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Synopsis

We attempt to investigate the efficiency of applying a lithology factor with high-resolution
XRAIN observation to accurate landslide hazard estimation. This study presents a model of
landslide mapping using logistic regression with geological and high-resolution hydrometeo-
rological factors, and analyzes hazardous conditions of landslide disasters occurred in Kure,
Hiroshima during the heavy rainfall event in July of 2018. The same as the practical method
of landslide early warning, the hydrometeorological factors are hourly cumulative rainfall
and soil-water index calculated by using XRAIN data. The lithology factor is derived from
the seamless geological map. As a first trial, the model was simply calibrated using linear
logistic regression on a recent landslide inventory composing of 727 events in Chugoku
Region after 2012. 85% and 15% of events are used for training and accuracy test, and the
calibrated model achieves a high accuracy of 91.3%. To verify, our model was applied to
estimate landslide occurrence during H30.07 heavy rainfall in Kure, Hiroshima. The result
verified our model can estimate highly accurate occurrence location.

Keywords: landslide, logistic regression, XRAIN, lithology, hydrometeorology, heavy
rainfall disasters

1 Introduction

In the last two years, fronts and typhoons brought
huge amount of rainfall in Kyushu and Chugoku re-
gions to trigger numerous severe inundation and land-
slide disasters and to cause fatalities and much prop-
erty damages. For successful early warning of land-
slide and debris flow hazards, governmental authori-
ties, e.g., Japan Meteorological Agency (abbreviated
as JMA), Ministry of Land, Infrastructure, Transport
and Tourism (MLIT) or local governments, assess haz-
ard occurrence by using the famous method of crit-
ical line which utilizes high-resolution radar rainfall
data (Osanai et al., 2010). The present method can
practically forecast landslide occurrence by judging
the motion of a temporal snake line on a phase plane
composed of long-term soil-water index [mm], short-
term hourly cumulative rainfall [mm/hr], and critical

lines calibrated by past events using nonlinear regres-
sion of radial basis function network (Kuramoto et al.,
2001). The method of critical line has been proven
very effective and robust for disaster discrimination
and prevention (Osanai et al., 2010; Watanabe et al.,
2018).

Taking the advantage of the robustness of the criti-
cal line method, we mainly attempt to investigate how
the estimation efficiency can be acquired by explicitly
involving an additional factor representing geological
property for hazard prediction, because the influence
of geological setting is implicitly considered in present
critical lines so far. Also, as a minor concern, assess-
ment using the present method is based on a coarser
spatial resolution (1 by 1 km) which may cause estima-
tions lose important information of concentrated and
localized rainfall which may facilitate shallow land-
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slide occurrence. So, for criterion determination, one
motivation of this study is to utilize high-resolution
rainfall data observed by XRAIN, which is the operat-
ing eXtended RAdar Information Network for rainfall
observation covering almost all Japan regions. XRAIN
observation is unique and advantageous because of its
wide coverage and high resolution comparing to any
other weather radar system in the world. However,
XRAIN data is just available since 2012, so a recent
landslide inventory may be required to determine new
corresponding criterion for hazard prediction.

For the two aforementioned concerns, as a first
trial, this study continues to utilize the same two hy-
drometeorological indexes with an additional parame-
ter of lithology type. Because the lithological factor
is a categorical variable, the famous logistic regression
is applied for constructing our model of classification,
because it is the most preferred method among all sta-
tistical models of landslide susceptibility mapping ac-
cording to the latest literature review (Reichenbach et
al., 2018). To explain again, as a first trial, attempting
to understand the efficiency of incorporating a litho-
logical factor with high-resolution radar rainfall data
for landslide prediction, we will simply apply linear
logistic regression (Menard, 2001), which is proven to
be still robust in landslide-prone area (Chang et al.,
2007). With the help of well-calibrated present critical
lines, we then reveal how linear logistic regression with
a lithological factor and being calibrated by a recent
landslide inventory estimates landslide occurrence. Fi-
nally, the latest shallow landslide disasters occurred in
Kure, Hiroshima by heavy rainfall in early July of 2018
were used for verification.

2 Data and Processing

One main purpose of this study is to apply high
resolution XRAIN observation for regional landslide
prediction. Because the high-resolution XRAIN com-
posite observation (250 by 250 m in one minute) is
available only after 2012, we extracted 727 real land-
slide events occurred in Shimane, Yamaguchi, and Hi-
roshima prefectures in from 2012 to 2014 as a land-
slide inventory for model calibration. The landslide
inventory is mainly composed of landslide disasters
occurred in late July of 2013 at the boundary of Shi-
mane and Yamaguchi prefectures (Wang et al., 2014),

debris flow disasters in late August of 2014 in north-
ern Hiroshima city (Wang et al., 2015), and some
other disasters occurred in Shimane prefecture from
2012 to 2014. All disasters are basically rainfall-
triggered shallow landslides. The information of oc-
currence timing and location of each disaster was col-
lected for calculating corresponding hourly cumula-
tive rainfall and soil-water index. As aiming to ap-
ply logistic regression, we randomly extracted other
727 non-occurrence places to collect factors for cali-
bration through ArcGIS bulit-in functions. Locations
of all events in landslide inventory are illustrated in
Fig. 1. Referring to our target area, we downloaded
the precipitation datasets observed by Nogaibara and
Oshio radar stations from Data Integration & Analy-
sis System (DIAS). The boundary of XRAIN data we
used is shown in Fig. 1. For downloading rainfall data
corresponding to the rainfall event of each event in the
landslide inventory, the starting timing of computing
hourly cumulative rainfall and soil-water index was set
to be five days before the occurrence timing.

By following the spatial resolution of XRAIN data,
the grid size is also set to be 250 by 250 m. Then, for
each event, the computed soil-water index and hourly
cumulative rainfall at occurrence timing were extracted
for regression analysis, and the distribution and corre-
sponding histograms of all samples are illustrated in
Fig. 2. We can easily observe that the most event num-
ber appears at 220 mm of soil-water index for landslide
occurrence, and the number of non-occurrence sam-
ples possesses a decreasing tendency to zero until the
soil-water index approaches about 120 mm. However,
no concentrated tendency of the factor of hourly cumu-
lative rainfall exists for the occurrence samples even
the rainfall intensity approaches less than 20 mm/hr.
The scatter diagram of Fig. 2 shows no clear bound-
ary classifying hazard occurrence, so herein we would
like to introduce a lithology factor for possible dis-
crimination of hazard occurrence. For this goal, refer-
ring to the coordinates of occurrence location of each
event, we extracted corresponding lithology informa-
tion from seamless digital geological map of Japan
published by Geological Survey of Japan (retrieved
from https://gbank.gsj.jp/seamless/).
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Figure 1: Map of landslide inventory and target area. Black thick line indicates the range of XRAIN data. Solid
red and blue circles denote the landslide and non-landslide events both of which are respectively composed of 727
events. The lithological settings are demonstrated using the official legends and colors published by Geological
Survey of Japan (retrieved from https://gbank.gsj.jp/seamless/legend shosai e.html).

Table 1: Logistic regression coefficients and the sig-
nificance of explanatory variables. Coefficients of cat-
egorical variable GEO for different lithology are tabu-
lated in Table 2.

Explanatory variables Coefficients p-value

Soil Water Index (SWI) 0.0147 0.0000
Hourly rainfall (RAIN) 0.0687 0.0000
Constant β0 -5.5118 0.415

3 Logistic Regression Analysis

3.1 Model Calibration and Test

In this work, the linear logistic regression model
considers three variables, i.e., hourly cumulated rain-
fall (abbreviated as RAIN), soil water index (SWI), and
lithology type (GEO). The logit function and probabil-
ity function respectively read

Logit(Y ) = β0+β1×RAIN+β2×SWI+GEO, (1)

P =
1

1 + exp−Logit(Y )
, (2)

where β0, β1, and β2 are the intercept and coeffi-
cients to calibrate, and GEO is a categorical variable
representing different lithological types. 85% of the
datasets, or says 1,235 events, were used for training,
and the rest, i.e., 219 events, for accuracy test. All
calibrated coefficients are tabulated in Tables 1 and 2.
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Figure 2: Scatter diagram and histograms of all samples

With p-values approaching 0, the coefficients of RAIN
and SWI shows the significance of hydrometeorolog-
ical factors for classifying landslide occurrence. But,
as having a larger p-value, β0 is not significant for
classification. However, this condition could be com-
pensated by GEO, the categorical explanatory variable
representing the feature of lithology at each grid, as
will be explained by using the two most frequent lithol-
ogy types shortly.

To validate our model, the accuracy test was per-
formed using 219 events (15 %) of all datasets. The test
shows the accurate ratio of prediction reaches 91.3%,
and the results of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) are respec-
tively tabulated in Tab. 3. Having Confirmed the reli-
ability of classification of our model, the area under
the curve (AUC) of receiver operating characteristic
(ROC) is 0.968, as is shown in Fig. 3. The test verified
both of the accuracy and applicability of our model.

3.2 Model Result and Discussion

Taking examples of the two most frequent litho-
logical types, we can easily observe the capability of
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Figure 3: Curve of Receiver Operating Characteristic
(ROC). Area under the curve (AUC) is 0.968.

our model for classifying or estimating landslide oc-
currence. The two frequent types are Late Cretaceous
granite and Late Cretaceous non-alkaline felsic vol-
canic rocks, as are illustrated in Figs. 4 5, respec-
tively. The results show different estimation of oc-
currence probability for the two types. In the ex-
ample of the most frequent lithological type of Late
Cretaceous granite, the present critical lines can cap-
ture most of events, and our model can also discrimi-
nate the occurrence with some probability estimation
(Please see Fig. 4). But in the example of the sec-
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Figure 4: Scatter diagram and histograms of the grid mainly consisted of Late Cretaceous granite. Light to deep
green lines respectively denote the estimated probability of 0.25, 0.5, and 0.75 using our calibrated model. Gray
lines denote relating critical lines.
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Figure 5: Scatter diagram and histograms of the grid mainly consisted of Late Cretaceous non-alkaline felsic
volcanic rocks. Light to deep green lines respectively denote the estimated probability of 0.25, 0.5, and 0.75 using
our calibrated model. Gray lines denote relating critical lines.
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Table 2: Coefficients of categorical explanatory variable of GEO for logistic regression

Lithology [Index] Coefficients Lithology [Index] Coefficients

LP to H marine and non-marine sediments [0] 3.4124 LP middle terrace [2] 5.8069
LC marine sandy turbidite [4] 0.7751 E to LC granodiorite [5] 0.4326
LC granite [7] 1.4236 mafic schist (Sambagawa) [10] 0.9329
pelitic schist (Sambagawa) [11] 0.6297 ME granite [12] 4.1624
felsic plutonic rocks [13] 2.2165 EM to MM non-alkaline felsic volcanic rocks [14] 7.9244
LC non-alkaline felsic volcanic rocks [16] 3.3738 LC felsic plutonic rocks [18] 0.0090
EM to MM non-alkaline mafic volcanic rocks [24] 4.9610 M to LM non-alkaline mafic volcanic rocks [29] 8.7735
LP to H swamp deposits [31] 6.2777 LP non-alkaline pyroclastic flow volcanic rocks [32] 0.5779
LE to EO marine and non-marine sediments [33] 0.4641 EM to MM marine and non-marine sediments [34] 0.3843
EP non-alkaline pyroclastic flow volcanic rocks [35] 0.9619 MP non-alkaline pyroclastic flow volcanic rocks [36] 0.5420
Sangun-Suo Metamorphic Rocks (pelitic schist) [45] 3.2872 M to LM non-alkaline felsic volcanic rocks [49] 0.1858
ultramafic rocks [53] -0.6549 EP marine and non-marine sediments [54] 3.3864
H reclaimed land [58] 0.7398 EP volcanic debris [61] 0.6801
Sambagawa Metamorphic Rocks (mafic schist) [63] 0.3588 melange matrix of P1 accretionary complex [64] 0.8529
melange matirx of E to MJ accretionary complex [66] 0.3456 Sambagawa Metamorphic Rocks (pelitic schist) [67] 0.2296
C1 to P1 limestone block of C1 to P1 accretionary complex [73] -0.784 MP non-alkaline mafic volcanic rocks [74] 0.4018
LC marine muddy turbidite [75] 0.6446 Sangun-Chizu Metamorphic Rocks (pelitic schist) [76] -0.0509
LC mafic plutonic rocks [77] 2.1995 LC granodiorite [78] 0.9491
P1 marine sedimentary rocks [79] 3.7936 LC non-marine sediments [81] 6.1354
LC non-alkaline mafic volcanic rocks [82] 2.9519 LC marine turbidite [83] 0.6797
P2 to EE granite [85] 3.4242 LP to H fan deposits [86] 2.5137
P2 to EE granodiorite [87] 3.3777 LP lower terrace [88] 4.0953
sandstone of M to LJ accretionary complex [91] 0.2964 Ryoke Metamorphic Rocks (siliceous gneiss) [94] -0.6517
MP marine and non-marine sediments [100] 0.4197 Q volcanic debris [104] 2.7688
EC non-marine sedimentary rocks [106] 0.6559 LC non-alkaline felsic volcanic intrusive rocks [107] 2.7749
T to MJ chert block of M to LJ accretionary complex [109] 0.6977 P gabbro and diorite in accretionary complex [110] 3.0581
ME non-alkaline felsic volcanic rocks [139] 3.2200 Sambagawa Metamorphic Rocks (mafic schist)[160] -0.3628
Sambagawa Metamorphic Rocks (siliceous schist) [161] 0.7205 C1 to P1 chert block of C1 to P1 accretionary complex [168] 6.8398
Sangun-Chizu Metamorphic Rocks (mafic schist) [169] 0.2935 E to LC granite [176] 0.5898
Sangun-Suo Metamorphic Rocks (mafic schist) [177] 1.7954 Sambagawa Metamorphic Rocks (psammitic schist) [192] 0.3970
E to LC mafic plutonic rocks [196] 0.9294 late EC non-marine sedimentary rocks [199] 6.2387
M to LT marine and non-marine sedimentary rocks [202] 0.2278 sandstone of P1 accretionary complex [203] 3.1896
Ryoke Metamorphic Rocks (pelitic gneiss) [204] 0.2020 Sangun-Suo Metamorphic Rocks (psammitic schist) [206] -0.6155
Ryoke Metamorphic Rocks (pelitic gneiss) [207] 0.6130 LC marine conglomerate [208] -0.0205
LE to EO non-alkaline felsic volcanic rocks [217] 5.6623 EP non-alkaline felsic volcanic rocks [218] 5.4026
Sangun-Suo Metamorphic Rocks (siliceous schist) [219] 2.6703 LE to EO non-alkaline mafic volcanic rocks [220] 3.7878
LE to EO mafic plutonic rocks [221] 4.1112 LE to EO granodiorite [222] 6.5324
LE to EO granite [224] 4.8099 ME non-alkaline mafic volcanic rocks [225] 4.6947
P1 mafic volcanic rocks in accretionary complex [226] 0.6712 ME mafic plutonic rocks [228] 4.2461
P2 to EE non-alkaline felsic volcanic intrusive rocks [232] 0.3066 E to MM mafic plutonic rocks [244] 4.6485
P2 to EE mafic plutonic rocks [303] 4.9080 Sangun-Renge Metamorphic Rocks (schist) [325] 0.2367

Abbreviations of Geological ages: E: Early, M: Middle, L: Late, P: Pleistocene, H: Holocene, C: Cretaceous, E: Eocene, M: Miocene, O: Olligocene, J:Jurassic,
C1: Carboniferous, P1: Permian, P2: Paleocene, Q: Quaternary, T: Triassic

Table 3: Confusion matrix of training results. The ac-
curacy test of our logistic regression model is 91.3%.
(TP: True positive; FP: False positive; FN: False nega-
tive; TP: True negative.)

Predicted results
Positive Negative

A
ct

ua
l

ev
en

ts Positive 106 (TP) 9 (FN)

Negative 10 (FP) 94 (TN)

ond frequent lithological type of Late Cretaceous non-
alkaline felsic volcanic rocks in Fig. 5, some events
are not satisfactorily classified because they occurred
in rather low hourly cumulative rainfall or soil-water
index. Particularly, Figure 6 illustrates one example
event of rainfall-triggered shallow landslide occurred
nearby Kakinmoto Shrine in Yamaguchi prefecture
(132.236E, 34.840N) at around 9:00 JST on 28 July
2018. The lithology there is just Late Cretaceous non-
alkaline felsic volcanic rocks (see Fig. 5). The snake
line of this event only evolved in the region of which
the soil-water index is less than the value of JMA yel-
low alert. However, the hazard tendency can be suc-
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Figure 6: Comparison of critical lines and our model estimation of the event occurred nearby Kakinmoto Shrine in
Yamaguchi prefecture (132.236E, 34.840N). Red star denotes the real occurrence timing (around 9:00 JST on 28
July 2013).

cessfully estimated through our calibrated model. Al-
though more verification is necessary, this case could
reflect that inclusion of lithological setting can help
estimate hazardous conditions, and is suggested to be
considered for prediction. Here it also reveals that our
model could discriminate hazardous condition for dif-
ferent lithology types, which is just one of the purposes
of this study.

4 Estimation of Landslide Disasters Occurred in
Kure During H30.07 Heavy Rainfall

4.1 Background

Brought by stationary front and Typhoon No.7,
a record-breaking heavy rainfall occurred in western
Japan from June, 28 to July, 8 in 2018, and triggered
serious floods and massive shallow landslides in
many areas. To verify again our calibrated model, we
attempt to estimate hazardous conditions of landslides
in Kure city in Hiroshima. In our target area, there
were 2,934 shallow landslides, published by Geospa-
tial Information Authority of Japan (retrieved from
http://www.gsi.go.jp/BOUSAI/H30.taihuu7gou.html),
as the distribution is shown in Fig. 8. The period
of soil-water index calculation spans from 00:00
JST on 20 June 2018 to 00:00 JST on 10 July 2018.
The lithological type of most area at each grid was
extracted as the representative one. The, our model
was applied to estimate the occurrence probability of
time variation everywhere in the target area.

4.2 Result and Discussion

In general practice (Chang et al., 2007), the value
0.5 of logistic regression estimation is used to reflect
landslide occurrence. To confirm the performance of
our model estimation, we varied the criterion value
from 0.5 to 0.99, accumulated all grids having the esti-
mated probability greater than or equal to the criterion,
and counted the total number of grids which match the
real disaster locations. Then, the successful estima-
tion rate is determined by the fraction of the matched
grid number to total disaster locations of 2,934. Fig-
ure 7 shows the successful estimation rate under dif-
ferent criterion values. The rate remains 100% until
the criterion of 0.56, and decreases as the criterion in-
creases. The rates are 99.2%, 95.5%, and 85.9% while
the criterion are set to be 0.7, 0.8 and 0.9, respectively.
This means that our model gives highly accurate esti-
mation. However, as is illustrated in Fig. 8, the distri-
bution of estimated disasters under the criterion of 0.9
obviously overestimates disastrous locations.

5 Concluding Remarks

This research elaborated how inclusion of a litho-
logical factor with high-resolution rainfall data pro-
vided by XRAIN can influence regional landslide haz-
ard prediction. For applying XRAIN data, a re-
cent landslide inventory consisting of 727 events in
Chugoku region was prepared. As a first trial, a simpli-
fied linear logistic regression has been successfully ap-
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Figure 7: Successful estimation rate of occurrence of landslides in Kure during the H30.07 heavy rainfall.
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Figure 8: Comparison of estimated results and real events in Kure, Hiroshima while the criterion of landslide
occurrence is set to be greater than or equal to 0.90 using our calibrated model (transparent red patches). The suc-
cessful estimation rate is 85.9%. Solid yellow circles are real disaster places published by Geospatial Information
Authority of Japan. The background aerial photo was retrieved from google map.

plied for estimating occurrence probability. Even only
linear logistic regression was used for classification,
our model clearly demonstrates the capability of land-
slide prediction considering the geological setting with
high-resolution radar rainfall data. As being capable of
hazard discrimination, our calibrated model is planned
to be used for assessment of landslide hazard under cli-
mate change effects. Meantime, as our calibrated lin-
ear regression is too simplified, to achieve more accu-
rate estimation, the last and most important thing is to
applying nonlinear regression and quantifying uncer-

tainty as our next steps of future improvement, and to
performing assessment of the future tendency of land-
slide hazards.
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