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Synopsis

This study presents a new numerical model for transient shallow groundwater table in
an unconfined sloping aquifer considering rainfall recharge. The infiltration is neglected as
only a thin sloping aquifer is considered. The theory for groundwater table evolution is the
hydraulic groundwater theory, or called Dupuit-Boussinesq theory. The relaxation approach
is applied for numerically calculating the nonlinear advection-diffusion equation with the
help of the Godunov based finite volume scheme. The transient numerical model is verified
with the steady-state solution. We performed two case studies considering variable rainfall
patterns and variable aquifer hydraulic conductivity. The resultant hydrographs of outflow
discharges and groundwater tables at the downstream outlet are obtained. The results verify
that our transient model is practical for modelling motion of thin groundwater table in an
unconfined sloping aquifer under variable rainfall patterns.

Keywords: groundwater table, unconfined aquifer, hillslope, numerical simulation,
rainfall recharge, finite volume method

1 Introduction

In the recent decades, it is obvious that news of ex-
treme or record-breaking rainfall having shorter dura-
tions and higher intensity becomes more frequent in
many places around the world. Many researches have
evidenced that global warming is one of important fac-
tors triggering this kind of extreme climate. Under
this warming trend along with extreme rainfall, it is
unavoidable to face more disasters we were not used
to experience in the past, particularly in mountainous
area. Extreme rainfall can alter stability condition of
a hillslope. For correct prediction of shallow land-
slides, it is essential to better understand the response
of groundwater in an aquifer under extreme rainfall.
The groundwater motion is quite complicated in a hill-
slope aquifer having an unsaturated zone. In the un-
saturated zone, water movement from hillslope surface
to inner saturated zone is mainly controlled by infiltra-
tion process, which can be influenced by soil poros-

ity property and capillary effect of partially saturated
soil moisture. This process finally alters groundwater
table evolution in the aquifer and corresponding seep-
age motion. In this study, we would like to focus on a
thin aquifer having a characteristic length much greater
than a characteristic depth under an extreme rainfall.
Under this problem setting, the infiltration process is
reasonably neglected in our analysis. Hence, the main
purpose of this study aims to provide a new transient
model for shallow groundwater table motion in a soil
layer on hillslope surface under rainfall recharge with-
out considering infiltration process.

Subsurface flow modelling has been investigated
over several decades. For groundwater transport in
the saturated zone in an aquifer, some hydrological
models or theories have been proposed (e.g., Chow
et al., 1988; Brutsaert, 2005; Lu and Jonathan, 2012).
The famous Richards equation is the most conven-
tional theory for subsurface flow modeling. The main
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difficult of applying Richards equation is to obtain
the free surface of groundwater, or says groundwa-
ter table, due to the nonlinear free-surface kinematic
boundary condition (Bear, 1972). Also, for solving
Richards equation the conventional numerical schemes
are quite time-consuming, and are not appropriate to
a wider calculation domain. However, for our tar-
get of a thin aquifer, this nonlinear difficulties can be
overcome by applying the shallow flow approxima-
tion for equation simplification. The simplified theory
is called the hydraulic groundwater theory, or called
Dupuit-Boussinesq theory or Boussinesq theory for a
short form (Brutsaert, 2005; Troch et al., 2013). For
a sloping aquifer, some numerical models for Boussi-
nesq theory have also been proposed (e.g., Stagnitti et
al., 2004), but most models adopt either some further
simplification or more restrictions on the theory. To
our knowledge, none of numerical solution have been
proposed for modelling using the original Boussinesq
theory. Therefore, this work would like to overcome all
past deficiencies to propose a new numerical approach
for efficient and correct modelling of groundwater ta-
ble evolution in a thin sloping aquifer on hillslope sur-
face without involving infiltration.

The structure of this study goes as follows. The
theoretical formulation is introduced in Section 2. The
numerical scheme is stated in Section 3. Then, Section
4 introduces the settings of two case studies. Finally,
the result and discussion are mentioned in Section 5,
and conclusion is in Section 6.

2 Problem Formulation

We adopt a two-dimensional hillslope coordinate
system, which x′-axis is aligned along and z′-axis is
perpendicular to the slope surface, as is illustrated in
Fig. 1. Generally, the depth, O(z′) = H , of soil layer
mantling a natural hillslope is finite and thin comparing
to the characteristic longitudinal length of a hillslope,
O(x′) = L. Groundwater table and its variation in
this thin soil layer can be considered to be thin and
mild. This geometrical relation can give the shallow
flow assumption,

H

L
� 1. (1)

In the field practices, the bottom of a soil layer
mantling a hillslope usually consists of rock bed. As

groundwater response in a thin layer is rapid and the
time duration of our interest is only several hours, infil-
tration process is reasonably neglected in the soil layer
as well as at the bottom bed rock boundary. Also, an
unsaturated zone above groundwater table is too thin
to be ignored.

2.1 Transient theory of groundwater table
With shallow flow assumption and Darcy’s law for

seepage motion, the transient equation of groundwa-
ter table evolution considering rainfall recharge can be
expressed as (Brutsaert, 2005; Troch et al., 2013),

Ss
∂η′

∂t′
=

k0

[
cosα

∂

∂x′

(
η′
∂η′

∂x′

)
+ sinα

∂η′

∂x′

]
+ I ′,

(2)

where Ss is the specific yield [-], η′ is the groundwa-
ter table [m], k0 is the hydraulic conductivity [ms−1],
ranging from 10−1 to 10−5 m/s for general hillslopes,
α is the slope inclination [◦], I ′ is the rain rate [m/s]
in the Cartesian z′-direction. The rain rate I ′ gener-
ally ranges from 10 to 200 mm/hr to represent from a
slight to an extremely intense rainfall. In (2) the left-
hand-side (LHS for abbreviation) denotes the time rate
of groundwater table change, and the right-hand-side
(RHS) denote mass in/out-flux and rainfall recharge
terms, respectively. Then, the mass discharge can be
expressed as

q′ = η′u′ = −k0η′
(

cosα
dη′

dx′
+ sinα

)
, (3)

where the depth-averaging Darcy’s seepage velocity
reads

u′ = −k0
(

cosα
∂η′

∂x′
+ sinα

)
, (4)

where the minus sign means being positive in the right
direction. A positive u′ denotes a right-going flux in
the positive x′-direction. Two boundary conditions are
given at the downstream and upstream boundaries. A
variable groundwater table is imposed at the down-
stream boundary x′ = 0 as

η′ = D(t). (5)

Zero mass discharge is imposed at the upstream bound-
ary x′ = L, as below

q′ = −k0η′
(

cosα
dη′

dx′
+ sinα

)
= 0. (6)
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Figure 1: Geometry definition

Attention shall be paid to (6) that two possibilities for
zero mass discharge exist. The way to impose an ap-
propriate upstream boundary condition can refer to our
previous work (Wu et al., 2018). Finally, an initial
groundwater table is imposed as

η′ = η′0(x), at t′ = 0. (7)

2.2 Normalization

All normalized variables are given as

x =
x′

L
, η =

η′

H
, u =

u′

λ
, q =

q′

λH
,

t =
t′

SsL/λ
, and λ =

k0H

cosαL
.

(8)

Using (8), the governing equation (2) becomes

∂η

∂t
=

∂

∂x

(
η
∂η

∂x

)
+ β

∂η

∂x
+ γ, (9)

where

β =
L tanα

H
and γ =

I ′L2

k0H2 cosα
, (10)

Both of β and γ are positive parameters. β is called
groundwater hillslope flow number (Brutsaert, 2005).
A higher β represents flow in a shallower or steeper
aquifer. Then, γ denotes the ratio of rain rate to hy-
draulic conductivity, and it represents the storage ca-
pacity of a aquifer during a rainfall recharge. A higher
γ means a higher rainfall on an aquifer with lower
permeability. Equation (9) is a nonlinear advection-
diffusion equation having a variable diffusivity of η.

The normalized mass discharge reads

q = ηu = −η
(
∂η

∂x
+ β

)
, (11)

where the normalized Darcy’s seepage velocity reads

u = −λ
(
∂η

∂x
+ β

)
. (12)

The normalized downstream boundary condition be-
comes

η =
D

H
= η0(t), at x = 0. (13)

At the upstream boundary, the normalized zero mass
discharge becomes

q = −η
(
∂η

∂x
+ β

)
= 0, at x = 1. (14)

The normalized initial condition is

η = ηi(x), at t = 0. (15)

Some efforts have been made for theoretically
analysing the transient problem with some approxima-
tions or linearization (e.g., Brutsaert, 2005; Troch et
al., 2013). However, a technically-sound theoretical
solution for the original transient Boussinesq theory
has not been proposed yet. We adopt a reliable choice
for verifying our numerical transient model with the
steady state solution (Wu et al., 2018).

2.3 Steady state solution
The solution for the steady-state problem, which

consists of (9) without the LHS term, has been re-
visited recently. Different downstream and upstream
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boundary conditions can yield different groundwa-
ter table distributions. Particularly, at the upstream
boundary, two boundary conditions exist under differ-
ent given parameters, and appropriate boundary condi-
tion must be determined in advance for correct calcu-
lation. Recently an explicit formula has been proposed
for determining appropriate upstream boundary condi-
tions (Wu et al., 2018). Therefore, as the analytical
steady state solution (Henderson and Wooding, 1964)
is nonlinear and implicit, it still demands an iterative
root-finding method for approximating the steady state
solution. Instead of dealing with this implicit solution,
we directly solve the equation of the steady state prob-
lem using conventional finite-difference method with
an iterative algorithm and appropriate boundary condi-
tions.

3 Numerical schemes

For our transient problem (9), the main concern for
selecting an appropriate numerical scheme is that both
of advection and nonlinear diffusion terms dominate.
An explicit finite difference method is good for advec-
tion terms, but is quite time-consuming for diffusion
term as a very small time step is demanded for nu-
merical stability, or satisfying the Courant-Friedrichs-
Lewy condition (abbreviated as CFL). Therefore, as
a general practice, one usually suggests the popu-
lar Crank-Nicolson method, which is an implicit fi-
nite difference method having a fantastic advantage of
unconditionally-stable property. However, in a steeper
unconfined sloping aquifer, advection motion as well
as some discontinuous groundwater table may exist in
the groundwater flow. In this case, the Crank-Nicolson
method is not applicable to a correct solution. Regard-
ing this, in this study we shall utilize an alternative nu-
merical scheme to precisely model groundwater table
advection as well as diffusion processes.

To fit our numerical requirement, we shall adopt
a Godunov-based finite volume scheme, which has
intensely developed over past several decades, and
is originally excellent at solving hyperbolic equa-
tions (LeVeque, 2002). Particularly, in the recent
decades, some have proposed a new methodology,
or called the relaxation approach, to hyperbolize
parabolic equations into hyperbolic ones, and then to
apply well developed Godunov schemes for precise

numerical solutions (e.g., Nishikawa, 2014; Toro and
Montecinos, 2014). Here, we shall apply this relax-
ation approach to solve our nonlinear transient prob-
lem (9).

3.1 Relaxation system
With some manipulations (LeVeque and Pelanti,

2001; LeVeque, 2002) to the original transient equa-
tion, the relaxation system is given as

∂η

∂t
+
∂ψ

∂x
= γ, (16)

∂ψ

∂t
+ d2

∂η

∂x
= −1

τ

(
ψ + η

(
∂η

∂x
+ β

))
, (17)

where τ is the relaxation time, and

ψ = −η
(
∂η

∂x
+ β

)
and d =

(
∂η

∂x
+ β

)
. (18)

The eigenvalues or characteristic speeds of the system
are readily obtained as

λ1,2 = ±
(
∂η

∂x
+ β

)
. (19)

The key of the relaxation system is that by taking
τ → 0 the RHS in (17) yields ψ = −η(∂η∂x + β), then
(16) returns to the original transient system (9). For
a stable approximation or preventing non-negative dif-
fusion effect, the relaxation system need to satisfy a
sub-characteristic condition,

−dmax ≤
∂ψ

∂η
≤ dmax, (20)

where dmax is the maximum of d.
To solve the relaxation system, the relaxation

scheme consists of two steps. The first is to update ηn

to ηn+1(n denotes the numerical time step) by solving
the hyperbolic system,

∂

∂t

[
η

ψ

]
+

[
0 1

d2 0

]
∂

∂x

[
η

ψ

]
=

[
γ

0

]
. (21)

The second step is to assign ψn+1 = ψ
(
ηn+1

)
. Then,

a Godunov-scheme applied in the first step is intro-
duced in the following.

3.2 Wave propagation algorithm
Based on the upwind method and Godunov

scheme, the wave propagation algorithm (LeVeque,
2002) is one of excellent methods for numerically solv-
ing hyperbolic problems and relaxation systems. By

― 575 ―



adding correction fluxes, the high-resolution Godunov
scheme of (21) in terms of wave propagation algorithm
reads

ηn+1
i = ηni +

∆t

∆x

(
A+∆ηni−1/2 +A−∆ηni+1/2

)
+

∆t

∆x

(
F̃ni+1/2 − F̃

n
i−1/2

)
,

(22)

where i is the cell index, ∆x and ∆t are spatial and
temporal increments,A+∆ηni−1/2 andA−∆ηni+1/2 are
the right-going and left-going fluxes from the left and
right edges of the cell i, and F̃ni±1/2 are the second-
order corrections for fluxes at the cell edges.

With a special treatment to the source term γ in (21)
for satisfying well-balancing property, the flux decom-
position at both edges of the cell i are expressed as

ψ (ηi)− ψ (ηi−1) + ∆xΨ̄i−1/2 =
∑
Zni−1/2

ψ (ηi+1)− ψ (ηi) + ∆xΨ̄i+1/2 =
∑
Zni+1/2

 ,

(23)

where
∑

denotes the summation over the two waves
propagating at λ1,2, ψ refers to (18), and the gradient
of η is discretized by the 2nd-order central difference,

∂η

∂x

∣∣∣∣
i

=
ηi+1 − ηi−1

2∆x
at the cell i, (24)

Zni±1/2 denote the flux jumps at the left and right edges
of the cell i, and Ψ̄i±1/2 denote the variable rainfall
recharge terms at the edges of the cell i,

Ψ̄i−1/2 =− 1
2 (γi + γi−1)

Ψ̄i+1/2 =− 1
2 (γi+1 + γi)

}
, (25)

In (22) the corrected fluxes F̃ni±1/2 at the cell i’s
edges are expressed as

F̃ni±1/2 = 1
2×∑

sgn
(
s+i±1/2

)(
1− ∆t

∆x

∣∣s+i±1/2∣∣) Z̃ni±1/2,
(26)

where sgn(·) is the sign function, and the characteristic
speeds at the left and right edges of the cell i read

s+i−1/2 = max (0, si)

s−i+1/2 = min (0, si)

 , (27)

in which the characteristic speed at the cell i is si =

λ1,2, and max(·) and min(·) are the functions for tak-
ing maximum and minimum values. Also, in (26)

Z̃ni±1/2 = φ(θni±1/2)Zni±1/2 are limited waves using
a total variation diminishing flux limiter φ, evaluated
by ratios of wave strength θni±1/2 at i± 1/2,

θni+1/2 = Zni+3/2/Z
n
i+1/2. (28)

Then, for avoiding any non-physical oscillation in
this study, the high-resolution correction adopts the
monotonized central-difference limiter, or called MC-
limiter (LeVeque, 2002), as below

φMC (θ) = max (0,min ((1 + θ)/2, 2, 2θ)) . (29)

where θ is the ratio at the cell edges, i.e., (28).
The free outflow boundary condition is imple-

mented at both of the problem’s boundaries.
Finally, for holding numerical stability, the CFL

condition reads

∆t ≤ min

(
Cmax∆x

max |λ1, λ2|
,
Dmax∆x2

max(η)

)
, (30)

with the Courant number Cmax = 1 being general for
the wave propagation algorithm, and Dmax = 0.5 in
our scheme (Toro and Hidalgo, 2009).

3.3 Verification
As analytic transient solution of Boussinesq the-

ory is not available now, we turn to focus on verifying
long-time simulation results of our transient numeri-
cal model. For verification, we used steady state solu-
tions to compare with long-time numerical solutions.
The test case is a rectangular aquifer having the dimen-
sion of 10 m long by 1 m high. This aquifer’s inclina-
tion is 45◦, and the downstream outlet is located in the
left-end side. The hydraulic conductivity is set to be
1.0× 10−4 m/s, the rain rate is I = 216.0 mm/hr, and
the specific yield is Ss = 0.4 in the transient model.
The simulation time is 500 minutes for the transient
model. From Fig. 2 the groundwater table at x = 0 ap-
proaches a steady condition of η0 = 0.637 m as time
goes to 500 minutes. Then, the simulated groundwater
table distribution of our transient model coincides well
with the one of the steady state solution, as is shown in
Fig. 3.

In addition, in Fig. 2 the discharge at the down-
stream outlet x = 0 can also be verified with an an-
alytic formula. Applying our case’s parameters to the
analytic formula (Wu et al., 2018), the dimensional dis-
charge is calculated as

q(x = 0) = −I ′L cosα ≈ −4.306× 10−4 cms.
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Figure 2: Hydrographs of mass discharge and ground-
water table at the downstream outlet. The final values
are q0 = −4.236× 10−4 m2/s and η0 = 0.637 m.

(31)

Comparing with the numerical result of q = −4.243×
10−4 cms, the relative error is only about 1.5%. This
also verifies our numerical model for long-time simu-
lation. However, to put again, the initial-time simula-
tion still requires further verification, but it may not be
available now as having no appropriate analytic solu-
tions so far.

4 Case study

To consider the hillslope aquifer response under ex-
treme rainfall, we performed two artificial case studies
of variable artificial rainfall patterns as well as variable
aquifer hydraulic conductivity. We setup a rectangu-
lar aquifer having the same dimension of 10 m long
by 1 m high. This aquifer’s inclination is 30◦, and the
aquifer’s left-end side is the downstream outlet. For
representing an extreme rainfall, the peak value of rain
rate is I = 200 mm/hr. The aquifer material is as-
sumed to be isotropic and homogeneous. The aquifer’s
specific yield is constant Ss = 0.4. An initial ground-
water table is also given as

η0(x) =
exp

(
−50(x− 0.6)2

)
10
√

0.02π
, (32)

where exp(·) is the exponential function.

Because rainfall recharge and aquifer permeability
are the main factors influencing groundwater table mo-
tion, we here consider two cases, including the first

0 2 4 6 8 10

x  [m]
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0.2

0.4

0.6

0.8

1.0

 [m
]

Figure 3: Verification using steady state solution (black
triangles) under zero initial groundwater table (black
dash line), k0 = 1.0 × 10−3 m/s, I = 216.0 mm/hr,
α = 45◦. Transparent blue lines denote transient
model results. The red arrow denotes the change di-
rection of groundwater table.

Table 1: Rainfall distributions

Distribution Formulas x ∈ [0, 1]

a) no rainfall I(x) = 0

b) uniform rainfall I(x) = IP

c) linear rainfall I(x) = IPx

d) quadratic rainfall I(x) = IP − (x− 1
2 )2

† IP is the normalized peak value of rain rate.

is to show the effect of variable rainfall patterns on
an aquifer having a constant hydraulic conductivity of
1.0 × 10−3 m/s, and the second is to reveal the effect
of variable aquifer hydraulic conductivity under a uni-
form distribution rainfall pattern. Parameters of both
cases are introduced in the following.

4.1 Variable rainfall patterns

As are listed in Table 1, four types of rainfall distri-
butions are assumed here. The peak value of rain rate
holds a linear function decaying from 200 mm/hr ini-
tially to 0 mm/hr after 120 minutes, as is shown in Fig.
4. Particularly, the linear rainfall distribution gives a
maximum at the upstream, and linearly decreases to
zero at the downstream. The quadratic rainfall pattern
has a maximum at the aquifer middle, x = 0.5, but
zeros at the upstream and downstream boundaries.
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Figure 4: Decaying function of peak rain rate I ′P . Be-
fore 120 minutes it holds a linear decreasing rate, and
after 120 minutes no rainfall exists.

4.2 Variable aquifer hydraulic conductivity

To reveal the effect of different soil composition,
we consider four different aquifer hydraulic conductiv-
ity in different order of magnitudes, i.e., e) 1.0× 10−1

m/s, f) 1.0 × 10−2 m/s, g) 1.0 × 10−3 m/s, and h)
1.0 × 10−4 m/s. For the sake of simplicity, only the
uniform rainfall pattern is adopted here with the same
decaying function in Fig. 4.

5 Results and Discussion

5.1 Variable rainfall patterns

Figure 5 illustrates hydrographs of discharge and
groundwater table at the downstream outlet. As shown
in Fig. 5a, without any rainfall recharge, the ground-
water from the given initial groundwater table (32)
starts to drain at the downstream outlet at about 65 min-
utes, and reaches a maximum groundwater table of 0.2
m and a maximum discharge of −1.0 × 10−4 cms at
134.5 min, and all groundwater finally drains out. In
the other cases of uniform, linear, and quadratic rainfall
patterns (please see Fig. 5b, c, and d), the maximum
downstream discharge takes place in the case of uni-
form rainfall pattern at the value of 2.15×10−4 cms at
116.4 min, and the maximum groundwater table also
happens in the same pattern at the depth of 0.424 m
at around 132.4 min. This result is not surprised be-
cause the uniform rainfall pattern contributes the high-
est rainfall recharge to the sloping aquifer. This case
testifies that our transient numerical model can suc-
cessfully simulate groundwater table evolution with or
without variable rainfall recharge.

5.2 Variable hydraulic conductivity

Not only rainfall patterns but aquifer material prop-
erty also dominates groundwater flow. Figure 6 illus-
trates simulated hydrographs of discharge and ground-
water table at the downstream outlet. Obviously, the
higher hydraulic conductivity the aquifer soil pos-
sesses, the rapid the aquifer response takes place. For
the highest k0 = 10−1 m/s (Fig. 6e), the maximum
discharge and groundwater table happen at around 1.3
min in the values of −0.01 cms and 0.21 m, respec-
tively. On the other hand, for the case of lowest hy-
draulic conductivity (Fig. 6h) the aquifer response can
last for over 3,000 minutes in a rather smaller maxi-
mum discharge of 2.1×10−5 cms but a higher ground-
water table of 0.404 m. The results verify that our
numerical model can properly reveal the groundwater
hysteresis.

6 Concluding remarks

We present a new transient model for numeri-
cally modelling shallow groundwater table evolution
in an unconfined sloping aquifer under variable rain-
fall recharge without considering infiltration. The re-
laxation scheme with the wave-propagation algorithm
is testified to be practical for numerical solutions. Two
case studies have been performed for revealing the ca-
pability of our numerical model on modelling cases
under variable conditions as well as on capturing the
groundwater hysteresis effect. An additional merit of
this work is that the Godunov-based relaxation scheme
we applied can be easily extended to three dimensions.
So, developing a three-dimensional transient model for
groundwater table evolution would be our next target.
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