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Synopsis 

This study presents a new methodology of stress analysis for a steep and vegetated 

hillslope. A hillslope is modelled as a poroelastic medium under influences of vegetation 

surcharge on the surface and root-reinforcement inside. Tree-growth allometric equations are 

used for quantitative modelling of transient tree surcharge and root-reinforcement. 

Poroelasticity is used for evaluating stress equilibrium inside the slope of any geometry under 

given conditions of groundwater flow and vegetation forcing. Then, Mohr-Coulomb failure 

theory is applied to find the unstable zones. The three parts above are numerically solved by 

using the finite element method. We performed case study of saturated hillslopes in different 

two-dimensional geometries. The results testified this method can assess the stability of 

vegetated hillslope in any two-dimensional geometry.   

Keywords: vegetation, poroelasticity, Mohr-Coulomb theory, finite element analysis, stress 

field, slope stability  

1. Introduction

In recent decades, people around the world have 

experienced that hot days happened more frequently, 

temperature became a bit higher, and rainfall occurred 

shorter in time but more severe in intensity. These rare 

phenomena of extreme climate have caused many 

areas worldwide suffering from more natural disasters 

than the past. Under this global warming tendency, it 

is unavoidable that these extreme climate phenomena 

will become the usual situation to cause more disasters. 

In the global view, mountainous area recently becomes 

more vulnerable for landslide disasters due to more 

frequent extreme rainfall (Kirschbaum et al., 2012), 

and a tendency of increasing landslide and debris flow 

disasters has been revealed (Gariano and Guzzetti, 

2016). In the localized view, extreme rainfall can 

trigger massive shallow landslides, e.g., debris flow 

disasters in Hiroshima in 2014 (Wang et al., 2014), or 

deep-seated landslides, e.g., in Nara during Typhoon 

Talas in 2011 (Chigira et al., 2013; Chigira, 2014), on 

hillslopes where used to be safe and stable. To pursue 

a safer slopeland in the future, an analysis of hillslope 

safety under climate change influence is certainly 

important and necessary. In this study, we would like 

to propose a methodology applicable to evaluate the 
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hillslope safety considering climate change effects. 

From the mechanical perspective, hillslope 

stability depends on stress equilibrium of soil 

resistance against driving forces, e.g. groundwater 

motion, internal strength and external loading on 

slopes. Processes influencing stress status in a hillslope 

can be revealed from hydrological, geotechnical, 

geological, biological, or other factors (Sidle and 

Bogaard, 2016). As trying to investigate the long-term 

interaction between climate and hillslope safety, we 

consider the vegetation impacts, and focus on the 

analysis of vegetated hillslopes under the hydrometeo-

rological influences of groundwater flows altered by 

extreme rainfall as well as the bioenvironmental 

effects of vegetation weight and root reinforcement.  

In last decades, a great amount of landslide models 

have been proposed based on several different methods, 

e.g., statistical models (e.g., Ono et al., 2011; Budimir 

et al., 2015), one-dimensional infinite slope stability 

models (e.g., Montgomery and Dietrich, 1994; Baum 

et al., 2010), multi-dimensional slope stability models 

(e.g., Milledge et al., 2014; Bellugi et al., 2015); and 

poroelasticity (e.g., Iverson and Reid, 1992; Goren and 

Aharonov, 2009). Each model has been successfully 

verified by some historical events or laboratory 

experiments. Statistical models are robust and easy to 

be formulated for any area with sufficient event 

samples, but may not be able to estimate the long-term 

dynamical interaction. More complicated than 

statistical models, mechanical ones are good at 

physically representing hillslope processes. However, 

most of present mechanical models are usually derived 

in terms of the infinite slope stability model with 

simplified assumption of groundwater flow parallel to 

the bedrock. Because the infinite slope stability model 

adopts the plastic theory (Terzaghi, 1948), an accurate 

calculation of plasticity requires information of failure 

surface which is unknown in priori for a natural 

hillslope. Therefore, utilizing poroelasticity for direct 

analysis of stress field can overcome the drawback of 

lacking of failure surface information. Hence, in the 

last decades poroelasticity has been widely applied to 

analysis of an engineering slope of infinite depth (e.g., 

Terzaghi, 1948; Iverson and Reid, 1992; Das 2014). 

But, it comes out another problem that the depth of soil 

layer above bottom bedrock in hillslope is usually 

finite. Therefore, correct assessment of stress field by 

using poroelasticity argues information of soil layer 

depth and one additional no displace-ment boundary 

condition at soil-layer bottom. To better assess 

hillslope safety in the future, we adopt the method of 

poroelasticity.  

The other important factor influencing the slope 

stability is vegetation. The vegetation on hillslope can 

stabilize the slope by its weight on the surface, and can 

enhance soil strength by root-reinforcement. Recently, 

based on the forest allometry, the aboveground mass 

(AGB) and belowground mass (BGB), representing 

the vegetation weight above and under the slope 

surface, in different climatological zones can be 

quantitatively estimated (Chave et al., 2005). Besides, 

vegetation can also be altered by climate conditions. 

Therefore, we take vegetation surcharge and additional 

root-reinforcement cohesion into account in our 

methodology as important biological factors for 

solving stress field in a slope.  

In the following, the content starts by brief 

introduction of all fundamental theories and numerical 

methods we adopted. Then, it follows the case analysis, 

result and discussion, and concluding remarks.     

 

2. Problem setup and fundamental theory   

 

In most cases, depth of natural hillslopes can be 

regarded to be finite. To analyze finite-depth hillslopes, 

our methodology comprises four parts: a) estimation of 

vegetation surcharge and root reinforcement, b) 

groundwater motion, c) effective stress field analysis, 
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and d) soil failure analysis. Each part shall be briefly 

introduced in the following. In this study, we consider 

the two-dimensional problems.  

 

2.1 Soil thickness estimation  

The soil depth of a natural hillslope is usually finite. 

Because the exact soil thickness is usually unavailable 

without field investigation, some geomorphological 

relations (Catani et al., 2010), depending on the local 

slope angle or other parameters, can be used for 

approximate thickness estimation within a reasonable 

error.  

 

2.2 Vegetation effects on a hillslope  

Being an important factor for carbon cycle analysis, 

aboveground biomass (AGB) and belowground 

biomass (BGB) have been widely used for estimating 

vegetation weight based on tree allometry (Chave et al., 

2005). With AGB from allometric equations the 

vegetation loading W can be estimated by  

 

AGBW A  ,  (1) 

 

where A  is the area. To express the effect of root-

reinforcement on a soil bulk (Wu, 2013), the total 

cohesion of soil bulk can be expressed as  

 

s rc c c  ,  (2) 

 

where sc  is the original soil cohesion [Pa], and rc  

stands for the additional cohesion [Pa] due to root-

reinforcement. In most tree species, rc  has an 

exponentially decaying profile in the perpendicular 

direction of the soil layer, but has different horizontal 

extents (Dupuy et al. 2010).  

 

2.3 Evaluation of stress field in the soil layer  

A hillslope can be modelled as a poroelastic 

medium (Biot 1941; Iverson and Reid, 1992), which 

regards soil bulk as an elastic skeleton and water or air 

fills up the interior voids. To connect groundwater 

effect with an elastic soil bulk, it is conventional to 

adopt the common effective stress ij   (Terzaghi, 

1948), as below  

 

ij ij ijp     ,  (3) 

 

where p  is the pore water pressure [Pa], ij  is the 

stress tensor and ij  is the Dirac delta function, 

where indices    , , zi j x  as the present work 

focus on two-dimensional problems in the Cartesian 

coordinates. Under the assumption of linear elastic 

medium and infinitesimal strain, (3) can be expressed 

by the relationship between stress and displacement,   

 

jk i
ij ij

k j i

uu u
p

x u u
   
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,  (4) 

 

where   and   are Lamé constants, and iu  

denotes the displacement vector. The Lamé constants 

can also be expressed as  
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where E  is the Young’s modulus, and   is the 

Poisson ratio of a soil bulk. Also, with (3) the stress 

equilibrium of a finite-depth soil layer reads   

 

ij i
i

j i

up f
x x t


 
 
  

  
,  (6) 

 
where ij  is the tensor of effective stresses [Pa], 

 0,0,if g   stands for the gravitational effect 

[Pa/m],   is the constant bulk density [kg/m3] and 

g  is the gravitational acceleration [m2/s]. Then, for 

elastic soil, the effective stress compatibility gives 
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where 2

j jx x    represents the Laplace operator. 

Finally, it requires pore water pressure information 

for stress equilibrium. As being the conventional 

theory of groundwater flow, the Richards’ equation 

(Brutsaert, 2005) is adopted in our study, as below  

 
2

i i zi s
j j w

p Hk x S R
x x g t




  
      

,  (8) 

 
where ik  denotes the hydraulic conductivity [m/s] in 

the i-direction, sS  is the specific storage [m-1], R  is 

the rainfall recharge [s-1] , and the hydraulic head H

[m] is defined as  

 

w i ziH p g x   ,  

 

and w  is the water density [kg/m3], and 1zi   if 

i z  otherwise 0zi  .    

Boundary conditions are no deformation at the 

lateral and bottom boundaries, i.e.,  

 

0iu  , at 0z  , Lx B  and RB , (9) 

 

and tractions at the top surface of a slope as  

 

ij j zin W    and 0p  , at  z h x .  (10) 

 

For a saturated condition,   0p z h   is imposed 

on the slope surface with fluxes at lateral interfaces and 

no bottom flux. Particularly, the surface influx, repre-

senting the infiltration motion of unsaturated soil, can 

also be assumed as boundary conditions for solving (8) 

separately.  

As the geometry of a real hillslope is usually not a 

simple rectangle, the governing equations, from (3) to 

(10), are numerically solved by using the finite 

element method. Then, the method of stress analysis is 

verified by analytical solutions of problems in a simple 

geometry.  

 

2.4 Soil failure analysis  

The Mohr-Coulomb theory (Terzaghi, 1948) is 

used for identifying unstable zones. Considering 

vegetation influences, the root-reinforced cohesion (2) 

and solved stresses are applied to find the location of a 

possible failure surface. The yield function F  of 

failure surface reads   

 

 
 

2

22sin 2 tan ,
xx zz

xx zz

F

c

 

   

 

  
 (11) 

 

where xx  and zz  are the principal stresses,   is 

the friction angle [°] of soil bulk, 0F   denotes no 

failure, and 0F   can give the failure surface.  

 

3. Numerical method   

 

As the governing equations, from (3) to (10), are 

linear, the conventional finite element method 

(Zienkiewicz et al., 2013) is used for numerically 

evaluating approximate stress field in a hillslope. For 

finite element analysis, the weak (or variational) 

formulation of stress equilibrium reads  
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where iu  is a vectorial test function of displacement; 

  and h  denote the whole domain and boundary 

of slope surface, respectively.  

The weak formulation of groundwater motion is  

 

 

    ,
q

j j

h hk d
x x

hh qd h C Q d
t



 



 

 
 

 

      



 
 (13) 

 

where h  is a scalar test variable of hydraulic head; 

q  denotes the lateral interfaces for in or out-flux.  

Equations (12) and (13) also stand for the 

variational formulation of the governing equations in 

the three dimensions. To solve the above variational 

formulations of our problem, the numerical program 

was implemented with the help of a free and well-

developed finite element solver, which is called 

freefem++ (Hecht, 2012).  

 

4. Analysis and discussion 

 

Two-dimensional slopes in different geometries 

are used for analysis and verification of applicability 

of our proposed methodology.   

 

4.1 Problem setup 

We consider the hillslopes covered by a natural 

forest of which the main tree species is Japanese 

Cedar. For a hillslope, the vegetation surcharge on the 

surface and root-reinforcement underground can 

estimated using allometric equations. Initial condition 

is set to be no vegetation in the beginning, as is shown 

in Fig. 1 (derivation details are mentioned in the 

Appendix). As the tree growth is a long-term process, 

the time interval is set to be year, and total duration is 

200 years. So, the transient effect in the stress 

equilibrium and groundwater flow equations, i.e., (6) 

and (8) respectively, can be ignored. This means the 

governing equations become steady-state ones, and the 

rainfall recharge R  can be neglected in the time-

scale of year. For such a long characteristic time, the 

infiltration process is also excluded, and only the full 

saturation is considered in this study. Then, four slope 

 

Fig. 2 Results of a saturated parallel slope. (a) pore-

water pressure and seepage flow, (b) cohesion 

distribution due to root-reinforcement, (c) effective 

stress and displacement, and (d) yield function. The 

(b), (c), and (d) represents the results at the 100th year 

in our simulation.     

 

 
Fig. 1 Time variation of tree surcharge W  
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shapes are used for analysis, including parallel, convex, 

concave, and convex-concave shapes, as are shown in 

Figs. 2 and 3.  

Finally, we consider the general slopes consisting 

of loose sand and gravel, and referred to Das (2014) 

the soil parameters of the hillslopes are assumed to be 

Poisson ratio 0.25  , Young’s modulus 80E   

[MPa], soil density 1,990   [kg/m3], soil cohesion 

7c   [kPa], and soil internal friction angle 35   . 

For groundwater flow analysis, all the parameters are 

water density is 1,000w   [kg/m3] and hydraulic 

conductivity of homogeneous soil in slope is 510k   

[m/s]. As the slope saturated, we here consider that no 

flux exists at the lateral boundary interfaces.  

 

4.2 Results ad discussion 

The analysis results of the fully-saturated slopes in 

the four different geometries are discussed in the 

following. The transient effect of tree surcharge is not 

significant in our cases as the tree weight is not heavier 

than the soil one. Figure 2 shows the results of parallel 

slopes. As saturation is assumed, the seepage flow is 

along in the slope boundaries, but not parallel 

everywhere, as in Fig. 2a. According to the vertical 

 
Fig. 3 Results of slopes in the geometries of (a) convex, (b) concave, and (c) convex-concave slopes. The 

data for demonstration is at 100 years. From up to down, subfigures show the pore-water pressure, slope 

displacement, and yield function for searching unstable zones.  
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tree root distribution adopted in this study, (19), the 

additional root-reinforcement cohesion concentrates in 

the portion near slope surface. Then, we can easily 

discover that effective stress directs to the slope 

downside, and the failure surface of unstable zone is 

not parallel to the top and bottom surfaces, as are 

shown in Fig. 2c and 2d. These reflect that the 

conventional assumption of parallel failure is invalid.      

In the other three cases, Figure 3 shows the results 

of convex, concave, and convex-concave slopes. From 

stress distributions, higher effective stress exists in the 

downside of the concave-based slopes, but it can be 

found in the upside of the convex slope, as are shown 

in Fig. 3. This stress distributions reveal that the 

surface part is likely to be more unstable in a convex 

slope than in a concave one. The concave slopes have 

more resistance support from the downside of slope. 

Also, the failure surface is not parallel to the top and 

bottom boundaries. This result explains that a model 

without parallel failure assumption is more applicable 

to correctly analyze the safety of a hillslope of a finite 

depth.    

 

5. Concluding remarks 

 

We applied the poroelasticity with forest allometric 

models to analyze stress field in a vegetated hillslope, 

and conducted several case studies of two-dimensional 

slopes in different geometry and of a finite depth. From 

the results of case study, we found that the slope 

stability only changes a little bit as time evolves, and 

the convex slope has more unstable zone in the upside 

than concave and convex-concave slopes. The toe of a 

concave slope is an important part for resisting the 

slope from sliding failure.  

For the next research steps in the future, theories 

and numerical methods of transient groundwater 

motion will be involved into this methodology to 

evaluate the time-dependent slope instability in a time 

interval shorter than a year. Then, the methodology 

will be available for analysis of slope safety under the 

effects of short-term extreme rainfall. Also, the model 

will be extended to a three-dimensional one. Some of 

real events will be conducted for verification. Finally, 

this methodology is expected to be a proxy to connect 

the analysis of hillslope stability with the climate 

change influence, and to be a new tool for risk 

assessment of slopeland area under future climate 

change.   
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Appendix  

 

The derivation of growth equations of biomass 

weight, root strength, and root distribution of Japanese 

Cedar is presented here.  

Firstly, the derivation of tree surcharge is 

mentioned as follows. Referring to the measurement 

(Cheng et al., 2013), the time evolution of the diameter 

at breast height (DBH), defined as the diameter of a 

tree trunk at 130 cm above ground, is expressed as  

 

  DBH 67 1 0.937exp 0.0117t   ,  (14) 

 

where the unit of DBH  is [cm], and t  is the time in 

year, as shown in Fig. 4. Then, for the forests in Japan 

the allometric equation of aboveground biomass 

(Chave et al., 2015), representing the total weight of 

tree trunk, branches, and leaves, could be   

 


2 3

AGB exp 1.499 2.1481

0.207 0.0281 ,
t   

   
  (15) 

 
where t  is the averaged density [Mg/m3] in the 

range of 0.302 0.442t   (Cheng et al., 2013), 

and  ln DBH  . The next parameter is the 

distribution density N , of which the unit is the tree 

number in one square meter, can be expressed as 

 

  0.036 1 10.112exp 0.0419N t   .  (16) 

 

Figure 5 shows the time variation of tree distribution 

density. The time-varying tree density in a unit area is 

an exponentially decay function because a tree can 

occupy more space as it grow up. Finally, using (14) 

to (16) the tree surcharge in a unit area [kg/m2] yields  

 

 W t N AGB  ,  (17) 

 

which is one boundary condition at the slope surface 

for stress equilibrium analysis. Figure 1 shows the time 

variation of tree surcharge. 

On the other hand, the time evolution of additional 

cohesion in terms of growth of tree root in hillslope 

can also be quantitatively modelled by allometric 

equations. The time-dependent root cohesion (Sidle, 

 

Fig. 4 Time variation of the mean diameter at breast 

height (DBH)  

 

 

Fig. 5 Time variation of tree distribution density   
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1992) can be expressed as  

 

   
10 0.449

0.952 19.05exp 0.25
R t

t
 

 
, 

 (18) 

 

where the unit of is [kPa]. From measured data (Genet 

et al., 2008) the vertical normalized distribution of root 

can be an exponential-decaying function, as below   

 

   exp 0.0275D z z  .  (19) 

 

Finally, combining (19) and (20) yields the 

spatiotemporal distribution of additional cohesion due 

to root-reinforcement within a hillslope as below,   

 

 ,rc z t R D  .  (20) 

 

Figures 6 and 7 show the growth curve of additional 

root-reinforcement cohesion and the vertical root 

distribution, respectively.  

Equation (17) is used as a boundary condition at 

the slope surface for evaluation of stress equilibrium, 

and (20) is applied to Mohr-Coulomb failure theory 

for identifying the unstable zones.  

 

(Received June 13, 2017) 

 

 

  

 

Fig. 6 Time variation of additional cohesion at the 

slope surface due to root-reinforcement    

 

 

Fig. 7 Vertical profile of additional root cohesion 
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