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Synopsis 

 This study illustrates a procedure of defining precise boundary conditions for the hydrodynamic 

model from time series data for a particular event. As a test case, the flood event of different 

return periods was selected for the Brahmaputra-Jamuna River, Bangladesh. Here, the magnitude 

of different return period flood was chosen by best-fitted frequency distribution. This study 

suggests that prior to do any frequency distribution the data series should be checked for the 

outlier, homogeneity, randomness, dependency, and trend. The magnitude of flood obtained from 

the best-fitted frequency distribution should be considered as the maximum flooding level of 

different return period flood and river’s regular discharge hydrograph of the identical peak 

should be adjusted to fit the different return period floods and can be used as the upstream 

boundary condition of the hydrodynamic model. From the stage-discharge relationship of that 

particular year, the adjustment of downstream boundary condition can be estimated and 

implemented as the downstream boundary condition in the hydrodynamic model. 

Keywords: Brahmaputra-Jamuna River, randomness, dependency, trend and frequency 

distribution 

1. Introduction

Hydrodynamic model, particularly the 

morphodynamic model often needs a very precise 

boundary condition to reproduce the natural 

conditions of rivers, lake, oceans. Using directly the 

statistically analyzed time series data may often 

produce erroneous results. As an example, assessing 

the impacts of different return period floods are the 

common criteria for many engineering works. A vast 

range of numerical models i.e. one dimensional, two 

dimensional or three dimensional (Chatzirodou, 

Karunarathna, & Reeve, 2017; Rostand, 2007; 

Schuurman, Marra, & Kleinhans, 2013; Siviglia et 

al., 2013) models are used to assess the 

hydrodynamic impact of different magnitude floods. 

Generally, in all of the hydrodynamic model, the 

defining of upstream and downstream conditions are 

obligatory. Often the modeler needs to prepare the 

upstream/downstream boundary file from time series 

data by statistical analysis. For example, if the 

maximum discharge is 50000 m3/s found from the 

time-series analysis of discharge and the time series 

analysis of water level shows the maximum water 

level at downstream was found 13 m using this two 

may be erroneous; one should use the corresponding 

water level for 50000 m3/s. Nevertheless, as the river 

bathymetry changes every flooding season in general, 

hence statistically high water level may not 

correspond high discharge every time. Another 
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circumstances may happen when one needs to assess 

the impacts of different return period floods, usually 

the statistical analysis are made calculating the 

magnitude in terms of discharge of different return 

period flood. Then at downstream boundary 

condition, the corresponding water level data needs 

to be found. The situation becomes more 

complicated to define downstream boundary 

condition when the upstream discharge hydrograph 

is unsteady. Hence this paper is aimed to solve this 

problem.  

The main objective of this research is to 

illustrate a procedure to define the appropriate 

boundary conditions of hydrodynamic model for 

time series data for a particular event. As a test case 

magnitude of different floods were chosen. The 

specific objectives were to analysis the time series 

discharge and water level data of a river. Then 

specifying the magnitude of different return period 

floods- 2.33,10, 20, 50 and 100year. Next, 

calculating the hydrograph for that magnitude floods. 

And lastly to define the downstream boundary 

conditions for the predefined upstream boundary 

condition. 

As the study area, the two stations located in 

Brahmaputra-Jamuna River were selected shown in 

Fig. 1. The time series discharge data of the upstream 

station Bahadurabad was chosen for an upstream 

boundary and the data of downstream station, Aricha 

was selected for water level data. 

 

2. Methodology 

 

Firstly the raw data of discharge shown in Fig. 2 

were considered and checked. Then from this dataset 

annual maximum dataset were calculated as shown 

in Fig. 3. Frequency analysis was performed to 

calculate the maximum magnitude of the flood of 

different return period. Prior to frequency analysis, 

the data series should be checked for outlier, 

homogeneity, and randomness. Several statistical 

tests exist to examine the outlier indicating any 

observation point that is distant from other 

observations of the data series (Hodge & Austin, 

2004). Here, ‘Grubb’s’ test was adopted which is 

commonly used for univariate data set (Grubbs, 

1969). Then to check the independency of the data 

series of random variables ‘Turning point’ test was 

performed (Heyde & Seneta, 1963). To check the 

randomness of the data series, non-parametric 

statistical test names as ‘Run test’ that checks a 

randomness hypothesis for data sequence was done 

(Barton, 1957). The data dependency and stationary 

were checked using Pettit's and Dickey-Fuller test Fig. 2 Raw discharge data considered for the study 
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Fig. 1: Map showing the study location 
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respectively (Dickey & Fuller, 1979; Pettitt, 1979). 

The existence of trend and seasonality within the 

data series was assessed by performing “Mann-

Kendall” test  (Kendall, 1975; Mann, 1945) and 

Sens’s slope test (Sen, 1968). 

In this study, widely used five distribution 

functions – Log-Normal (LN), Log-Normal type III 

(LN3), Pearson type III (P3), Log Pearson type III 

(LP3) and Extreme Value Distribution I/Gumbel 

Distribution (EV1) were tested. The probability 

distribution function was listed in Table 1. Here, 

a,b,c are the scale, shape and location parameters. 

The goodness of fit of the above-mentioned 

function was done using probability plot correlations 

coefficient (PPCC), Kolmogorov-Smirnov and Chi-

square test. The ranking was made based on each test 

and the lowest ranked distribution was assumed to 

be the best fit distribution of the data. The 

methodology of Frequency analysis as shown in Fig. 

4. 

Table 1  Probability Distribution Functions (PDF) of the distributions used in this study.  

Distributions PDF  Range 

Log normal 

(Johnson, Kotz, & 

Balakrishnan, 1994) 

f(x) =
1

𝑥
.

1

σ √2π   
exp (−

(y −µ)2

2𝜎2
) 

x > 0 

Log normal type III 

(Ahrens, 1957) 𝑓(𝑥) =  
1

(𝑥 − 𝑎)𝑐√2𝜋
𝑒𝑥𝑝 (−

1

2
(

−(ln (𝑥 − 𝑎) − 𝑏)2

𝑐2
)) 

Where, 0 ≤ 𝛾 <

𝑥, 

-∞<µ<∞, 𝜎 > 0 

Pearson type III 

(Pearson, 1895) 
𝑓(𝑥) =

1

𝑎Γ(𝑏)
(
𝑥 − 𝑐

𝑎
)𝑏−1𝑒𝑥𝑝 (− (

𝑥 − 𝑐

𝑎
)) 

If𝑎 > 0,𝑥 ≥ 𝑐. If 

𝑎 < 0, 𝑥 ≤ 𝑐  

 

Log Pearson type III 

(Singh, 1998) 
𝑓(𝑥) =

1

𝑎𝑥Γ(𝑏)
(
𝑦 − 𝑐

𝑎
)𝑏−1𝑒𝑥𝑝 (− (

𝑦 − 𝑐

𝑎
)) 

𝑎 > 0, 𝑏

> 0 𝑎𝑛𝑑 0 < 𝑐

< 𝑦 

Extreme Value 

Distribution I 

(Gumbel, 1941)  

𝑓(𝑥) = 𝑎 exp(−𝑎(𝑥 − 𝑏) − 𝑒−𝑎(𝑥−𝑏)) 

 

𝑎 > 0, -∞<b<x 

 

Fig. 4 Chart showing the methodology of frequency analysis 
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Then the floods of different return period were 

calculated and the magnitude was matched with the 

annual maximum data series and the shape of the 

recent hydrograph which was the best match with the 

distribution function was chosen as the shape of the 

hydrograph of that defined return period. The total 

hydrograph was recalculated with the adjustment of 

the peak discharge. For downstream boundary, the 

stage-discharge relation was calculated for that 

particular year and the deviation of water level due 

to the adjustment of the peak of the discharge was 

computed. Then the downstream boundary 

conditions were defined by the adjustment of the 

peak discharge. A graphical representation of the 

methodology was shown in Fig. 5. 

 

3. Results 

 

3.1 Outlier, Randomness, and 

dependency 

In this study, daily river discharge and water 

level data for the sixty years from 1956 to 2016 were 

considered as the time series data. The analysis of 

the time series annual maximum discharge data 

shows that the maximum discharge varies within this 

period from 103128.8 m3/s (Qmax) to 40900.0 m3/s 

(Qmin) having the mean discharge (Qmean) of 

68129.25 m3/s. The standard deviation, σ was found 

13249.37 m3/s. The non-parametric test result for 

outlier, randomness and dependency are listed in 

Table 2.  

 

Table 2 Test for outlier, Randomness and 

dependency 

Test Zcrit Zobs Comments 

Grub’s 3.14 2.90 Non-outliered 

Run 30.47 26.00 Random 

Turning 

Point 

1.96 0.22 Independent 

Pettitt 157 55 Homogeneous 

Dickey-

Fuller 

-3.48 -7.281 Stationary 
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Grubb’s test result indicates that the G value was 

found 2.90 where Gcritical was 3.14. As the Zobserved< 

Zcritical no outlier exists in the data set. The test result 

for randomness and short-term dependency also 

showed the similar result. However, to check the  

Long-term dependency Hurst test was 

performed by splitting the data series on a decadal 

basis. the Zobserved in Hurst test was 0.69 and Zcritical 

was 0.50 Zobserved > Zcritical it indicates slight 

persistency in the data series As shown in Figure 6. 

The homogeneity was tested using Pettitt’s test 

where p-value was found 0.407 indicating the 

rejecting null hypothesis of inhomogeneous.  

 

3.2 Trend and seasonality 

The result of the Mann-Kendal test of the time 

series data shows that Zobs was 1.89 which refers to 

a significant trend existed in the data set. Then the 

Sen’s slope test was performed as shown in Fig. 7. 

This figure indicates the presence of a positive trend 

in the data series. Hence the data series was de-

trended using linear regression method using the 

correlation equation of the trend analysis 

(187.73x+62403) shown in Fig. 8. De-seasonalised 

was done by splitting the data into decadal basis.  

 

3.3 Frequency distribution 

Based on the de-trended, de-deseasonalized 

time series data frequency distribution analysis was 

done showing in Fig. 9. This figure indicates that 

Log-normal type three (LN3) predicts the lowest 

discharge except for the return period 2.33 where 

Extreme value distribution (EV 1) predicts the 

highest one. However, the best-fitting of distribution 

was assumed from the goodness of fit test the results 

of which is shown in Table 3. This table indicates 

that among the five distribution Log-Pearson type III 

are the most suitable distribution for the flood 

prediction of different return periods. 

 

3.4 Estimating boundary conditions 

for the hydrodynamic model 

The de-trended discharge data obtained from 

Log-Pearson type III distribution again re-trended 

and plotted with the annual maximum discharge 

shown in Fig. 10. From this figure, five recent year 

flood was chosen the magnitude of which is nearest 

Fig. 7 Trend analysis of the data series 

Fig. 8 De-trended of the time series data 
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Fig. 9 Frequency distribution of de-trended data 

Table 3 Goodness of fit for different distribution 

Fitted 

distribu

tion 

Kolmog

orov-

Smirnov 

PPCC Chai-sq Total 

Rank 

 LN 0.9284 0.9875 7.8301 10.00 

 LN3 0.9867 0.9856 7.8948 9.000 

P3 0.9867 0.9877 7.9075 8.000 

 LP3 0.9284 0.9845 7.9675 7.000 

 EV1 0.8133 0.9888 6.8760 11.00 
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to the magnitude of different return period flood. For 

example for 2.33,10,20,50 and 100 year return 

period 2003, 1997, 2004, 1988 and 1998 year 

hydrograph were selected. The peak of the 

hydrographs was then adjusted according to the 

magnitude of different return period floods shown in 

Table 4.  

 

The stage-discharge relationship was assessed at 

the same time and from that relationship, the 

adjustment of water level due to the adjustment of 

discharge was calculated and also shown in Table 4. 

An example of such relationship is shown in Fig. 11. 

The adjustment of upstream and downstream 

boundary condition for 2.33 year return period is 

shown in Fig. 12. 

 

4. Conclusions 

 

In this study, a procedure has been illustrated to 

define the boundary conditions of a hydrodynamic 

model for a particular event from time series data. 

As a test case 2.33,10, 20, 50 and 100 year return 

period flood of Brahmaputra-Jamuna river was 

chosen. We conclude the followings: 

Here the magnitude of different return period 

flood was chosen by doing frequency analysis. 

Therefore, prior to do any frequency analysis the 

dataset should be free from outlier, dependency, and 

trend. Hence the firstly the data were checked for 

such conditions using nonparametric Grubb’s, Runs 

and Turning point test and the results indicated the 

there was no outlier, no dependency and random but 

the Mann-Kendal test for trend showed significant 

increasing trend persists within the data series. This 

trend was removed by linear regression method. 

Through The frequency analysis five 

distribution functions - Lognormal (LN), Log-

Normal type III (LN3), Pearson type III (P3), Log-

Pearson type III (LP3) and Extreme Value 

Distribution I/Gumbel Distribution (EV1) were 

Fig. 10 Selection of hydrograph from annual 

maximum discharge 

Table 3 Adjustment of hydrograph due to different 

return period floods 

Return 

Period 

2.33 10 20 50 100 

Adjustment  

u/s (m3/s) 

-147 -485 872 728 8847 

Adjustment 

d/s (m) 

-0.3 -1.3 1.17 1.32 4.25 

 

Fig. 11 Stage-Discharge relationship for the year 

2003. 
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Fig. 12 Adjusted upstream and downstream 

boundary condition for 2.33yr return period flood. 
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tested to find out the best fit function to predict the 

flood distribution of the Brahmaputra-Jamuna River. 

The analysis of goodness of fit showed the Log-

Pearson type III distribution was the best-matched 

function for predicting different magnitude flood. 

For 2.33, 10, 20, 50 and 100 year return period flood 

the maximum discharge were found 65140, 78735, 

84818, 99028 and 111976 m3/s. 

Visual Comparison of annual maximum flood 

and the maximum flood obtained from the frequency 

analysis was made and the shape of the hydrograph 

for the year 2003, 1997, 2004, 1988 and 1998 year 

was chosen for representation the flood of  2.33, 10, 

20, 50 and 100 year return periods. Nevertheless, 

2003, 1997, 2004, 1988 and 1998 hydrographs 

should be adjusted by -147, -485, 872, 728 and 8847 

m3/s to represent the appropriate conditions of the of  

2.33, 10, 20, 50 and 100 year return periods floods. 

At the same time, the stage-discharge relationship 

curves of the respected year suggests the 

downstream boundary, the water level should be 

adjusted -0.3,-1.3, 1.17,  1.32 and 4.52 m to get 

appropriate boundary condition for the downstream.  
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