512
K9		+19.599	+19.566	+19.527	+19.599
BM2789	-34.232	-34.223	-34.236	-34.224	-34.263
950482A	-18.375	-18.336	-18.376	-18.361	-18.391

Table 1 Gravity values measured in and around Sakurajima Volcano on 10-20 September 2019 (unit: mGal)

Table 2 Gravity values measured in Sakurajima Volcano in May, July, December 2019 and March 2020 (unit: mGal). The observer names of Kazama, Oyanagi and Yamamoto are abbreviated as K, O and Y, respectively.

Year	2019	2019	2019	2019	2019	2019	2020	2020
Month	5	5	7	7	12	12	3	3
Day	9	9	25	25	16-17	16-17	4-5	4-6
Sensor	G605	D58	G605	D58	G605	G680	G605	G680
Observer	Y	0	Y	0	Y	Κ	Y	Κ
SVOG	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
S16	+6.141	+6.134	+6.142	+6.134	+6.125	+6.151	+6.145	+6.136
BMSVO	-89.161	-89.236	-89.115	-89.180	-89.125	-89.185	-89.168	-89.207
HARG	-89.325	-89.386	-89.272	-89.331	-89.290	-89.348	-89.339	-89.360
S206	-29.804	-29.839	-29.758	-29.818	-29.822	-29.823	-29.822	-29.840
ARIG10	-14.106	-14.109	-14.083	-14.136	-14.079	-14.118	-14.117	-14.111

値を重力計ごとに別々に定義し、この切片値を b_j と表現する.次に、前章で得られた相対重力値(Tables 1-2)を g_{ij} に、year単位の時刻を t_i に代入し、各 重力点に対して1個の観測方程式を作成する.最後に、 各観測方程式を逆計算し、重力経年変化速度 a と切 片値 b_j を最小二乗的に推定する.

4.1 BMSV0およびS110の重力時間変化

Fig. 2はSVOG(桜島西麓の桜島火山観測所;標高 27m)を基準としたBMSVO(桜島西部のハルタ山頂 上;標高408m)およびS110(桜島中央部の大正噴火 火口付近;標高519m)の相対重力変化を示している. 図中では測定値を丸印で,重力経年変化の計算値を 黒色太線で示しており、切片値 b_iの重力計ごとの 差異については補正済みである.なお、G680重力計 については2019年度上半期に実施のオーバーホール によってスケールファクターの値がステップ的に変 化したことが分かっている(風間ら, 2019b). その ため、本研究ではG680重力計の切片値 bi をオーバ ーホール前(2018年度まで)とオーバーホール後 (2019年度下半期以降)で別々に定義し、オーバー ホール前後の相対重力値の不連続性を解消している. また、この図中ではオーバーホール後のG680重力計 の名称をG680aと記している.

対象期間(2006年~2020年3月)の重力値は両重力 点において経年的に上昇しており,重力変化速度お よびその標準偏差はBMSVOで+2.9±1.3 μGal/yr, S110で+4.7±1.5 μGal/yrである.重力経年変化の空 間的分布やその原因については次節で議論すること とし,本節では主に重力測定値と重力経年変化の残 差について検討する. 重力測定値(丸印)は重力経年変化の計算値(黒 色太線)の周囲をおよそ±50μGalの振幅で変動して いる.特に,BMSVOにおいてG605重力計で取得さ れた相対重力値(緑色丸印)に着目すると,毎年の 前半に重力値が低下し,毎年の後半に重力値が増加 するという年周変化が確認できる.この原因には桜 島火山内部に貯留されている陸水質量の年周変化の 影響が考えられる.一般に日本における降水は夏~ 秋に多くなるため,陸水貯留量やそれに伴う重力変 化は夏~秋に極大化する.実際,ハルタ山観測室 (BMSVOおよびHARGと同地点)における2010~ 2011年の絶対重力連続観測では,陸水変動に伴う両 振幅70μGalの重力年周変化が観測されている(風間

ら,2014). また,2009年10月におけるBMSVOおよびS110の相 対重力測定値は他の年に比べて50 μGal前後低下し ており、これは陸水貯留量の年々変化を意味してい ると考えられる.というのも,鹿児島地方気象台(Fig. 1の星印)の雨量観測によると,2009年の年間降水量 は1530 mm/yrであり,2006~2017年の年間降水量平 均値(2526 mm/yr)に比べて1000 mm/yr程度少ない (気象庁,2020).これに水の無限平板の万有引力効

果0.0419 μGal/mmを掛け合わせると、2009年の重力 減少量は-41.9 μGalと計算でき、実際にBMSVOや S110で観測された重力減少量によく一致する.

このように、桜島火山で観測された相対重力時間 変化には陸水変動に伴う影響が含まれており、火山 活動に伴う重力変化を定量化する上で大きな擾乱源 となる. 今後の解析においては、桜島の地形や不均 質構造をも考慮に入れた陸水重力変化のモデル化が 不可欠である(風間ら, 2014; Kazama et al., 2015).

S110 (+4.7 \pm 1.5 μ Gal/yr)

BMSVO (+2.9 \pm 1.3 μ Gal/yr)

Fig. 2 Circles and thick solid lines indicate the observed gravity values relative to SVOG and the regression lines to the observed gravity values, respectively. The left and right panels show the gravity variations at BMSVO and S110, respectively.

4.2 重力経年変化の空間的分布

Fig. 3は桜島島内の各重力点における2006年以降 の重力経年変化(桜島西麓のSVOG基準)を矢印で, 重力経年変化の標準偏差を楕円で示している.なお, 最も遠方の重力点950482A(宮崎県都城市の電子基準 点)に対するSVOGの重力経年変化速度は+1.6±3.2 µGalであった.本来桜島火山の活動に伴う重力変化 を把握するには遠方の重力点を基準点とすべきであ るが,今回は950482Aの重力変化速度の誤差が非常に 大きい.そのため,本節では桜島島内のSVOGを重力 変化の基準点とし,島内における重力変化の空間分 布のみに注目することにする.

桜島島内の重力変化は火口に近いほど大きく,特 に山頂西側直近のS110で最大値+4.7 μGal/yrを取っ ている. そもそも山頂部で重力増加が大きいという 特徴は南岳噴火活発期(1970年代~1990年代前半) に確認されていた現象であるが(e.g.,石原ら,1986; 山本ら,1998), Fig. 3は噴火活動が比較的静穏な2000 年代以降も重力増加が継続していることを意味する.

桜島中央部における重力増加の要因として,まず 検討すべきなのは地殻変動の影響である. 桜島北部 の海抜下約10 kmには球状のマグマだまりが存在し ており,約6.5×10⁶ m³/yrの速度で膨張していること がGNSS観測で分かっている (e.g., Takayama and Yoshida, 2007). このマグマだまりの膨張に伴う重 力変化は萩原(1977)の方法によって計算可能である が,桜島では地面の隆起に伴って広域的な重力減少 が期待されるため, Fig. 3の重力増加の特徴を説明す ることはできない.また,桜島中央部の海抜下約3 km ではマグマだまりが収縮していると考えられている が,この浅部マグマだまりは収縮速度が小さいため に桜島中央部の重力増加を十分に説明することがで きない(大柳ら, 2019).

桜島中央部の重力増加の要因としてもう1つ考え られるのが、桜島中央部直下で地殻変動を伴わない ような質量増加が起きている可能性である.実際, 大柳ら(2019)は2006年~2018年度末の重力変化から 地殻変動に伴う効果を差し引き、その後の重力残差 を北岳直下の海抜下3 kmにおける1.9×10¹⁰ kg/yrの 質量増加によって再現した.このような質量増加は 南岳噴火活発期(1970年代~1990年代前半)の重力 データからも示唆されており(石原ら,1986;風間ら,

Fig. 3 Arrows and ellipses indicate the gravity variation rates relative to SVOG during 2006-2020 and those standard deviations, respectively.

2018b),例えば火道内マグマ対流といった火山活動 (e.g., Shinohara, 2008)を長期的な質量変動として捉 えている可能性がある.火山内部の質量変動を把握 することは将来の火山活動の推移を検討する上で非 常に重要であるため,今後も継続的な重力測定が不 可欠である.

なお, 桜島中央部における重力増加の要因として, 地下水質量の増加も否定できない.重力データには 陸水変動に伴う重力の年周および年々変化が含まれ ている(Fig. 2)ことからも, 桜島火山の陸水変動を 様々な時間スケールでモデル化する必要がある.そ の上で,重力観測データから陸水変動の寄与を補正 し(e.g., Kazama et al., 2015),火山活動のみに起因 する重力変化を正確に抽出すべきである.

5. まとめ

我々は2019年5月・7月・9月・12月および2020年3 月に桜島周辺の21の重力点で相対重力測定を実施し た.本研究で取得した重力データを過去の重力デー タとともに解析した結果,2006年の昭和火口活動再 開以降, 桜島中央部では最大4.7 μGal/yrの重力増加が 観測されていることが分かった.この重力増加は北 岳直下の海抜下3 kmにおける1.9×10¹⁰ kg/yrの質量増 加で説明可能であり、南岳噴火活発期(1970年代~ 1990年代前半)と同様に2000年代以降においても山 体直下の質量増加は継続していると考えられる. 今 後は桜島内外における相対重力測定を継続するとと もに、質量変動源の推定を定期的に実施することで 火山内部の質量変動の推移を監視していく必要があ る. そのためには, 桜島火山における陸水変動を様々 な時間スケールでモデル化し,陸水変動に伴う重力 変化の寄与を観測データから適切に補正することが 不可欠である.

謝 辞

本研究の一部は文部科学省「災害の軽減に貢献す るための地震火山観測研究計画(第2次)」の助成を 受けて遂行された.2020年3月の相対重力測定におい ては,京都大学理学部3回生(当時)の石橋桜氏・小 出鯉太郎氏・若林環氏にご協力いただいた.本稿の 図は描画ソフトGMT(Wessel and Smith, 1998)を用 いて作成した.以上,ここに記して感謝いたします.

参考文献

石原和弘・横山泉・前川徳光・田島広一 (1986): 桜 島および鹿児島湾周辺における重力の精密測定, 第5回桜島火山の集中総合観測, pp. 33-40.

- 大柳諒・風間卓仁・山本圭吾・大島弘光・岡田和見・ 園田忠臣・井口正人 (2019):繰り返し相対重力観測 で明らかになった桜島火山における1990年代以降 の重力時空間変化,日本地球惑星科学連合2019年 大会,No. SVC38-P38.
- 風間卓仁・山本圭吾・福田洋一・井口正人 (2014): 相対重力データに対する陸水擾乱補正の重要性: 桜島火山を例に,測地学会誌,第60巻,2号,pp. 73-89.
- 風間卓仁・栗原剛志・山本圭吾・井口正人・福田洋
 一(2016):2015年8月15日桜島膨張イベント時に
 CG-3M重力計で観測された相対重力および傾斜の
 連続的な時間変化,火山,第61巻,4号, pp. 593-604.
- 風間卓仁・山本圭吾・平良真純・大島弘光・前川徳 光・岡田和見・園田忠臣・井口正人 (2018a): 桜島 火山における繰り返し相対重力測定 (2017年5月~ 2018年2月),京都大学防災研究所年報,第61B巻, pp. 330-336.
- 風間卓仁・山本圭吾・平良真純・大島弘光・前川徳 光・岡田和見・園田忠臣・井口正人 (2018b):繰り 返し相対重力観測で明らかになった桜島火山にお ける1970年代以降の重力時空間変化,日本地球惑 星科学連合2018年大会, No. SVC41-36.
- 風間卓仁・吉川慎・長縄和洋・宮内佑介・大倉敬宏・ 福田洋一 (2019a): 熊本県北部における絶対重力測 定および相対重力計のスケールファクター検定 (2018年8月),東京大学地震研究所彙報,第94巻,pp. 13-28.
- 風間卓仁·安部祐希·原田昌武·加藤照之 (2019b): 箱 根火山における相対重力繰り返し測定 (2018年7月 ~2019年10月), 神奈川県温泉地学研究所報告, Vol. 51, pp. 25-36.
- 気象庁 (2020): 過去の気象データ検索, https://www. data.jma.go.jp/obd/stats/etrn/index.php.
- 萩原幸男 (1977): 伊豆半島の異常隆起を説明する茂 木モデルとそれに伴う重力変化,東京大学地震研 究所彙報,第52巻,第2号, pp. 301-309.
- 山本圭吾・高山鐵朗・石原和弘・大島弘光・前川徳 光・植木貞人・沢田宗久・及川純 (1998): 桜島およ び鹿児島湾周辺における精密重力測定, 第9回桜島 火山の集中総合観測, pp. 47-55.
- 山本圭吾・大島弘光・前川徳光・及川純・園田忠臣・ 大久保修平・田中愛幸・今西祐一・渡邉篤志・坂守・ 風間卓仁 (2014): 桜島および鹿児島湾周辺におけ る精密重力測定 (2013年10月および11月), 桜島火 山における多項目観測に基づく火山噴火準備過程 解明のための研究2013年度報告書, No. 09.

Fukuda, Y., Takiguchi, H., Kazama, T., Nishijima, J.,

Gulyaev, S., Natusch, T., Amos, M., Stagpoole, V. and Pearson, C. (2017): New absolute gravity measurements in New Zealand. IAG Symposia, Vol. 148, pp. 95-101.

- Hotta, K., Iguchi, M. and Tameguri, T. (2016): Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations, Earth Planets Space, Vol. 68, No. 68.
- Kazama, T., Okubo, S., Sugano, T., Matsumoto, S., Sun, W., Tanaka, Y. and Koyama, E. (2015): Absolute gravity change associated with magma mass movement in the conduit of Asama Volcano (Central Japan), revealed by physical modeling of hydrological gravity disturbances, J. Geophys. Res. Solid Earth, Vol. 120, pp. 1263-1287.
- Morishita, Y., Kobayashi, T. and Yarai, H. (2016): Three-dimensional deformation mapping of a dike intrusion event in Sakurajima in 2015 by exploiting the right- and left-looking ALOS-2 InSAR, Geophys. Res. Lett., Vol. 43, pp. 4197-4204.
- Shinohara, H. (2008): Excess degassing from volcanoes

and its role on eruptive and intrusive activity, Rev. Geophys., Vol. 46, No. RG4005.

- Takayama, H. and A. Yoshida (2007): Crustal deformation in Kyushu derived from GEONET data, J. Geophys. Res., Vol. 112, No. B06413.
- Tamura, Y. (1982): A computer program for calculating the tide-generating force, Publ. Int. Latitude Obs. Mizusawa, Vol. 16, No. 1, pp. 1-20.
- Wessel, P. and Smith, W.H. F. (1998), New, improved version of generic mapping tools released, Eos, Trans. Am. Geophys. Union, Vol. 79, No. 47, pp. 579-579.

付 録

Fig. A1は各重力点における各重力計の測定位置を示しており、今後の重力測定において「点の記」として利用可能である. なお、この図では2019年度に測定できなかった2つの重力点(S110およびS110')についても記載しており、図中に示している重力点は合計23点である.

(論文受理日: 2020年8月24日)

Fig. A1 Locations of relative gravimeters at each gravity point.

K9 Kagoshima Bay Beach G680 G791 National Road #220 E G605 N

D58

G31

950482A

Fig. A1 (cont.)