2018年胆振東部地震による降下火砕物の崩壊: 特に火砕物の風化状況について

Landslides of Pyroclastic Fall Deposits Induced by the 2018 Eastern Iburi Earthquake with Special Reference to the Weathering of Pyroclastics

千木良雅弘·田近淳⁽¹⁾·石丸聡⁽²⁾

Masahiro CHIGIRA, Jun TAJIKA⁽¹⁾ and Satoshi ISHIMARU⁽²⁾

(1)株式会社ドーコン(2)北海道総合研研究機構 地質研究所

(1) Docon Co. Ltd

(2) Hokkaido Geological Survey, Hokkaido Research Organization

Synopsis

2018 Eastern Iburi Earthquake induced over 8000 landslides in an area of 400 km² with the seismic intensities of 7 and 6+. Most of the landslides were of pyroclastic fall deposits and highly mobile. Those deposits were of Ta-d pumice of 9 ka and En-a pumice of 20 ka, and their sliding surfaces were made within specific beds, which were the bottom of Ta-d, reworked Ta-d in its base or reworked En-a beneath Ta-d, or volcanic soil with pumice grains beneath the Ta-d or volcanic soil beneath En-a. The materials that accommodated the sliding surfaces were heavily weathered to be rich in halloysite, which mineral has been found from the sliding surface materials of previous earthquake-induced landslides of pyroclastic fall deposits and is supposed to be very weak to earthquake shaking. The depths of the landslides varied from 2 to 3 m. Most of the beds that slid were undercut at the lower portion of the slopes, because of man-made cutting or convex slope breaks of which origin is in dispute.

キーワード: 2018 北海道胆振東部地震,斜面崩壊,降下火砕堆積物,軽石,風化,ハ ロイサイト

Keywords: 2018 Eastern Iburi earthquake, landslide, pyroclastic fall deposits, pumice, weathering, halloysite

1. はじめに

2018年北海道胆振東部地震によって,厚真町を中 心として震度7から6強の地域で我が国の過去に例 を見ない数の斜面崩壊(崩壊性地すべり)が発生し た(Fig. 1).国土地理院の地理院地図には,東西 20km,南北20kmの範囲に約8000個の斜面崩壊がプロ ットされており,日高幌内川上流等に認められる岩 盤地すべりを除くと,これらのほとんどは降下火砕 物の崩壊である.いずれも、高速で遠方まで移動し たものが多く、斜面下方の集落等は甚大な被害を受 けた.本研究では、このように多数の崩壊が発生し た重要な原因が、降下火砕物の風化にあることを報 告する.

方法は,現地地質調査,簡易貫入試験,X線鉱物 分析である.詳細については後述する.

2. 地質と地形

当該地域は、標高200mから400mの丘陵地であり、 後述するように、現河川沿いはたいていの場合谷中 谷となっている(Fig. 2). この谷中谷は、火砕物や崖 錐に覆われて見えない場合も多いが、厚真町から静 内方面にかけて広く認めることができる. その成因 は明らかではないが、隆起あるいは海水準の変化が 一因であると考えられる.斜面崩壊多発地の基盤は 中新世の堆積岩であり、その上に火砕物が堆積して いる. 堆積岩類は泥岩, 頁岩, 砂岩, 礫岩などから なり,北北西-南南東方向の走向を持ち,厚真川とそ の支流の頗美宇沢に中心を持つ複数のドームとベー ズンをなしている(松野・石田, 1960). これらを 火山の噴出物が覆っている. 斜面崩壊が多発した地 域は, 樽前火山起源の樽前 d 降下火砕堆積物 (Ta-d, 9000年前), 恵庭火山起源の恵庭a降下軽石 (En-a, 20000年前)の厚く分布する地域にあたる(中川他, 2018) .

Fig. 1 Landslides of pyroclastic fall deposits in Atsuma induced by the 2018 Eastern Iburi earthquake. Photo by Asia Air Survey Co., Ltd. and Aero Asahi Corporation.

Fig. 2 Slope breaks observed along the Hidaka-Horonai River. (A) Google earth image. White dashed line is slope break. Black square is the area of photograph B. (B) Photograph showing the slope break.

3. すべり面の形成された層準と風化状況

3.1 層序

20数か所の崩壊地の現地調査を行った. それによ れば,崩壊したのは,南部では樽前山の噴出物,北 部では恵庭岳から噴出した降下火砕物が主体であっ た. 崩壊地の縁では、たいていの場合、降下火砕物 の積み重なりが良く観察できた.調査地の北部では En-aが最大1.5mと厚く, また, 南部ではTa-dが最大 1.3mと厚い(Fig. 3). 南部では, 地表から, 黒土, Ta-b, Ta-c,黒土, Ta-dの順に積み重なっていた. Ta-dの下 は, すぐに基盤岩である場合, 基盤岩との間に軽石 混じり火山灰土, Ta-dの一部の再堆積物, En-aの再 堆積物が挟まれる場合が認められた. 北部では, Ta-b,cは数cmと薄く, Ta-dも赤色の火山灰土として認 められた. Ta-dの下には、En-a、支笏火山由来の降下 軽石堆積物(Spfa-1),クッタラ火山由来の降下軽石 堆積物(Kt-1)の軽石層が認められた.これらの崩 壊地の地質柱状図の代表的なものをFig.4に示す.

Fig. 3 Photographs of typical outcrops of tephra in the study area and a profile of penetration resistance. (A) En-a and underlying Spfa-1 with volcanic soil in between. Upstream of the Abira River (B) Ta-d and Ta-b exposed on the side scarp of a landslide in Asahi. (C) A profile of blow numbers obtained by the dynamic cone-penetration test performed behind the outcrop B. See Fig. 5 for the locations.

Fig. 4 Columnar sections showing the horizons of sliding surface.

Fig. 5 Distribution of the horizons of sliding zones. Compare with the columnar sections in Fig. 4.

3.2 すべり面の形成された層準

すべった地層は,軽石,火山灰土,黒土である. すべり面は,次のような個所に形成されていた.

- Ta-d最下部の厚さ約5cmの細粒軽石層
- Ta-d直下の軽石混じり火山灰土
- Ta-d直下のEn-a再堆積物
- Ta-d本体直下のTa-d再堆積物
- En-a直下の火山灰土

すべり面の形成された層準を整理して地図にプ ロットしたものをFig. 5に示す. ここに示したよう に,北部では,En-aの火山灰土にすべり面が形成さ れたものが確認された.中央部から南部では,Ta-d の最下部の風化軽石層,あるいは,Ta-dの下にある Ta-dあるいはEn-aの軽石が再堆積した層,あるいは Ta-dの下の軽石混じり火山灰土 (PbVs)にすべり面 が形成されていた.

すべり面は決して隣り合う地層の境界に単一面 として形成されているわけではなく,あるゾーンが "すべり層"となっていた.その例をFig.6に示す.

Fig. 6 Sliding zones of pyroclastic fall deposits. (A) Sliding zone made in the bottom of the Ta-d on mudstone bedrock. We see the bottom bed of Ta-d below the side scarp continues to the sliding zone beneath the landslide debris. Asahi. (B) Sliding zone of argillized fine pumice, which is the bottom of Ta-d, between the debris and the mudstone bedrock. Asahi. (C) Landslide scar, in which exposed is reworked deposits of En-a. Horosato. (D) Remolded zone (sliding zone) at the top of reworked En-a. Horosato. See Fig. 5 for the locations.

3.3 火砕物の風化状況

地表から深部に向けて観察すると、後述するTa-d 内部の特殊な部分を除いて、すべり面の形成された 地層のみが特に風化して粘土化していた.Ta-b,Ta-c は硬い軽石からなり、ほとんど変質が認められない. 風化は、Ta-bの下の黒土よりも下のTa-d以深に認め られた. ただし, En-aやSpfa-1, Kt-1の軽石に挟ま れる火山灰土は粘土化していたが,これらの軽石自 体が粘土化している様子は認められなかった. Ta-d 上部は赤色化している場合が多く,それらは指で容 易に潰せるほど脆弱であったが,後述するように粘 土鉱物は生成していなかった.

Fig. 3Cに動的簡易貫入試験によって得られた打 撃回数のプロファイルを示した.これは,直径1.5 cm,先端角度60度のコーンを3kgの錘の50cm自由落 下によって打撃し,コーンを10cm打ち込むのに要し た打撃回数を測定するもので,つくばマルトー式の 簡易貫入試験とほぼ同様の結果が得られる(戸邉, 2008).また,若月(2003)とGrachef et al.(2011) の関係式から,本試験結果のN10は,標準貫入試験 のN値と,N=2.2N10と関係づけられる.Fig.3Cに示 すように,N10値は,Ta-d上部まで5以下であるが, Ta-d下部で増加し,その最下部で5となり,基盤岩 では10以上となった.このTa-d最下部がすべり層に 相当するが,実際にはTa-d最下部の細粒軽石は厚さ 5cm程度なので,この貫入試験では詳細にはとらえ られていない.

Fig. 7 Curtain-like structures made in Ta-d. (A) Curtain-like structure with argillized pumice beneath the oxidation front. (B) Curtain-like structure with argillized pumice on the base of Ta-d. Oxidized zone gradually changes downward to un-oxidized zone without a well-defined front. (C) Sketch of (A). (D) Sketch of (B). See Fig. 5 for the location. Squares correspond to Fig. 8. The scale is 30-cm long.

3.4 Ta-dの特異な風化形態

Ta-dには,至る所で周氷河作用によるインボリュ ーションに似た構造が認められた.これは,不規則 形状な下縁を持つカーテンのような模様である

(Fig. 7). この構造はTa-dの層内に限られ,また, 軽石相互のかみ合わせが保たれているので,インボ リューションではない.

この構造は、断面的に見て、下縁形状が不規則な カーテンが下がっているように見えることから、カ ーテン状構造と呼ぶことにする.

カーテン状構造には2タイプある. その例をFig.7 に示す. ここでは, Ta-dの下位は軽石混じり火山灰 土で,上位は人口盛り土になっていた. この軽石混 じり火山灰土は,明らかに軽石よりも難透水の層で ある. 一つのタイプは,浅部が黄褐色の酸化帯で, その下縁が明瞭に境され,その下に粘土化した軽石 のゾーンがあり,さらにその下が暗色の軽石の帯 (おそらく高含水),その下が新鮮な軽石のゾーン になっているもの(Fig. 7A,7C). もう一つは,浅 部の酸化帯の黄褐色が下方に向かって漸移的にも との軽石の色に変化しているものである. 後者の場 合, Ta-dの最下部に粘土化軽石のゾーンが山状に形 成されている個所があった(Fig. 7B, D). 両者ともに, Ta-dの基底部には厚さ約5cmの細粒の軽石の層があ り,この軽石は粘土化している.これらの粘土化は, 軽石のハロイサイト化によるものであることがX線 回折分析の結果わかった.

酸化フロントの下の軽石が粘土化している場合, 酸化フロントに沿って濃い褐色の薄いゾーンが認 められる場合が多かった(Fig. 8B).このことは,褐 鉄鉱が軽石の間に沈殿し,一種の不透水ゾーンを形 成して,その上に宙水的な水の溜まりができ,そこ から下に徐々に水が供給されていた可能性を示し ている.ハロイサイトが形成されるためには,常時 水が存在することが必要であり(Churchman et al., 2016),褐鉄鉱の幕が水を貯留する役割を果たして, ハロイサイトの形成を促した可能性がある.

酸化フロントの下に明瞭な褐鉄鉱の沈殿ゾーン ができない場合には,酸化フロントは漸移的な帯と なる(Figs. 8B, 8D).そして,この場合には,酸化 帯の直下には粘土化軽石ゾーンは形成されていな い.そして,Ta-dの基底の細粒軽石層の上に山形あ るいは炎のような形態で粘土化軽石帯が形成され ていた.この場合,粘土化軽石帯の塊から離れて上

Fig. 8 Photographs showing the rim of the zone of argillized pumice. (A) Argillized pumice zone below the oxidation front with dark brown color. This point is located as a square in Fgs. 7 A.and 7C. (B) Oxidation front bounding the oxidized zone and the zone of argillized pumice (C) The base of the argillized pumice zone. The boundary looks like a meniscus. (D) Top of the argillized pumice zone on the base of Ta-d. Arrows indicate pumice grains that are argillized. This point is located as a square in Fgs. 7 B and 7D.

の部分にも粘土化した軽石粒子(ハロイサイトから なる)が散点的に認められた(Fig.8D)また,この 散点的なハロイサイト化した軽石粒子は他の粒子 に比べて細粒であった(Fig.8D).これらのことは, Ta-dを通過してきた浸透水がその下の軽石混じり 火山灰土で浸透を妨げられ,その上に滞留し,この 滞留水のために軽石のハロイサイト化が進行した ことを示唆している.なお,厚真町教育委員会の乾 哲也学芸員によると,Ta-dの基底部の細粒軽石層か らは湧水があることが一般的であるとのことであ り,上記の地下水の滞留があることを支持している.

3.5 すべり面形成層の鉱物組成

すべり面形成層準について3.2節で述べた.ここで は、これらの形成層準の鉱物組成について述べる. 鉱物は、X線回折分析によって分析した.使用した 機器と条件は次の通り.リガクMini Flex 600; Cu-Kα、 40kV, 15mA,スキャン速度10度毎分,ステップ間隔 0.01°.ハロイサイトの回折線は、試料の乾燥によ って10Åから7Åに移動する場合があったので、すべ て自然含水状態で粉末にすりつぶし、濡れた状態で 分析した.

分析の結果, すべり面形成層にはすべてハロイサ イトが主要粘土鉱物として含まれることがわかっ た (Figs. 9A, 9B, 9C, 10A, 10B. その他にクリストバ ライトが変質鉱物として含まれていた.また,褐色 火山灰土および軽石混じり火山灰土にはたいてい の場合14Å粘土鉱物も含まれていた).赤色火山灰 土となったTa-dは指で容易に潰せるほど脆弱であ ったが,粘土鉱物は含まれなかった (Fig. 9C).崩 壊地のすべり面と崩壊地の縁の分離崖直下とで鉱 物組成に差があるか調べたが,差は認められなかっ た.Ta-d内の風化については, 3.4節で述べた.

すべり面となり、ハロイサイトを含む層は、基盤 岩の難透水層の直上の細粒軽石(Ta-d最下部)ある いは再堆積En-aおよび再堆積Ta-d,それ自体が難透 水で保水性が良いと思われる火山灰土あるいは軽 石混じり火山灰土であった。ハロイサイトの形成に は、水分の存在が必要とされており、これらの条件 はそれを満たしているといえる.また、火山灰土や 軽石混じり火山灰は、それが堆積した時にはシリカ などの成分を溶脱されていると推定され、それが埋 没した後シリカに富む水と反応してハロイサイト を形成すると推定されている(Kleber et al., 2007; Lowe, 1986; Wada, 1987; Churchman et al., 2016).本 調査地でも、同様の現象が生じたものと推定される.

Ta-d層の特異な風化形態は非常に目立つもので あるが、今回の地震ですべり面ができたのは、Ta-d 基底部の細粒軽石層であり,前述したカーテン状構 造は崩壊発生には直接的には関与していないと考 えられる.

Fig. 9 X-ray reflection profiles of samples from a sliding zone and nearby beds. (A) Abiragawa. (B) Hongo. (C) Horosato. See Fig. 5 for the locations.

Fig. 10 X-ray reflection profiles of samples from a sliding zone and nearby beds. (A) Mizuho. (B) Asahi and Apporo dam. See location in Fig. 5.

ų.	
Ξ	
2	
્ય	
. <u>.</u>	
F	
5	
12	
-7	
01	
5	
ž	
H	
00	
а	
5	
2	
5	
$\overline{}$	
0	
t)	
8	
Ť	
Ĕ	
ž	
0	
а	
ند	
а	
Ω	
ത്	
Ę	
.12	
č	
č.	
5	
Ę.	
0	
ਂਲ	
÷	
ల	
• 3	
st.	
5	
<u> </u>	
0	
0	
1	
- S	
д	
÷	
0	
70	
Ğ	
- D	
• 7	
70	
ñ	
ž	
Ц	
12	
SC.	
ě	
Ę	
1	
Ľ	
.н	
٦t	
12	
Ę	
_	
S	
E.	
Ľ	
60	
2	
ō	
Ч	
<u>t</u>	
μ	
60	
<u>.</u>	
)f	
0	
ĩ	
.8	
÷	
<.	
e	
_0	
ab	
Tab	

Earthquake	1923	Kanto	1949 Imaichi	1968 Tokachi- Oki	1978 Izu- Oshima-Kinkai	1984 Naganoken- Seibu	2011 Tohoku	2016 Kumamoto	2018 Hokkaido	2001 El Salvador	2009 Padang
Date	15	Sept.	26 Dec.	16 May	14 Jan.	14 Sept	11 March	14, 16 April	6 Sep.	13 Jan.	30 Sept.
Magnitude	Mjn	na 7.9	Mjma 6.4	Mjma7.9 (Mw8.2)	Mjma 7.0	Mjma6.8	Mw 9.0	Mjma6.5 Mjma7.3	Mjma6.7	Mw7.7	Mw 7.5
Seismic Intensity at landslide sites (JMA)		9	5~6	5	5∼6	9	6-~6+	6+	6+~7	MM 6, 7 4~5-(JMA)	MM 8 (USGS) 5+(JMA)
Rain gage	0		Utsunomiya	Hachinohe	Inatori	Ontakesan	Shirakawa	Minami Aso	Atsuma		
Antecedent 10 days			22.5	181	12	183	12.5	79.5	30	no data	Unknown
rain (mm) 30 days			80.8	292	172	555	83.5	83	225	(NovApr.: dry	(occurred during a
60 days			255	307	334	839	93.5	716	275	season) ^m	rainstorm)
Number of collapsing landslide	2 in Nebukawa	1 in Hadano (Shinseiko)	88 ^{a)}	$152^{b)}$	$7^{\rm dl}$ (controlled by the material distribution)	5 ¹⁾	<10 ^{e)}	56<	8000	>1000 ⁸⁾	160 ⁰
Material of sliding surface	Weathered pumice ⁿ⁾ Halloysite	Weathered pumice ^{m)} Halloysite	Weathered pumice ^{a)} , Lapilli ^{m)} Halloysite ^{a)}	Paleosol (Sandy ash) Halloysite ^{e)}	Paleosol Halloysite ^{d)}	Weathered pumice and scoria Halloysite ^{k)}	Paleosol Halloysite ^{e)}	Weathered pumice, Dark gray soil, Halloysite	Weathered pumice, Pumice-bearing volcanic soil, halloysite	Paleosol ⁶ No report of clay minerals	Mixed layer of paleosol and pumice Halloysite ¹⁾
Stratigraphic name of the bed of sliding surface	Komekami lava Group ^{u)}	Tokyo Pumice (60ka-65ka) ^{r)}	Kanuma pumice (32ka), Ogawa lapilli, Imaichi pumice ^{m)}	Towada- Hachinohe tephra (15ka) ^{c)}	Just below the Hachinoyama tephra (29ka) ^{q)}	Senbonmatsu scoria (84 ⁻ 76ka) ^{p)}	Sr 10 (scoria), Takaku pumice (330ka) ^{o)}	Kpfa(30ka) etc	Ta-d (9ka) Volcanic soil beneath En-a (18 ka)	Tobas Color Caf é deposits	The base of Qhpt (younger than 70-80ka) ^{t)}
Slid material	Andesite lava, lapilli from Hakone volcano ⁿ⁾	Tephra from Fuji volcanol ^{m)}	Tephra from Nantai volcano	Towada- Hachinohe tephra ^{b.c)}	East Izu monogenic volcanic tephra ^{d)}	Scoria, lava, agglutinate, terrace deposits,	Tephra from Nasu volcano ^{e)}	Pyroclastics in the Aso caldera	Ta-d, En-a	Pumice etc. of the Tierra Blanca and the Tobas Color Caf é deposits	Pumice (Qhpt)
Source of the slid materials	Hakone volcano	Hakone and Fuji volcanoes	Nantai volcano	Towada Volcano	Higashi-Izu monogenetic volcanoes	Ontake Volcano	Nasu Volcano	Aso volcano	Tarumae and Eniwa volcanos	6	Tandikat Volcano ¹⁾
Sliding surface depth (m)	70 m, 30 m	17 m	3~5 m ^{a)}	<3 m ^{b)} , 1~2.5 m ^{c)}	$2{\sim}6~m^{d)}$	5 m∼ 200 m	3~9 m ^{e)}	2.5-13 m	2-3 m	ca.20 m (Las Colinas) ⁰	3.5~5.5 m ⁰
Slope-parallel bedding	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Undercut	Yes	Yes	Yes	Unknown	Yes	Yes	Yes	Yes	Yes	Yes	Mostly yes
Fatality	447^{n}	2	8	33	7	29	13	16	36	844 ⁸⁾	600?
Reference	a: Morimoto ((2004); i: Nak Hayakawa an	(1951); b:Inoue (ano et al. (2015) od Koyama (199;	et al. (1970);c: Yoshid.); j: Hirano et al. (198 2); r): Kasama et al. (2	a and Chigira (2 5); k: Tanaka (15 2008); s): Takeuc	012);d: Chigira (85); l: Suzuki (19 hi et al. (1998); t)	1982);e:Chigira 193); m: Chigira 1 Tjia and Muha	et al. (2012); f. ((unpublished da mmad (2008); u	Crosta et al. (2) ata): n: Kamai (): Takahashi ec	005); g: Jibson et : (1990); o: Suzuki (d. (2007)	al. (2004); h) Eva (1992); p: Kobaya	ns & Bent shi (1987); q:

Fig. 11 Schematic sketch showing the horizons of halloysite-rich sliding zone. Data added to Chigira and Suzuki (2016).

4. 従来の地震による降下火砕物の崩壊性地 すべりとの比較

2018年胆振東部地震によって引き起こされた斜面 崩壊と同様の斜面崩壊は従来多数生じてきた(Table 1, Chigira and Suzuki, 2016;千木良, 2018).降 下火砕物は,広い領域に同様の地盤条件を形作るた め,たいていの場合一度の地震によって多数の斜面 崩壊が発生した.これらの事例では,すべり面はハ ロイサイトに富む層に形成された.すべり面の深さ は,最も深いもので200mであったが,多くの場合, 数mであった.

すべり面の形成された層は、いくつかにタイプ分 けできる(Fig. 11).最も多いのは、軽石が関係し た層である.軽石直下の火山灰土、軽石そのもの、 軽石直下の軽石混じりの土である.今回の2018年胆 振東部地震によるものも同様である.そのほかに、 火山灰土に挟まれる火山礫、褐色火山灰土の下の黒 土、酸性溶岩に接する火山灰土にすべり面のできた 例もあるが、これらの事例は少ない.

5. 結論

2019年北海道胆振地震によって発生した斜面崩壊 の大部分は,降下火砕物の崩壊であり,特定の地層 がハロイサイト化し,そこにすべり面ができたもの であった.最も多かったのは9000年前のTa-dと呼ば れる軽石層の基底部の細粒軽石層にすべり面を持つ ものであった.そのほかは,Ta-dあるいはEn-aの再 堆積物,Ta-dあるいは20000年前のEn-a直下の火山灰 土および軽石混じり火山灰土にすべり面を持つもの で,これらも軽石層に付随する層として考えること ができる.従来の地震時の降下火砕物の斜面崩壊を みても,今後の同様の現象を予測するには,まず第1 に軽石層の分布を知ることが第一歩と言えよう.

謝 辞

現地調査に当たっては、北海道総合研研究機構 地 質研究所の廣瀬亘氏、川上源太郎氏他、株式会社ド ーコンの金秀俊氏に大変お世話になり、様々な情報 をいただいた.また、首都大学東京の鈴木毅彦氏に も現地で議論いただいた.厚真町教育委員会の乾哲 也学芸員には一部現地を案内いただき、議論いただ いた.

参考文献

中川光弘・宮坂瑞穂・ 三浦大助・上澤真平 (2018): 南西北海道,石狩低地帯におけるテフラ層序学:支 笏-洞爺火山地域の噴火履歴.地質学雑誌,124, pp. 473-489.

千木良雅弘(2018): 災害地質学ノート. 近未来社,

名古屋.

- 戸邊隼人(2008):風化花崗岩類の表層崩壊と風化 様式,および岩石組織との関係について.京都大学 大学院理学研究科地球惑星科学専攻学位論文.
- 松野久也・石田正夫(1960):5万分の1地質図幅 早 来.北海道開発庁.
- Chigira, M. & Suzuki, T. 2016. Prediction of earthquake-induced landslides of pyroclastic fall deposits. In: Aversa, S., Cascini, L., Picarelli, L. & Scavia, C. (eds.) Landslides and Engineered Slopes. Experience, Theory and Practice. Associone Geotecnica Italiana, Rome, pp. 93-100.
- Churchman, G.J., Pasbakhsh, P., Lowe, D.J. & Theng, B.K.G. 2016. Unique but diverse: some observations on the formation, structure and morphology of halloysite. Clay Minerals, 51, pp. 395-416, doi: 10.1180/claymin.2016.051.3.14.

- Kleber, M., Schwendenmann, L., Veldkamp, E., Rössner, J. & Jahn, R. 2007. Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma, 138, pp. 1-11.
- Lowe, D. 1986. Controls on the rates of weathering and clay mineral genesis in airfall tephras: a review and New Zealand case study. In: Colman, S.M. & Dethier, D.P. (eds.) Rates of chemical weathering of rocks and minerals. Academic Press, Orlando, pp. 265-329.
- Wada, K. 1987. Minerals formed and mineral formation from volcanic ash by weathering. Chemical Geology, 60, pp. 17-28, doi: http://dx.doi.org/10.1016/0009-2541(87)90106-9.

(論文受理日: 2019年6月17日)