ひまわり8号などのマルチセンサー観測の データ同化によるゲリラ豪雨予測

Guerrilla-Heavy Rainfall Prediction by Assimilation of Observation Data from Multi-Sensors Including Hamawari-8

山口弘誠・上嶋一樹・堀池洋祐・中北英一

Kosei YAMAGUCHI, Kazuki UESHIMA, Yosuke HORIIKE and Eiichi NAKAKITA

Synopsis

As the growing process of a cumulonimbus cloud is very short, guerrilla-heavy rainfall is difficult to predict. In this study, we aim to improve the accuracy of early prediction by using assimilation of observation data from multi-sensors including Himawari-8. Multisensors is considered to be effective for prediction. But the capability of multi-sensors observation assimilation is still not clarified because not much literature is available at present. Therefore, we examine it by using ideal experiments in Observing System Simulation Experiments (OSSE). The result shows the data with Himawari-8 assimilation can predict the precipitation, which can't be predicted by the one without assimilation. In order to improve prediction accuracy, our next step would be to conduct real case studies to find out relationships among assimilation parameters and developing stages of a cloud

キーワード:ゲリラ豪雨, ひまわり 8 号, Ka バンドレーダー, 雲情報, データ同化 Keywords: Guerilla Heavy Rain, Himawari-8, Ka Band Radar, Cloud Information, Data Assimilation

研究の背景と目的

災害を引き起こす豪雨には,様々な空間的・時間的 スケールが存在する.ゲリラ豪雨(局地的豪雨),集 中豪雨,梅雨前線,台風と順にスケールが大きくな り,もたらされる災害にも違いがある.本研究にお いて対象とするゲリラ豪雨は,突如発生し急速に発 達し,局地的に猛烈な豪雨をもたらし災害を発生さ せ,人命を奪う危険性がある.ゲリラ豪雨災害が今 後も起こりうるということに対して,土木工学とし ての果たすべき使命は,人命を奪うようなゲリラ豪 雨を少しでも早く予測し,避難指示を的確に出し, 被害を減らすことであり,そのために降水予測情報 は極めて重要である.ゲリラ豪雨の予測手法として, 中北ら(2008)は発達する積乱雲の本質を上手く捉え た観測パラメータを用いて,発達するかどうかの定 性的な判断に用いる研究手法を開発し,すでに国土 交通省で実用化が開始されている(片山ら 2015).

一方で、短時間降雨予測研究において、近年デー タ同化研究の飛躍が国内外を問わずめざましい (Tsuyuki and Miyoshi, 2007).計算機資源の発達によ って、より解像度の高い数値モデルを用いたデータ 同化研究や、観測の高分解能化に伴って研究対象ス ケールがより小さな現象を含むようになってきてい る.その中でスーパーセルなどの単一積乱雲を対象 とした"ストームスケールのデータ同化"という言葉 も定着してきており、ゲリラ豪雨もこの範疇に含ま れるようになりつつある(Kain et al,2010. Sun et al,2014).計算コストの問題をひとまず置いておくと、 定量的に降水量を予測するという観点において最も 有効な手段の一つであると言える.

ゲリラ豪雨を含むストームスケールのデータ同化 研究においては、Xバンドレーダーなどの降水レー ダーによる観測値の同化は有効である.しかし、降 水レーダーのみでゲリラ豪雨を予測することが困難 な事例も多く報告されている(山口ら,2009).降水レ ーダーは降水に依存した観測値を得るという特性が あるため、急速に発達するゲリラ豪雨のような事例 では、ある程度積乱雲が発達した段階からしかデー タ同化できない.そこで、降水より前の段階の情報 を得られると静止気象衛星や Ka バンドレーダーな どのマルチセンサーによる観測が期待されている. このようなマルチセンサー観測をデータ同化するこ とで、ゲリラ豪雨の降水予測精度を向上することが できるのではと期待されている.

観測値に予報モデルを同化するということは、豪 雨予測精度向上に有効な手段である.短時間先降水 予測では、境界値よりも初期値の精度が予測結果に 支配的にはたらくためである.またゲリラ豪雨予測 といった時間的・空間的に小さなストームスケール での短時間降水予測のデータ同化研究はまだまだ少 なく、特に静止気象衛星や Ka バンドレーダーを用 いたデータ同化の研究はまだ確立されていない.そ の理由として、効果的な観測演算子が開発途上であ るからと考えられる.

そこで本研究では、近い将来、静止気象衛星やKa バンドレーダーから得られる観測情報のデータ同化 を想定し、その第一段階として理想実験においてデ ータ同化実験を行う.従来の降水レーダーなどでは 得ることが困難であった、ゲリラ豪雨の発達初期段 階の情報を同化することによって、ゲリラ豪雨の発 達期や成熟期に対してどのような影響があるのかと いうことに対して明らかにすることを目的とする.

2. 短時間降水予測におけるデータ同化の概説

2.1 静止気象衛星を用いた短時間降水予測に おけるデータ同化に関する既往研究について

2.1.1 静止気象衛星ひまわり 8 号について

2015年7月に運用開始された,ひまわり8号から 得られる情報の空間解像度や,時間間隔が従来の静 止気象衛星と比較して大きく改善された.ひまわり 8号では水平解像度は赤外では2km,可視が0.5~1km となり,観測時間間隔も全球観測で10分間隔に加 え,特定の領域を高解像度で観測できるようになり 日本周辺域では2.5分間隔で観測され,放射計は可 視3バンド,近赤外・赤外13バンドの合計16バン ド構成となり,雲や植生,エアロゾルなどといった 情報がより詳細に得られるようになった.その中で 本研究においては赤外バンドから得られる雲の情報 をデータ同化することを想定した理想実験を行った. これまでと比較して,解像度が鮮明になり,かつ高 頻度となり,その結果ゲリラ豪雨のような急速に発 達する現象を時間的にも空間的にも解像できるよう になった.そのため,ひまわり8号の観測値をデー 夕同化することによってストームスケールの降水予 測精度向上の役立つのではないかと期待されている.

2.1.2 既往研究について

短時間降水予測研究では、一般的にメソスケール の気象予測モデル、いわゆるメソ気象モデル、もし くは雲解像モデルが用いられる.そのため、基本的 なモデル変数は、風速・気圧・気温・水物質である. これらの第一推定値を観測値によって現実的な大気 の場となるように修正していく.Fig.2が現在気象庁 における予測モデルにおいて用いられている観測値 の一覧である.一般的に同化する観測値として用い られるものは、地上気象・ラジオゾンデ・気象衛星、 および気象レーダーの観測情報である.

現在,ひまわり8号などの静止気象衛星によって 得られる情報を同化することによって、短時間降水 予測の精度を向上させようとする研究が始まり出し た. それは, 静止気象衛星の観測間隔が高頻度, 空 間分解能も高くなり積乱雲を解像できるようになっ たことで、気象レーダーなどによって得られる情報 よりもゲリラ豪雨の初期段階の情報を得ることがで きるようになったためである. ここでは, 澤田ら (2016)、および Kerr et al.(2014)の研究についてそれ ぞれ紹介する.澤田ら(2016)は、気象庁非静力学モデ ルを使った局所アンサンブル変換カルマンフィルタ NHM-LETKF(Miyoshi and Aranami 2006 SOLA; Kunii 2014 WAF)に観測演算子として放射伝達モデル (RTTOV: Radiative Transfer for TOVS)を組み込んだシ ステム(岡本ほか, 2016 春季大会)を使用した.モデル の水平解像度は 10km でひまわり 8 号の輝度温度デ ータ同化が大雨の再現性を高めることを実験した. Kerr et al.(2014)は観測システムシミュレーション実 験(OSSE)を用いて、衛星から得られる情報の輝度温 度と相関関係があると考えられる雲頂温度(CTT: Cloud-top temperature)同化により supercell の予測精 度に対しどのようなインパクトがあるのかを実験し た. その際, メソ気象モデル The Advanced Research version 3.3.1 of the Weather Research and Forecasting(WRF-ARW)Model (Skamarock et al. 2008) を用いて、モデルの水平解像度は 2km と設定した. 結果は、初期擾乱の発達期間において、輝度温度を 用いて発達する積乱雲の特性を情報として得ること は、レーダー反射因子のような降水依存の観測値よ り、初期の段階の情報をデータ同化するという観点 から有効であるということが示された.

しかし上述の2つの先行研究では、ゲリラ豪雨の ような時間的・空間的に小さなストームスケールよ りも大きな現象に対しての影響を評価している.そ こで、ゲリラ豪雨のようなスケールの小さな現象に 対して同化によって与える影響を調べるために静止 気象衛星から得られた観測値を同化することを想定 した理想実験を行い、同化の効果を明らかにする.

Fig.1 A list of observation values used in the prediction model of the Meteorological Agency citation from http://www.jma.go.jp/jma/kishou/minkan/koushu131120/ shiryou1.pdf.

2.2 今後同化することが期待されている Ka バンドレーダーの概説

Kaバンドレーダーは送信周波数が約34.87GHz(波 長約8.6mm)のミリ波レーダーであり、レーダー送 信周波数の高い方が水滴からの散乱が大きくなる (浜津ら,2000)という電波散乱の特性上,現業用の降 水レーダーと比較して、感度が高く降水を伴わない ような雲や霧の観測が可能であるため雲レーダーと も呼ばれる.一方で電波の減衰は大きくなるため観 測範囲は降水レーダーなどより比較的狭い領域であ る.例えば,名古屋大学が所有する最新式のKaバン ド偏波ドップラーレーダーの距離分解能は150m, 方位分解能は0.35°,観測範囲はレーダーを中心とし た半径30kmの園内である(疋田,2016).この降雨 をもたらすよりも前の積乱雲発達初期段階における 情報をデータ同化することによってどのような影響 があるのかを調べていく.

3.同化システムの基本設定

3.1 雲解像データ同化システム CReSS-LETKF の概要

まず同化に用いるアンサンブルカルマンフィルタ

(Ensemble Kalman Filter; EnKF) 法について説明す る. アンサンブルカルマンフィルタ法は Evensen (1994) により初めて提案されたデータ同化手法で あり, アンサンブル予報とデータ同化手法であるカ ルマンフィルタを融合したものである.

本研究では、ひまわり 8 号や Ka バンドレーダー から得られる情報を雲解像モデルに同化するための データ同化手法として、Yamaguchi and Nakakita (2008) の構築した雲解像データ同化システム CReSS-LETKF を用いる. 雲解像モデル CReSS にデータ同 化手法 LETKF (Local Ensemble Transform Kalman Filter, Hunt et al., 2007)を組み込んだシステムであり、 先端的な雲解像データ同化システムの一つである. ここで、LETKF 法について概念的に説明する. この 手法は広義でアンサンブルカルマンフィルタ法の一 つであり、アンサンブル予報とカルマンフィルタを 融合させた同化手法である. (Patil et al., 2001).

ここで、データ同化手法として、4次元変分法では なくアンサンブルカルマンフィルタ法を選択した理 由は、4次元変分法で用いるアジョイントモデルの 開発が必要ないという利便性と、同化するひまわり 8号の観測値と大きく関係する雲微物理プロセスは 時間的に不可逆であることから正確なアジョイント モデルの構築が難しいため、本研究の目的であるひ まわり8号のデータ同化において有利である.

3.2 観測システムシミュレーション実験 OSSE の概説

Fig.2 に OSSE の概念図を示す.本研究では,まず 同化による影響を理想実験で評価する. Masutani et al.(2010), Tan et al.(2007), Marseille et al.(2008)の3つ の観測システムシミュレーション実験(Observing System Simulation Experiment:OSSE)についての研究 を石橋(2013)が整理していたものを参考にして OSSE について説明する.本研究においては,計画中 の新しい観測システムが数値予報に与える影響をあ らかじめ評価するという,仮想観測システムの評価 という目的で用いる(石橋 2013).

まず予報モデルは完全モデルであるという仮定を おく.ある数値シミュレーションをして"真"の大気 場とできるとし、その真の大気場に誤差を与えて評 価したい観測値とする.実際は真の場はわからない ので、真の大気場(あるシミュレーション結果)とは 異なる初期値から予報し、真の大気場から作成した 観測値を同化して、データ同化による予報精度を評 価する.理想実験では真の大気場の各座標における 値のデータが存在するので同化による影響を評価し やすいという利点がある.

Fig.2 Conceptual diagram of OSSE

3.3 擬似観測値の作成方法

本研究では、ひまわり8号の赤外バンドから得ら れる衛星輝度温度の同化と Ka バンドレーダーから 得られる雲の情報の同化を想定した理想実験を行う. そこで衛星輝度温度と相関があると考えられる雲頂 温度(Cloud Top Temperature :CTT)をひまわり 8 号の 擬似観測値とし、また雲の情報として雲水混合比 qc をKaバンドレーダーの擬似観測値として同化する. 作成した観測値を Fig.3 に示す. θ crt 作成方法は Kerr et al.(2014)の手法に参考に少し簡易化をして作成し た. x および y 方向の格子番号 i および j を固定して 鉛直1次元方向に各格子の gc, 雨水混合比 gr, 雪片 混合比 qs, 氷晶混合比 qi, 霰混合比 qgのそれぞれを 足した総水物質混合比 $q_t (=q_c+q_r+q_s+q_i+q_s)$ が 1.0×10^{-1} ²gkg⁻¹よりも大きな値をとった格子の中で,最も高度 が高い点の温位と定める.これを同化対象とする積 乱雲近傍の全ての水平格子点ごとに算出し、重ね合 わせたものを θ ctt とした.また作成した擬似観測値 に対して観測誤差として標準偏差 1K の誤差を与え た.一方, qc に関しては,実際に観測できるであろ う閾値として、2.0×10⁻¹gkg⁻¹と設定し、閾値以上の ものを擬似観測値として抽出した.これに対しては 観測誤差として、標準偏差 1.0×10⁻²gkg⁻¹で誤差を与 えた.この閾値設定については次節で説明する.

Fig.3 Pseudo observation values (a) Potential Temperature θ , (b) cloud water mixing ratio q_c

3.4 初期アンサンブル生成方法について

本研究のアンサンブル同化で使用する LETKF は アンサンブルメンバーを必要とする.ここでその初 期アンサンブルメンバーの作成方法について述べる.

3.4.1 予測実験の作成方法

真の大気場の初期値,境界値は予測開始時刻の気 象庁 GPV(Grid Point Value: 格子点値)の MSM(Meso-Scale Model:メソ気象モデル)の予測の水平風,気温, 相対湿度を用いた.一方,予測 RUN の初期値,境界 値は予測開始時間より,9時間前の MSM の予測の水 平風,気温,相対湿度を用いた.また海面水温は共 に気象庁 NEAR-GOOS データを用いた.

3.4.2 誤差の作成方法

アンサンブルは予測 RUN の初期値の東西風 u,南 北風 v,温位 θ ,水蒸気混合比 q_v に対してガウス分 布のランダムな摂動を与える.標準偏差は u,vは 2.0ms⁻¹, θ は 2.0K, q_v は 2.0gkg⁻¹で与えた.しかし, 完全にランダムに誤差を与えるとモデルに不安定を 生じさせてしまうので,ランダムに作成した誤差を 様々な処理をしてモデルに適合するようにした.ま ず,Kerr et al.(2014)と同様に式(1)で与えられるよ うに過重移動平均する.

 $f^{perturbed}(l, m, n) = f^{unperturbed}(l, m, n)$

$$+\sum_{i,j,k} f'(i,j,k) \exp(-\frac{|x_i - x_l|}{l_h} - \frac{|Y_j - Y_m|}{l_h} - \frac{|z_k - z_n|}{l_h})$$
(1)

しかしこの過程だけでは、本研究の解像度において は不十分であると考えられた.理由としては計算領 域において、スムージングしたことにより多くの箇 所で誤差の値のピークが見られたことがある.その ためこのピークを減らすために、領域内で線形補間 をし、それに対して単純移動平均を用いて誤差を作 成した.この過程によってピークが減少させること はできたが、線形補間したことによって補間した部 分において値が滑らかにつながっていなかったので、 再び過重移動平均をすることによってその問題を解 消し、初期値に対して与える誤差を作成した.

ひまわり8号とKaバンドレーダーの 同化を想定した理想実験

4.1 理想実験の目的

本研究の最終目標は実際にモデルにひまわり8号 やKaバンドレーダーから得られる情報をデータ同 化して、ゲリラ豪雨の予測精度を向上させることで ある.積乱雲発達初期段階においてひまわり8号や Ka バンドレーダーはゲリラ豪雨のシグナルを捉え られるのではと期待されている.しかしながらそれ らの観測値を用いたデータ同化において問題が多く 存在している.観測誤差を適切に与えられるほどの データの蓄積がないということや,観測演算が確立 されていない新しい観測情報であり、そもそも雲情 報のデータ同化が積乱雲メカニズムにどのような効 果を与えるか明らかになっていない.以上のことか ら,まずは影響が評価しやすい理想実験を行う.

4.2 OSSE を用いた理想実験における真の大気 場の計算設定と予測ラン

4.2.1 対象事例

Fig.4 に 2016 年 8 月 19 日の 12:00 から 12:50 にお ける沖縄のレーダー画像を示す.名護市周辺で 12:10 頃から降水が確認され,急速に発達していき,12:40 には降雨強度が 50mm/hr に達した.

4.2.2 雲解像モデル CReSS の設定条件

本研究では雲解像モデルとして、名古屋大学と (財)高度情報科学技術研究機構が共同で開発した CReSS(Cloud Resolving Storm Simulator, Tsuboki and Sakakibara, 2002)を用いる. CReSS は雲スケールか らメソスケールの現象の高精度シミュレーションを 行うことを目的とした雲解像の非静力学・圧縮の大 気モデルである.その名前が示すように、積乱雲を 表現できるほど格子間隔が小さく、かつ積乱雲群が 組織化したメソスケールの降水システムをシミュレ ーションできるほど計算領域が広いものである.そ のために水平と鉛直の解像度が可能な限り高く、雲 の中で起こっている雲・降水に関する物理過程を可 能な限り表現している.

さて、ここでは真の大気場と予測ランを作成する ための CReSS の設定を述べる. 初期時刻を 19 日 12 時,水平解像度を 500m, 鉛直方向には平均的に 250m (ただし、ストレッチングをかけて下層を細かくと り、全 64 層となっている)とし、予測を開始する. 計算領域は東西が東経 127.5 度から 128.4 度の区間, 南北は経度 26.0 度から 27.0 度の区間を対象とし,沖 縄本島がすべて計算領域に含まれるように設定した. 真の大気場としては初期値,境界値には 19 日 12 時 スタートの、予測ランは 19 日 3 時スタートの MSM 予測の水平風、気温、相対湿度のデータを、海面水 温は気象庁 NEAR-GOOS データを用いる.また 2.5 分ごとに計算結果を出力する.

Fig.4 Image of radar in Okinawa

4.3 真の大気の場の解析

4.3.1 地上降雨強度について

Fig.5 に計算開始後 35 分から 47.5 分後までの 2.5 分間隔の地上降水強度を示す. 12:35:00 に沖縄海上 に弱い雨が確認され始めた. 12:42:30 には範囲は少 ないが降水強度が 150mm/hr に達する部分も確認さ れた. わずか 10 分程度で急速に降水をもたらす結果 となった. その後雨域は拡大していき 13:05:00 頃を ピークに発達しその後弱くなっていった.

Fig.5 Diagram showing ground precipitation intensity in case of true

4.3.2 $q_c \ge q_r$ について

qcと qrの挙動について、東経 127.942 度上を南北 に切断し,経度 26.5 度から 26.6 度の区間を高度約 6000m までにおいて解析した. Fig.6 に計算開始後 22.5 分から 35 分後までの 2.5 分間隔の qc と qr を示 す. 12:35:00 に降水が確認されるよりも約 10 分前の 12:22:30 に高度約 1100m から約 1600m の高さに qc が初めて確認された.この段階では qcの値は 0.01gkg-1と非常に小さな値であるがこの時点から雲 が形成され始めていた. そして 12:25:00 には qcの値 は最大 0.2gkg⁻¹以上, 12:27:30 には最大 1.00gkg⁻¹が 計算された. また同時に qr についても 0.01gkg⁻¹と非 常に小さいが計算され雨粒が形成され始めた. ただ し、この値は X バンドレーダーでは見ることができ ない. この時点で, 雲の高度は約 2500m に達してい て、雲の中心部には約 2ms-1 程度の上昇流が発生し ていた. その後順調に雲は発達していき, 12:35:00 に 高度約 4500m に達し、qc、qr もともに最大 2.00gkg⁻¹ 以上をとり,約5ms-1ほどの上昇流が発生しており、 地上に降水が確認され始めた. この時点において X バンドレーダーで確認できると考えられる.その後、 地上降水強度が 150mm/hr 程度と地上降水のピーク が確認された 12:42:30 まで雲頂高度は上がっていき, 6000m 以上まで上昇していった. その後は徐々に高 度を下げていって、12:55:00 には雲頂高度が 5000m を下回り、発生していた積乱雲の横につながった形 で新しく雲が形成され始めた。この時点で雲の中心 の qc の値は 0.20gkg-1 程度であった。その後、初めに 降水をもたらした積乱雲は雲頂高度を下げながら qr の値減少していき弱まっていった.

4.3.3 温位について

Fig.7 に計算開始後 22.5 分後から 50 分後まで 2.5 分毎の温位を示す. 矢印は風速である. 12:25:00 に 上昇流が発生し始め, 12:27:30 に θ はわずかながら 変化し始めた. その後上昇流が発生する高度が徐々 に高くなっていき, それに伴って上昇流が強くなっ ていき, また θ の変化が 5500m 程度まで上昇した. 対流セルのコア部分において, 周囲の同じ高度に対 して 3K 程度高くなっていた. これは凝結によって 潜熱が放出されたことによるものである. 雲頂部に おいては低い温位の気塊が持ち上げられたものの, 凝結量が少ないため, 周囲より温位が低くなった

Fig.6 q_c and q_r in true case (shown in 2.5 minute intervals) The contour line indicates q_c , and the shadow indicates q_r .

4.4 予測ランと真の大気場の比較

4.4.1 降雨強度について

Fig.8 に計算開始後 40 分から 52.5 分後までの 2.5 分間隔の地上降水強度を示す.予測において、降水 が確認され始めたのは 12:42:30 と、真の大気場より も 7.5 分遅れていた.降水強度のピークは 12:50:00 頃に確認され、真の大気場よりも弱い 50mm/hr 程度 であった.また降水の水平方向の広がりも真の大気 場と比較して狭く,衰退も早かった.

Fig.8 Diagram showing ground precipitation intensity in case of true

4.5 実験設定

本実験において, Fig.9 に示したように, 同化期間 は上空に qc が確認され始めた 12:22:30 から地上に弱 い降水が確認され始めた 12:37:30 までとする. 同化 時間間隔はひまわり 8 号の観測が 2.5 分間隔で行わ れていることから 2.5 分とする. 本研究では, Ka バ ンドレーダーの観測のサイクルは 10 分間隔である が, 仮想的にひまわり 8 号の同化時間間隔と同様に qc も 2.5 分間隔で同化した. また Fig.10 に示すよう に各実験に対して実験ケース名をつけた. 以後は実 験ケース名で各実験を示す.

Fig.9 Diagram of the time axis in this experiment

実験名	同化した 観測値	同化期間	予測期間	備考
ケースtrue				真の大気場
ケースno DA				同化なしで 予測したもの
ケースCTT	СТТ	10.00.00	40.07.00	
ケースq。	q _c	12:22:30 ~ 12:37:30	12:37:30 ~ 13:00:00	
ケースCTT, q _c	CTTとqc	12.57.50	13.00.00	

Fig.10 Name of the case for each experiment

4.6 解析の方法について

本実験において作成したアンサンブルの 31 メン バーの中で誤差を与えた 30 メンバーが誤差を与え たとこによって広範囲において強い降水をもたらす 結果となった.原因と考えられるのが,本実験の大 気場が非常に不安定な状況であり,大気場に対して 誤差を与えたことによって,誤差が極大となってい た場所において降水を発生することを促したと考え られる.この結果,本実験における同化領域を含め 多くの降水をもたらしたので,降雨の変化などが評 価しやすいと考えられるので,誤差を与えていない コントロールランを対象に解析を行った.30 メンバ ーにおいて計算は発散しておらず、降雨場を確認す ると異常なものはなかったことから,同化は正しく 行われていたと考えられる.今後は気圧や気温とい った基本変数に対して同様に確認を行う.

コントロールランをみることによっても、同化の 誤差相関構造がどのような影響があったということ が評価できるということや、積乱雲の発達にどのよ うな影響があったのかを評価できると考えられる. また、30メンバーが多くの降水をもたらし、非常に 不安定な大気場をもたらしたので予報誤差が各タイ ムステップにおいて大きくなったと考えられる.こ のことから観測値に重みが大きくなり、より観測値 の影響が反映されるのでこの点に注意しながら解析 を行った.

4.7 各ケースの降雨強度の最大値の比較

Fig.11~Fig.15 に 5 つのケースにおける地上降雨強 度の分布を示す.また Fig.16 に 5 つのケースにおけ る降雨強度の最大を表した図を示す.ケース CTT で は降雨強度の増加が不十分であったと考えられるが, ケース true と同じ時刻に降雨を発生させることがで き,降雨開始の再現性が向上した.積乱雲発達初期 においては雲の高さがあまりなく,CTT を同化する ことによって雲の多くの部分の気温を同化すること ができるといったことにより真の大気場を再現でき たと考えられる.しかし雲が発達していくと,雲頂

部のみを同化しているので雲の中心部の再現性が低 くなったことによって地上降雨強度があまり増加し なかったと考えられる. ケース gc とケース CTT. gc において、ケース true で地上降雨が発生するより前 から降雨を確認した.このことは qc を同化したこと によって過剰にqcやqrを発生させたからと考えられ る.その後ケース qc とケース CTT. qc において,ケー ス true が発達していった時刻にケース noDA よりも 多くの地上降雨強度を発生させた.これはより降雨 と相関が大きいと考えられる qcを同化することによ って、地上降雨強度増加したことが原因と考えられ る.しかしケース CTT. qc とケース qc を比較すると降 雨強度の増加量に差が発生した.これは gcを同化す ることによって雲の中心部の性質の再現性は向上し たが, 雲頂部や中心部以外における性質に悪影響を 及ぼしたことが原因と考えられ, CTTと qcの両方を 同化することによって雲頂部の性質も、中心部の性 質もともに再現されたことにより,ケース CTT. qcの 降雨強度の最大値がケース true と同程度まで増加し たと考えられる. 次節以降でより詳細な解析を進め ていく.

in case of true

in case of noDA

Fig.13 Diagram showing ground precipitation intensity in case of CTT

Fig.14 Diagram showing ground precipitation intensity in case of q_c

Fig.15 Diagram showing ground precipitation intensity in case of $CTT.q_c$

Fig.16 Showing maximum of rain intensity in each case

4.8 CTT 同化による影響

4.8.1 温位について

Fig.17に25分後から37.5分後までの同化前後のθ の図を示す.本実験においてはCTTを同化したので, 積乱雲発達初期においては雲の高さがあまりないと いうことから雲の大部分の情報を同化できたため, 12:25:00におけるケース true のようなθの変化を表 現できたと考えられる.それによって,同化なしよ り降水開始時刻が真の大気場と同じになったと考え られる.その後,発達していくにつれて雲頂部にお けるθと上昇流の関係は表現できていたが,中心部 におけるθと上昇流の関係は表現できていなかった ことにより雲の発達度合いが真の大気場よりも小さ くなったと考えられる.

そこで, CTT を同化することで他の場所や変数に どのような変化があったかを誤差相関構造を用いて 調べる.まず雲頂部の θ と雲頂部の上昇流の誤差相 関を調べると Fig.18 のように負の誤差相関を持って いた. このことはケース true の雲頂部で見られた, 積乱雲が発達していく過程で上昇流が発生し、空気 塊が持ち上げられることによって等高度の温位と比 較して θ が低くなるという関係の再現性が向上した と考えられる.次に雲頂部のθと中心部の上昇流の 誤差相関構造を調べると Fig.18 のように負の誤差相 関構造を持っていた. これはケース true においても 見られた積乱雲発達段階における雲頂部のθが低く なったときに中心部に上昇流が発生しているという 性質を再現できていた.次に雲頂部のθと中心部の θ において誤差相関構造を調べると明確な誤差相関 構造は見られず、中心部のθに対する影響がほとん どなかった.本来は雲頂部の θ と中心部の θ におい て負の誤差相関もっていると発達する積乱雲の中心 部の性質を再現できたことなるが、再現できておら ずこのことは雲があまり発達しなかった原因である と考えられる. また同化期間最後の 12:37:30 におけ る同化によって強い下降流場が作成されたとこによ

ってその後の予測において降水強度をあまり増加さ せなかったと原因にひとつであると考えられる.

Fig17 Comparison of θ in case of CTT before and after assimilation. Left stage shows before assimilation, right stage shows after assimilation.

35分における雲頂部6と雲頂部上昇流の誤差相関

35分における雲頂部的と積乱雲中心部上昇流の誤差相関

Fig.18 Diagram showing error correlation in case of CTT

4.8.2 $q_c \ge q_r$ について

Fig.19に同化前と同化後の $q_c \ge q_r \ge r$ 。同化することによって各タイムステップにおいて $\ge q_c \le q_r$ も増加させた.このことは同化した観測値の θ の値が存在する多くの領域において q_c の値が0であり、アンサンブル平均の q_c の値より小さいので、同化した領域のいくつかの場所において $q_c \ge d$ 加させたと考えられる.また発達していくと雲頂部の θ 同化において中心部に対して $q_c \ge q_r \ge q_r \ge q_r \ge q_r \ge 1$ 。 したことによって降水強度の増加量は真の大気場に比較して不十分であった.

4.8.3 CTT 同化のまとめ

CTT を同化することによって積乱雲発達初期段階 の θ の変化や上昇流において再現性が向上したと考 えられる.その結果,地上降雨開始の精度を向上さ せることができた.しかし雲が発達していくに伴っ て,中心部における凝結によって熱が放出され,上 昇流が発生している対流性のコアの性質を再現でき なかった.その結果,地上降水強度の増加も降雨の 水平方向の広がりも不十分であった.このように, 雲の構造のうち一部のみを同化することによって同 化していない部分に対して,発達していくと再現性 はあまり向上しないが,積乱雲発達初期の段階にお いて大気の場の再現性は向上した.

Fig.19 Comparison of q_c (contour line) and q_r (shadow) in case of CTT before and after assimilation. Left stage shows before assimilation, right stage shows after assimilation

4.9 *q*。同化における影響

4.9.1 温位について

Fig.20 に計算開始 25 分後から 37.5 分後までの同 化期間における θ の鉛直断面を示す. 12:25:00 にお いて,ケース true でみられた対流性コアの発生時に 見られたのと同様の変化が確認できる. ケース true においてはこの対流性コアが形成され始めた段階に おいて上昇流が発生していた. 一方ケース qcにおい てはこの段階で下降流が発生していた. 下降流が発 生した原因は次節で説明する. その後 12:32:30 や 12:35:00 において対流性コア(強い上昇流により凝 結して潜熱放出が起こり、温位が高くなっている部 分)が同化前には確認されたが,同化により対流性 コアが消失してしまった. 12:32:30 においては対流 性コアが高度約3700mに発生していたが、同化した 擬似観測値 qcの最大値は高度約 3200m 付近に存在 していた.この高度差によってコアを消失したと考 えられる. この時刻において qc同化によって qcは増 加し, Fig.21 で示すように q_c と θ が正の誤差相関を もっていたので擬似観測値の最大値周辺において θ が高くなった. つまり同化前に対流性コアが発生し ていたところよりも高度が 500m 低いところで θの 上昇が発生したので対流性コアが消失したと考えら れる. 12:35:00 においては擬似観測値の最大値が存 在していた高度と,対流性のコアが存在している高 度はほとんど同じであった.しかしながら qc同化に よって qc が減少したことで誤差相関構造からθも低 くなり,対流性コアのθが減少し消失したと考えら れる. その後 12:37:30 における同化によって上昇流 を発生させ、対流性のコアを高度約 4200m に発生さ せたが,水平風が強かったためにθの変化は拡散し, 加えて上昇流も弱くなり結局コア部分は消失してし まった.

Fig20 Comparison of θ in case of q_c before and after assimilation. Left stage shows before assimilation, right stage shows after assimilation

32.5分における積乱雲中心部qcと積乱雲中心部θの誤差相関

32.5分における積乱雲中心部qcと積乱雲中心部上昇流の誤差相関

4.9.2 $q_c \ge q_r$ について

Fig.22 は計算開始 22.5 分後から 37.5 分後同化前後 の qc と qr の変化を示す. 12:22:30 において同化によ って qc が 0.2gkg-1, qr が 1.0gkg-1 程度増加した. この 時刻における擬似観測値 qc の値は 0.30gkg-1 程度と いうこともあり、qr を過剰に増加させたと考えられ る. その後過剰に増加させたことによって、ケース true において地上降雨が確認される 10 分前の 12:25:00 において 10mm/hr 程度の降水を発生させた. その後 12:30:00 までの各同化のステップにおける同 化によってqcが減少したことによりqrの増加がおさ えられ, 12:25:00 から 12:30:00 も時刻で地上降水強 度は弱くなっていった.次に 12:32:30 における同化 において qrが大きく増加させ、地上降雨を促したと 考えられ, 12:35:00 から地上降雨強度が増加してい った. そして同化期間最後の 12:37:30 には qr の最大 値は約 3gkg-1 程度と大きな値を示し、降雨強度も 12:40:00 に最大降雨強度が 70mm/hr 程度とピークを 迎えたが、その後 qc, qr が急速に減少していきそれ に伴って降雨も衰退していった. これはケース true においては水平風が弱く、上昇流が支配的な場であ ったが、ケース qc では強い水平風が発生していたこ とにより水蒸気が多く含まれていた空気が広がって いき q_c, q_rが増加しにくくなったからと考えられる.

Fig.22 Comparison of q_c (contour line) and q_r (shadow) in case of q_c before and after assimilation. Left stage shows before assimilation, right stage shows after assimilation

4.9.3 qc同化のまとめ

1回目の同化において qc, qr を過剰に増加させて しまったが、12:25:00 以降の同化期間内においてケ ース true の値に $q_c \ge q_r$ は近づいていった. また q_c が θ と正の誤差相関をもっていたため、12:25:00 な どの発達初期段階において θ の再現性は向上された と考えられる.しかし積乱雲が発達していくと qcが 最大値を持つところで凝結が発生していて θ が高く なると一概にいうことができず、qr の値も影響を与 えるという性質があるが、同化であまり再現できな かったために、対流性のコアを衰退させたりし、 θ 場 の再現性が低くなり、水平風などが発生したと考え られる. その結果,水蒸気が多く含まれた空気が流 されることなどによって,地上降水強度の増加がケ ース true と比較すると少なかった.しかし qcの同化 によって qc, qr の再現性は向上したためケース noDA やケース CTT と比較して, 地上降雨強度の増加や降 雨の水平方向の広がりなどの再現性は高くなった.

4.10 CTT と qc 同化における影響

4.10.1 温位について

Fig.23 に 25 分後から 37.5 分後までの同化前後のθ 鉛直断面を示す. 12:25:00 から 12:30:00 において対 流性のコアは発生しないものの θ 場の乱れが見られ た. その後上昇流が発生し、12:32:30 において対流 性のコアが高度約 3000m において発生した. この時 刻においてケース true もほぼ同じ高度に対流性コア が発生していたことから, ケース CTT やケース qc と 比較してこの段階において再現性が向上したと言え る. 上昇流と共に水平風も発生していたがケース qc と比較すると、十分に水平風を抑制することができ たと考えられる. その後も水平風による大気場の乱 れはあるものの上昇流は維持され、12:37:30 には対 流性のコアは高度 5000m まで上昇し、同化期間が終 了した. その後予測期間に入るとケース qc ではすぐ に下降流となったが、ケース CTT. qc では上昇流は 12:50:00 まで維持されていた. ケース true では 13:00:00 においても上昇流が維持されていたが、予 測期間に入っても上昇流を維持できたのはケース CTT. qcだけであり、このことが最大地上降水強度を 大きく増加することができた理由のひとつであると 考えられる.

Fig23 Comparison of θ in case of CTT. q_c before and after assimilation. Left stage shows before assimilation, right stage shows after assimilation

4.10.2 $q_{c} \ge q_{r}$ について

Fig.24に22.5分後から37.5分後までの同化前後の qcとqrを示した.12:22:30から12:27:30の期間におい

てケース qc と似た挙動を示した.このことは qc と qr に対しては qc を同化することが CTT を同化するよ りも影響が大きいということが考えられる. その結 果ケース gc と同様に 12:25:00 から地上降水が確認さ れ,地上降水強度は10mm/hr程度であった.その後 10mm/hr をもたらした雨域は徐々に弱くなっていっ たが、もうひとつの 1mm/hr 程度をもたらした雨域 はその後発達していき、12:30:00 には最大地上降水 強度が 20mm/hr 程度となり、その後同化期間におい て地上降水強度は 30mm/hr 程度まで発達した. 12:30:00 から 12:37:30 においてはケース qc よりも, qcと qrを多く発生させた.これは発達する雲の上部 の性質を CTT 同化することによって再現し, また積 乱雲の凝結が起こっている中心部の性質を gc同化す ることによって再現できたからであると考えられる. この結果ケース true のように上昇流の発生し、強い 降雨をもたらす積乱雲が発達したと考えられる.ま たケース true のように水蒸気を多く含む空気が上昇 流にのって上空に持ち上げられていたということが $q_{\rm c}$, $q_{\rm r}$ を多く発生させた原因と考えられる. この $q_{\rm v}$ の場が持ち上げられていたことと上昇流が維持され ていたことから,予測期間に入っても発達し続け, 12:42:30 においては真の大気場と同程度の最大地上 降水強度 150mm/hr が確認され, 12:50:00 においても qr が 2.5gkg⁻¹ 以上と大きな値を維持することができ た.

Fig.24 Comparison of q_c (contour line) and q_r (shadow) in case of CTT. q_c before and after assimilation. Left stage shows before assimilation, right stage shows after assimilation

4.10.3 CTT と qc を同化まとめ

ケース q_c と同様にケース CTT. q_c は 12:25:00 から 12:32:30 のケース true が地上降水を確認していない 時間において地上降水を発生させた. このことは雲 があまり発達していない時期において CTT と q_c を 同化するとケース q_c で見られたような q_c 同化によ る影響が大きかったということが考えられる. その 後は, 雲が発達していくにつれて雲頂部の特性を CTT 同化によって,対流性のコアが発生している積 乱雲の中心の特性を q_c 同化によって再現性を高める ことができたと考えられる. またそのことによりケ ース true のような上昇流を再現できたことにより最 大地上降水強度が大きく増加したと考えられる.

4.11 同化実験のまとめ

Fig.25 に示した真の大気場の積乱雲のメカニズム に対して同化によってどのように再現性が向上した のを評価する.真の大気場において発達する積乱雲 では雲頂部と中心部ともに上昇流が発生していた. また雲頂部では上昇流によって空気塊が持ち上げら れたことによって等高度の温位と比較して積乱雲の 雲頂部の温位は減少し、中心部では凝結が発生し潜 熱が放出され,等高度の温位と比較して温位が上昇 した.このようなメカニズムが真の大気場において 確認された.

この雲頂部と中心部で見られた性質を, CTT 同化 によって雲頂部の再現性が向上され,一方 qc 同化に よって中心部の再現性が向上されたと考えられる. その結果,降雨をもたらすよりも前の情報をデータ 同化することによって積乱雲発達において再現性を 高めること示された.しかし過剰に降雨を発生させ てしまうことや同化によって雲を発達させることを 抑制することなどが起こってしまった.今後は観測 値の閾値などの設定の見直しや,初期メンバーの作 成方法を改善することなどによって,アンサンブル 評価などを用いてより詳細な解析をする.

Fig.25 Conceptual diagram of the mechanics of cumulonimbus in a real standby site

近年, ひまわり8号の打ち上げによって静止気象 衛星の性能が飛躍的に向上し,時間・空間ともにゲ リラ豪雨のような短時間かつ局地的な現象を解像で きるようになってきた.加えて,偏波機能を有する Kaバンドレーダーが開発され,雲粒子に関する知見 がますます増えていくと期待されている.

そこで,将来,静止気象衛星ひまわり8号やKaバ ンドレーダーから得られる観測情報に気象モデルを データ同化することを想定し,本研究ではその第一 段階として理想実験の枠組みでアンサンブルデータ 同化実験を行い,ゲリラ豪雨の発達初期段階の情報 を同化することによって,ゲリラ豪雨の発達期や成 熟期に対してどのような影響があるかを明らかにす ることを目的とした.

観測システムシミュレーション実験(OSSE)のも と、実際に夏季沖縄で発生した大気不安定による対 流性降水システムを対象として、真の大気場を作成 した.同化する疑似観測値を作成するにあたり、ひ まわり8号で観測される輝度温度およびKaバンド レーダーで観測される雪水混合比を想定した.同化 無し予測、雲頂温度CTTの同化、雲水混合比 qcの同 化、CTTとqcの両者を同化、の計4つの予測計算を 行い、真の大気場との比較を行った.また、データ 同化システムとしてCReSS-LETKFを用いた.

地上降雨開始のタイミングの再現性を最も向上す ることができたのは CTT のみを同化した実験であ り,地上降雨強度の最大値の再現性を最も向上する ことができたのは CTT と *q* を同化した実験であっ た.

CTT を同化したことによって雲頂部における温位 が減少し上昇流が発生するという関係性を再現でき, また qcを同化したことによって積乱雲のコア部で凝 結が発生して温位が上昇し同時に上昇流が発生して いることを再現することができた.さらに CTT と qc の両者を同化した実験ではお互いの良い面が反映さ れて,上述したように地上降雨強度の再現性が高く なることを示した.

今後の課題として、本研究で明らかにしたことを実際の観測値を用いてデータ同化実験を行い、ゲリラ 豪雨予測精度の向上をはかる.特に、放射計算といった効果的な観測演算子の構築が大きな課題である. 上記を今後の課題としてこの論文の結びとする. 本研究は JSPS 科研費 15H05765(基盤研究 S「ス トームジェネシスを捉えるための先端フィールド観 測と豪雨災害軽減に向けた総合研究」、研究代表者: 中北英一)の助成を受けたものです.

参考文献

- 石橋俊之(2013):観測システムシュミレーション実験(OSSE). 天気. Vol.60, No.10, pp.831-833
- 片山勝之・山路昭彦・中村文彦・森田宏・中北英一 (2015):局地的豪雨探知システムの開発,河川技術 論文集,第21巻,pp.401-406.
- 澤田洋平・岡本幸三・国井勝・三好建正(2016): ひま わり8号を活かした局地的大雨の予測精度向上の 試み.日本気象学会2016年春季大会講演予稿集. 日本気象学会, p.121
- 中北英一・山口弘誠・山邊洋之(2008): レーダー情報 を用いたゲリラ豪雨の卵の解析,京都大学防災研 究所年報,第52号, pp.547-562.
- 新保友啓(2017):Ka バンド偏波ドップラーレーダを 用いた雲特性の解析及びゲリラ豪雨早期探知への 応用の検討,京都大学工学部
- 浜津享助・若山俊夫・渡邉伸一郎・橋口浩之・深尾 昌一郎(2000): 雲霧観測用 Ka バンドドップラーレ ーダの開発.電子情報通信学会論文誌 B, Vol. J83-B,No.4,554-566
- 疋田丈晴(2016):静止気象衛星とKaバンド雲レーダ を用いた夏季孤立積乱雲の早期検出.名古屋大学 大学院環境学研究科地球環境科学専攻修士論文
- 山口弘誠・中北英一(2009): 偏波気象レーダーを用い た降水粒子タイプ情報のデータ同化手法の開発, 京都大学防災研究所年報,第52号B, CD-ROM, pp.539-546.
- Christopher A. Kerr et al. (2014): Assimilation of Cloud-Top Temperature and Radar Observations of an Idealized Splitting Supercell Using an Observing System Simulation Experiment, Monthly Weather Review. April 2015, Vol. 143, No.4, pp.1018-1034, 2014
- Evensen G (1994) Inverse methods and data assimilation in nonlinear ocean models. Physica(D) 77 : 108-129
- Hunt, B. R., Kostelich, E. J. and Szunyogh, I.(2007): Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. *Physica D*, Vol. 230, pp.112-126.
- Kain, J. S., and Coauthors (2010): Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting-

research environment, Wea. Forecasting, 25, 1510-1521.

- Marseille, G.-J., A. Stoffelen and J. Barkmeijier(2008) : Sensitivity Observing System Experiment (SOES) : A new effective NWP-based tool in designing the global observing system. Tellus A, 60,pp.216-233
- MASARU KUNII (2014) : Mesoscale Data Assimilation for a Local Severe Rainfall Event with the NHM-LETKF System. Weather and forecasting, vol.29.pp.1093-1105
- Matsutani, M et al.(2010) : Observing system simulation experiments at the National Centers for Environmental Prediction.JGeophys.Res,Vol.115,D07101,doi:10.1029 /2009JD012528.
- Miyoshi, T. and K. Aranami (2006) : Applying a Fourdimensional Local Ensemble Transform Kalman Filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM).SOLA,2,128-131.
- Miyoshi, T. and Yamane, S.(2007): Local ensemble transform Kalman filtering with and AGCM at a T159/L48 resolution, *Mon. Wea. Rev.*, Vol. 135, pp.3841-3861.
- Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A. and Ott, E.(2001): Local low dimensionality of atmospheric dynamics, *Phys. Rev. Lett.*, pp.5878-5881.

- Skamarock WC, Klemp JB, Dudhia J, Gill Do, Barker DM, Duda MG, Huang X-Y, Wang W. and Powers JG (2008) : A description of the Advanced Research WRF Version 3,NCAR Technical Note NCAR/TN-475+STR,Boulder.
- Sun, J., M. Xue, J. W. Wilson, I. Zawadzki, S. P. Ballard, J. Onvlee-Hooimeyer, P. Joe, D. M. Barker, P.-W. Li, B. Golding, M. Xu, and J. Pinto (2014): Use of NWP for nowcasting convective precipitation: recent progress and challenges, *Bull. Amer. Meteor. Soc.*, **95**, 409–426.
- Tan, D.G.H., E. Andersson, M. Fisher and L. Isaksen (2007) : Observing-system impact assessment using a data assimilation ensemble technique : application to the ADM-Aeolus wind profiling mission.Quart.J.Roy.Meteor.Soc., 133,381-390.
- Tsuyuki, T., and T. Miyoshi (2007): Recent progress of data assimilation methods in meteorology, *J. Meteor. Soc. Japan*, **85**, 331-361.
- Yamaguchi, K., and E. Nakakita(2008): Ensemble Kalman filter assimilation of Doppler radar data using the cloud-resolving non-hydrostatic model with an aim to introduce polarimetric radar data assimilation, Proc. of 7th International Symposium on Weather Radar and Hydrology, 3 pp.

(論文受理日 2017年6月13日)