地震学的手法による南九州下のフィリピン海スラブと その周辺域の構造の推定

Estimation of the Structure of the Philippine Sea Slab and its Surrounding Area Beneath Southern Kyushu by Seismological Methods

澁谷拓郎・寺石眞弘⁽¹⁾・小松信太郎・山﨑健一・山下裕亮・大倉敬宏⁽²⁾・ 吉川 慎⁽²⁾・井口正人・為栗 健・園田忠臣

Takuo SHIBUTANI, Masahiro TERAISHI⁽¹⁾, Shintaro KOMATSU, Kenichi YAMAZAKI, Yusuke YAMASHITA, Takahiro OHKURA⁽²⁾, Shin YOSHIKAWA⁽²⁾, Masato IGUCHI, Takeshi TAMEGURI and Tadaomi SONODA

(1)京都大学防災研究所(定年退職)(2)京都大学大学院理学研究科

Disaster Prevention Research Institute, Kyoto University (retired)
 Graduate School of Science, Kyoto University

Synopsis

In order to contribute to the study of the generation process of the Hyuga Nada earthquakes and the magma supply process to volcanoes such as Sakurajima and Kirishima, we conducted linear array observations, receiver function analyses and seismic tomography, and estimated the seismic structure of the Philippine Sea slab beneath southern Kyushu. The continental Moho is clear in the middle to western part of the southern Kyushu, however it becomes unclear near the mantle wedge in the eastern part. This suggests that the seismic velocity is low in the mantle wedge due to the fluids discharged from the oceanic crust. The oceanic Moho in the Philippine Sea slab is clear up to the depths of 100 - 120 km and it bends convex upward at ~60 km. There exist low velocity anomalies in the vicinity of Kirishima, Sakurajima and Kaimondake volcanoes at 10 km depth. The oceanic crust shows low velocity at 30 - 40 km depths, however it turns high velocity at 50 - 60 km depths. This can be explained by eclogitization of the oceanic crust.

キーワード:レシーバ関数,トモグラフィ,地震学的構造,フィリピン海スラブ,南九州

Keywords: receiver function, seismic tomography, seismic structure, Philippine Sea slab, southern Kyushu

1. はじめに

南九州下にはフィリピン海プレートが深さ200 km まで沈み込んでいる.この沈み込みに伴い,日向灘 では1968年(M7.5)や1984年(M7.1)などの地震が 引き起こされてきた.さらに、2011年東北地方太平 洋沖地震を契機とした南海トラフ巨大地震の想定見 直しでは、日向灘セグメントも連動するM9の超巨大

Fig. 1 Distribution of seismic stations and the two profile lines MA and MS for the receiver function analysis. Gray squares and open circles show temporary and permanent stations, respectively. The black triangles indicate major active volcanoes in southern Kyushu. The open thick arrow shows the direction of Philippine Sea plate motion. Broken thin lines indicate the border between prefectures.

地震が検討されている.またプレートとともに地下 にもち込まれた「水」は,深部においてプレートから 放出され,マントル中を上昇する際にマグマを生成 し,桜島や霧島などの火山の噴火に関与すると考え られている (Iwamori, 2007).このようなテクトニク スにある南九州下の地震波速度構造を高解像度で推 定し,スラブ起源流体の挙動を解明することは,巨 大地震の予測や火山噴火のメカニズムの理解のため

Photo 1 Installation situation of observation equipment at station MK70. The seismometer is installed at the end of a sabo (erosion and sediment control) dam, and covered with a PVC pipe and a sedge hat. The data logger and a battery are stored in a plastic box covered with blue sheet.

に非常に重要である.

Abe et al. (2013) は、九州地域における定常観測点 の地震波形データを用いたレシーバ関数解析を行い、 マントルウェッジの地震波速度が低いことやフィリ ピン海プレートの沈み込みにより「水」が深さ70~ 90 kmまで運び込まれていることなどを明らかにし た. Wang and Zhao (2006) は、定常観測点で読み取 られたP波、S波、sP波の走時データを用いたトモグ ラフィにより、九州下の3次元地震波速度構造を推定 した. その結果は、沈み込むフィリピン海スラブか ら脱水した流体と沖縄トラフの拡大に関係する高温 の上昇流が、雲仙などの火山活動に寄与したことを 示唆するものであった.

我々は、南九州において2本のリニアアレイ観測を 中心とした臨時観測を行い、先行研究より高い解像 度で南九州下の地震波速度構造を推定することを試 みた.ここでは、その結果について報告する.

2. リニアアレイ観測

地震の定常観測網の平均的な観測点間隔は約20 kmである.より解像度の高い地震波速度構造の描像 を得るため、我々は、定常観測網を埋めるような形

Fig. 2 Waveforms of the radial component of receiver functions of station AK14. Receiver functions in 20° backazimuth bins were stacked to improve the signal to noise ratio. The positive parts of the waveforms are red and the negative parts are blue.

で、臨時観測を行った (Fig.1). 図中の太線MAとMS は、レシーバ関数解析のためのリニアアレイで、そ れぞれ宮崎-阿久根測線と宮崎-桜島測線を示す. これらの測線では、地震観測点が約5 km間隔で配置 されるように、定常観測網を補って、固有周期1秒の 短周期地震計を設置した [Photo 1]. 地震計の出力は、 バッテリ駆動のデータロガに連続収録した. データ ロガはGPS信号に同期させた. 臨時観測点のリスト を付録1のTable A1に示す.

3. レシーバ関数解析

上述の宮崎一阿久根測線と宮崎一桜島測線の近傍 の臨時観測点と定常観測点で記録された遠地地震波 形を用いてレシーバ関数解析を行った.レシーバ関 数とは,遠地地震のP波部分において水平動から上下 動をデコンボリューションして,観測点下の地震波 速度不連続面で生成されるPS変換波を抽出した波形 である(澁谷ら,2009).このデコンボリューション には時間拡張マルチテーパ法(Shibutani et al., 2008) を用いた.レシーバ関数の波形例として,新燃岳(霧 島火山)の近くの臨時観測点AK14でのradial成分の 波形をFig.2に示す.この図のレシーバ関数は,到来 方向が20°の範囲に入るレシーバ関数を重合したも のである.

レシーバ関数には、入射P波が地震波速度不連続面 でP波のまま透過するPp相に加え、後続波として、入 射P波が不連続面でS波に変換して透過するPs相、入 射P波が地表面でPP反射し、不連続面でPS反射する

Fig. 3 Receiver function image along Miyazaki-Akune (MA) profile in Fig. 1. CM and OM show the continental Moho and the oceanic Moho, respectively. Black circles indicate earthquakes that occurred near the profile cross section, and white circles indicate low frequency events.

PpPs相,入射P波が地表面でPS反射し,不連続面でSS 反射するPpSs相が含まれる.以下では,簡単のため に,後続3相の中で振幅が最も大きいことが期待でき るPs変換波について議論する.Ps変換波は,高速度層 上面で変換した場合は正の極性を,低速度層上面で 変換した場合は負の極性をもつ.

Fig. 2に示すレシーバ関数は, 120°~240°の到来方向において1.9 s付近に負のピークをもつ. さらに, 180°~240°においては2.8 s付近にも負のピークをもつ. これらのピークは, それぞれ深さ15 kmと22 km付近にある低速度層上面でのPs変換波と考えられる. 新燃岳の近傍では, これらの深さで低周波地震が発生していて, 火山活動に関係する流体の存在が示唆される. また, 120°~240°において3.8 s付近に正のピークがみられる. これは深さ30 km付近に存在する大陸モホ面でのPs変換波と考えられる.

レシーバ関数をPs変換波の共通変換点でスタッキ ングすることにより、レシーバ関数イメージを作成 した.この際,Ps変換点の位置の計算には、気象庁が 震源決定に用いている水平成層の地震波速度モデル JMA2001(上野ら,2002)を用いた.

3.1 宮崎一阿久根測線

宮崎市から霧島火山を通って阿久根市に至る測線 に沿う断面におけるレシーバ関数イメージをFig. 3 に示す. 図中, OMを付した赤線で示すように, 沈み 込むフィリピン海プレート内の海洋モホ面は, 深さ 100 km付近まで高速度層上面として明瞭にイメージ されている.途中深さ60 km付近に折れ曲がりが見ら

Fig. 4 Receiver function image along Miyazaki-Sakurajima (MS) profile in Fig. 1. CM and OM show the continental Moho and the oceanic Moho, respectively. Black circles indicate earthquakes that occurred near the profile cross section, and white circles indicate low frequency events.

れる.ただし,高角度で傾斜しているフィリピン海 スラブを水平成層構造を用いてイメージングしてい るため,深さ60kmから120kmまで浅い側にバイアス のかかったイメージが出現していることに注意しな ければならない.

また, CMを付した赤線のように大陸モホ面は, 南 九州の西半分では高速度層上面として明瞭であるが, 東側では不明瞭になる.これは、東側のマントルウ ェッジ部分が, スラブから供給される「水」の影響で 低速度になっているためと考えられる.

さらに,深さ20kmに低速度層上面を表す青いイメ ージがほぼ水平に連なっている.新燃岳(霧島火山) の直下に見られる低周波地震(白丸)はこの青いイ メージの近傍で発生している.

3.2 宮崎一桜島測線

宮崎市から桜島火山に至る測線に沿う断面におけ るレシーバ関数イメージをFig.4に示す.基本的には, Fig.3に示す宮崎一阿久根測線と同じ特徴がみられ る.すなわち,OMで示す海洋モホ面は,深さ60 km 付近で上に凸に曲がっていて,深さ120 kmまで明瞭 にみられる.CMで示す大陸モホ面は.Fig.3に比べれ ば不明瞭であるが,測線の南西部分に限ってみられ る.また,桜島火山の下では,大陸モホ面が下に凸に 下がっているが,これは,青色で示す低速度層上面 が深くまで下がっているためであり,低周波地震も その中で発生している.

2つの測線のレシーバ関数イメージに共通する特 徴として、(1) 島弧側の大陸モホ面がマントルウェ ッジ付近で不明瞭になることと、(2) 深さ80~100 kmまで見られるスラブ内の海洋モホ面が深さ60 km 付近で折れ曲がること、が挙げられる.(1) は海洋 地殻から脱水した流体によりマントルウェッジが低 速度になっていることを、また(2) は脱水後の海洋 地殻がbasaltのeclogite化により重くなったことを示 している.スラブ起源の流体は、巨大地震の断層面 であるプレート境界面の物性に影響を及ぼすととも に、マグマ生成にも関与すると考えられる.

さらに,霧島火山や桜島火山の直下の低周波地震 の発生域は強い低速度層であることがわかる.火山 活動に関係する流体の存在が示唆される.

4. トモグラフィ解析

レシーバ関数解析のためのリニアアレイ上に展開 した臨時観測点を含む南九州地域に設置されている 定常観測点と臨時観測点を使用して、トモグラフィ 解析を行った.用いた地震は、2011年2月~2016年3 月の期間に発生したイベントから空間的均質化等を

Fig. 5 Distribution of earthquakes (open circles) used in seismic tomography. The color of the circles shows the depth of the earthquakes.

行って選択した(Fig. 5). 111,447個のP波走時を解 いて,P波速度の3次元構造を求めた.速度構造モデ ルのグリッドサイズは0.1°×0.1°×10 kmで,初期 値にはJMA2001(上野ら,2002)を用いた.不連続面 として,大陸モホ面,スラブ上面,海洋モホ面を組み 込んだが,これらの形状は,Katsumata(2010)の大 陸モホ面モデルとIwasaki et al.(2015)のプレート境 界モデルを参考にして決めた.トモグラフィの計算 には,FMTOMO(Rawlinson et al., 2006)を用いた. このプログラムでは,波線追跡に,強い不均質をも つ構造に対してもロバストなFast Marching Method (de Kool et al., 2006)を採用している.また.逆問 題の解法には,モデル空間の部分区間を同時に探索 するSubspace Method(Kennett et al., 1988)を用いて いる.

4.1 P波速度構造

深さ10 kmから60 kmまで10 kmごとの深さ断面で のP波速度の不均質分布をFig. 6に示す.赤い太線の 内側は、チェッカーボードテストにおいて地震波速 度のperturbationが再現された領域である.チェッカ ーボードテストについては付録で述べる.深さ10 km では、白三角で示す新燃岳、桜島、開聞岳の近傍に低 速度異常が見られる.深さ20 kmでは上記の3火山の 付近に強い低速度異常域が広範囲に広がっている. 日向灘の沿岸部付近にも強い低速度異常が見られる. 海洋地殻は、深さ30 kmと40 kmでは低速度異常を示 すが、深さ60 kmでは高速度異常を示す.

Fig.7に新燃岳, 桜島, 開聞岳の近傍を通る東西断 面でのP波速度の不均質分布を示す.火山下の地殻内 に強い低速度異常が広範囲にみられる.マントルウ ェッジの先端部の海側にも強い低速度異常域が見ら れる.海洋地殻は深さ50 km~60 kmでいったん高速 度異常を示すが、それより深いところではまた低速 度異常に戻るようである. 島弧側のマントルは広範 囲に低速度異常を示す.

これらの低速度異常域は、スラブ起源流体やマグ マ等の流体に起因すると考えられる.海洋地殻から の脱水は、マントルウェッジ先端部の海側付近と深 さ80 km以深の低速度異常域で発生していると思わ れる.

5. 議論

5.1 レシーバ関数イメージ

Fig. 3にレシーバ関数イメージを示した宮崎一阿 久根測線は, Abe et al. (2013)のCC 測線とほぼ並行 で,約25km南南西に位置している. Abe et al. (2013) では,定常観測点のみを用いたレシーバ関数解析に おいて,傾斜層を考慮したイメージングを行ってい る. Fig. 3で示したフィリピン海スラブの海洋モホ面 (OM)と大陸モホ面 (CM)の基本的な特徴は, Abe et al. (2013)と調和的である. 傾斜層の影響が顕著で ない大陸モホ面 (CM)とその浅部の低速度層上面に ついては,臨時観測点も用いている本研究の方が細 かい特徴をとらえているといえる.

5.2 P波速度構造

Fig. 6に示す深さ断面のP波速度の不均質分布を Wang and Zhao (2006) と比較すると. 深さ10 kmにお いては,開聞岳, 桜島, 新燃岳 (霧島火山)の近傍に 低速度異常が見られるという特徴は共通している. 本研究では深さ20 kmにおいて強い低速度異常域が 広範囲にみられるが, Wang and Zhao (2006) では深 さ40 kmにおいて強い低速度異常域が広範囲にみら れる. 深さ60 kmでは, スラブ近傍の高速度異常と, 霧島と桜島の下のマントルウェッジ部の低速度異常 が共通している特徴である.

Fig. 7の右図と中図に示す新燃岳と桜島を通る東 西断面は, Wang and Zhao (2006)のABとCD断面に ほぼ対応する. 桜島火山の下の地殻中に広範囲に低 速度異常が見られることや,マントルウェッジにお いて背弧側の100 km以深から火山フロントまで広範 囲に低速度異常域が広がっていることは,共通する 特徴である.本研究の結果では,新燃岳(霧島火山) の下の地殻にも低速度異常域が見られるが, Wang and Zhao (2006)では低速度異常域は霧島火山の西側

Fig. 6 Map views of inhomogeneous P wave velocity at each 10 km depth from 10 km to 60 km. The perturbations from the JMA2001 velocity model are shown. The thick blue lines show the continental Moho, the slab top and the oceanic Moho. White triangles indicate major active volcanoes in southern Kyushu. The areas surrounded by thick red lines show good reproducibility in the checkerboard test.

にずれてみられる.

5.3 スラブ起源流体

宮崎一阿久根測線のレシーバ関数イメージ (Fig. 3) では、大陸モホ面 (CM) がマントルウェッジの先端 部で不明瞭になることから、この部分のマントルは スラブ起源流体により低速度になっていると推定し た. Abe et al. (2013) は、宮崎一阿久根測線より少し 北に位置するCC'断面では、マントルウェッジの先端 部がその上の下部地殻より低速度である逆転モホ

(Bostock et al., 2002)の状態であると述べている. 我々のトモグラフィの新燃岳(霧島火山)を通る東 西断面(Fig. 7右図)では、マントルウェッジの先端 部において大陸モホ面の下方のマントルの方がその 上の下部地殻より低速度になっている領域がみられ る.

トモグラフィの結果では、海洋地殻は深さ30 km~ 40 kmにおいて、おおむね低速度異常を示す(Fig. 6). 海洋地殻の上面、すなわちフィリピン海プレート上 面を挟んで、その上方の下部地殻も低速度異常を示 す(Fig. 7の中図と右図).海洋地殻は深さ60 kmにお いては高速度異常を示す(Fig. 6). レシーバ関数イ メージでは、深さ60 km付近で海洋モホ面が折れ曲が っている(Fig. 3). これらを総合して考えると、深 さ40 kmまで海洋地殻から脱水が起き、放出された 「水」によりその上方の下部地殻も低速度になって いると推定される. したがって、この領域のプレー ト境界面にも流体が存在し、プレート間固着は強く はないと考えられる.さらに、海洋地殻は、「水」を 放出し、eclogite化が進むことにより、深さ60kmにお いては高速度異常を示すようになると推定される. 深さ60km付近でプレートが折れ曲がることも eclogite化による密度増加のためと考えられる.

海洋地殻は60 kmより深いところでふたたび低速 度異常を示すので,更なる脱水が発生しているのか もしれない (Fig. 7).また,マントルウェッジの背 弧側の以深から火山フロントにかけて,広範囲に低 速度異常がみられる (Fig. 7).この低速度異常域も 南九州の火山へのマグマ供給に関与している可能性 があると思われる.

6. おわりに

日向灘地震の発生過程や桜島や霧島などの火山へ のマグマ供給過程の研究に寄与するため、南九州下 のフィリピン海スラブ周辺域の地震学的構造をリニ アアレイ観測、レシーバ関数解析およびトモグラフ ィ解析によって推定した.

レシーバ関数解析の結果,大陸モホ面はマントル ウェッジの先端部付近で不明瞭になることが分かっ た.これは,この領域のマントルがスラブ起源流体 の影響で低速度になっていることを示唆する.また, フィリピン海スラブ内の海洋モホ面は深さ100 km付 近まで明瞭であり,深さ60 km付近で折れ曲がってい

Fig. 7 E-W cross sections of inhomogeneous P wave velocity through Kaimondake (left), Sakurajima (center) and Shinmoedake (right) volcanoes. The perturbations from the JMA2001 velocity model are shown. The thick blue lines show the continental Moho, the slab top and the oceanic Moho. The areas surrounded by thick red lines show good reproducibility in the checkerboard test.

ることが確認された.

トモグラフィ解析の結果,深さ10 kmでは新燃岳, 桜島,開聞岳の近傍に低速度域が見られた.海洋地 殻は総じて低速度異常を示すが,海洋モホ面が折れ 曲がる深さ60 km付近では高速度異常を示すことが わかった.これより浅い部分で脱水が進行し,basalt からeclogiteへの相転移が進んだためと考えられる.

謝 辞

防災科学技術研究所,気象庁,九州大学,鹿児島大 学の定常観測点と東京大学の臨時観測点の地震デー タを使用した.

京都大学防災研究所技術室の三浦勉氏と長岡愛理 氏には地震波形データの準備において協力いただい た。

本研究で用いたプレート境界モデル (Iwasaki et al., 2015) は,国土地理院の【数値地図250 mメッシュ (標 高)】,日本海洋データセンターによる500 mメッシ ュ海底地形データ (J-EGG500, http://www.jodc.go.jp/ data_set/jodc/jegg_intro_j.html) およびGeographic Information Network of Alaska (アラスカ大学)の地形・ 水深データ (Lindquist et al., 2004)から作成したもの である.

一部の図は, Generic Mapping Tool (Wessel and Smith, 1992)を用いて作成した.

本研究はJSPS科研費16K05540の助成を受けたも のである.

参考文献

- 上野 寛・畠山信一・明田川保・舟崎 淳・浜田信生 (2002):気象庁の震源決定方法の改善–浅部速度 構造と重み関数の改良–,験震時報,第65巻,pp. 123-134.
- 澁谷拓郎・平原和朗・上野友岳(2009):レシーバ関
 数解析による地震波速度不連続構造,地震,第61巻,
 pp. S199-S207.
- Abe Y., Ohkura, T., Hirahara, K. and Shibutani, T. (2013): Along-arc variation in water distribution in the uppermost mantle beneath Kyushu, Japan, as derived from receiver function analyses, J. Geophys. Res. Solid Earth, Vol. 118, pp. 3540–3556, doi:10.1002/jgrb.50257.
- Bostock, M. G., Hyndman, R. D., Rondenay, S. and Peacock, S. M. (2002): An inverted continental Moho and serpentinization of the forearc mantle, Nature, Vol. 417, pp. 536-538.
- de Kool, M., Rawlinson, N. and Sambridge, M.

(2006): A practical grid-based method for tracking multiple refraction and reflection phases in threedimensional heterogeneous media, Geophys. J. Int., Vol. 167, pp. 253-270, doi: 10.1111/j.1365-246X.2006.03078.x

- Iwamori, H. (2007): Transportation of H₂O beneath the Japan arcs and its implications for global water circulation, Chemical Geology, Vol. 239, pp. 182– 198.
- Iwasaki, T., Sato, H., Shinohara, M., Ishiyama, T. and Hashima, A. (2015): Fundamental structure model of island arcs and subducted plates in and around Japan, 2015 Fall Meeting, American Geophysical Union, San Francisco, Dec. 14-18, T31B-2878.
- Katsumata, A. (2010): Depth of the Moho discontinuity beneath the Japanese islands estimated by traveltime analysis, J. Geophys. Res., Vol. 115, B04303, doi:10.1029/2008JB005864.
- Kennett, B. L. N., Sambridge, M. S. and Williamson, P. R. (1988): Subspace methods for large inverse problems with multiple parameter classes, Geophysical Journal, Vol. 94, pp. 237-247.
- Lindquist, K. G., Engle, K., Stahlke, D., and Price,
 E. (2004), Global topography and bathymetry grid improves research efforts, Eos Trans. AGU, 85(19),
 186. http://onlinelibrary.wiley.com/doi/10.1029/ 2004EO190003/abstract
- Rawlinson, N., de Kool, M. and Sambridge, M. (2006): Seismic wavefront tracking in 3D heterogeneous media: applications with multiple data classes, Exploration Geophysics, Vol. 37, pp. 322–330.
- Shibutani, T., Ueno, T. and Hirahara, K. (2008): Improvement in the extended-time multitaper receiver function estimation technique, Bull. Seismo. Soc. Am., Vol. 98, No. 2, pp. 812-816, doi: 10.1785/0120070226.
- Wang, Z. and Zhao, D. (2006): Vp and Vs tomography of Kyushu, Japan: New insight into arc magmatism and forearc seismotectonics, Phys. Earth Planet. Int., Vol. 157, pp. 269–285.
- Wessel, P. and Smith, W. H. F. (1991): Free software helps map and display data, Eos. Trans. AGU, Vol. 72, No. 41, p. 441, doi:10.1029/90EO 00319.

付録1

臨時観測点のリストをTable A1に示す.

Table A1 Station code, latitude, longitude both in degree and elevation in meter for temporary stations.

Station	Latitude	Longitude	Elevation
MK01	31.7327	131.4555	33
MK02	31.7765	131.3751	209
MK03	31.7843	131.3270	427
MK04	31.8113	131.2602	242
MK05	31.8295	131.1436	216
MK06	31.8802	131.0695	241
MK70	31.8558	131.0326	175
MK08	31.9064	130.6502	285
MK09	31.9235	130.6153	290
MK10	31.9499	130.5310	175
MK11	32.0226	130.2909	140
MK12	31.7053	131.3527	270
MK13	31.6992	131.3021	370
MK14	31.6612	131.2041	250
MK15	31.6558	131.1731	480
MK16	31.6311	131.0386	170
MK17	31.6247	130.9612	190
MK18	31.8793	130.8273	440
MK19	31.8935	130.7603	250
AK03	32.0733	130.8067	415
AK09	31.9533	130.7651	492
AK14	31.8689	130.8749	634
AK17	31.9972	131.0824	338
AK19	32.0542	130.9631	352
SK01	31.4408	130.3945	229
SK02	31.5385	130.4478	355

SK03	31.6757	130.5208	200
SK04	31.7669	130.5255	167
SK05	31.7911	130.6904	303
SK06	31.7981	130.8309	252
SK07	31.7191	130.9214	454
SK08	31.6100	130.9082	329
SK09	31.5810	130.8305	350
SK10	31.5082	130.8884	208
SK11	31.4485	130.7734	415
SK12	31.3243	131.0334	435
SK13	31.4908	131.1510	193
SK14	31.6484	131.0823	376
SK15	31.6641	131.2431	344
SK16	31.7195	131.4066	502
SK17	31.8582	131.1933	263

付録2

トモグラフィ解析におけるチェッカーボードテス トについて述べる.チェッカーボードのグリッドサ イズは0.2°×0.2°×20kmとし、各グリッドのP波速 度に±5%のperturbationを交互に与えた.この速度構 造モデルを用いて、実際のトモグラフィと同じ地震 ー観測点ペアについて理論走時を計算し、0.05sの標 準偏差をもつランダム誤差を加えたものを疑似的な 観測走時とした.この観測走時を実際のトモグラフ ィと同じ条件で解き、チェッカーボードの再現性を チェックした.

Fig. 6とFig. 7に対応するチェッカーボードテスト の結果をそれぞれFig. A1とFig. A2に示す.赤い太線 の内側では,元のチェッカーボードが再現されてい る.

(論文受理日: 2019年6月17日)

Fig. A1 Map views of the results of checker board tests at each 10 km depth from 10 km to 60 km. The perturbations from the JMA2001 velocity model are shown. The thick blue lines show the continental Moho, the slab top and the oceanic Moho. The areas surrounded by thick red lines show good reproducibility.

Fig. A2 E-W cross sections of the results of checker board tests through Kaimondake (left), Sakurajima (center) and Shinmoedake (right) volcanoes. The perturbations from the JMA2001 velocity model are shown. The thick blue lines show the continental Moho, the slab top and the oceanic Moho. The areas surrounded by thick red lines show good reproducibility.