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Synopsis 

The use of meteorological ensembles to produce sets of hydrological predictions has 

increased the ability to issue flood warnings. However, the spatial scale of a 

hydrological domain is still much finer than that of a meteorological model, and 

Numerical Weather Prediction (NWP) models have challenges with misplacement. This 

study assesses the transposition method with consideration of a spatial shift of ensemble 

NWP rainfall fields with the separation of orographic and non-orographic rainfall, in 

order to improve the accuracy improvement of the ensemble flood forecasting. The 

analysis shows that transposition of ensemble NWP rainfall fields improved the 

accuracy of the mean value and best value compared with original ensemble flood 

forecasting. 

Keywords: Ensemble NWP rainfall, flood forecasting, transposition, accuracy 

improvement 

1. INTRODUCTION

Flood forecasting is an important technique to 

reduce damages from flood disasters. The accuracy 

of weather forecasts has improved over the years, 

due to advances in NWP techniques and increased 

computing power. Thus, it is now possible to 

generate high-resolution rainfall forecasts at the 

catchment scale and to integrate quantitative 

precipitation forecasting (QPF) into flood 

forecasting systems with extended lead time 

(Demeritt et al., 2007; Cuo et al., 2011). 

At the same time, one of the rising research 

themes in the flood forecasting area is the 

development of ensemble prediction systems 

(EPSs). EPSs have been used to account for 

uncertainties and have resulted in better quantitative 

predictability for the same location and time. 

Several authors have utilized and investigated EPS, 

and found that ensembles increase forecast 

accuracy and allow for skillful predictions with lead 

time (Buizza et al., 1999; Xuan et al., 2009; Palmer 

and Buizza, 2007; Roulin and Vannitsem, 2005; Yu 

et al., 2013a). 

However, in many cases, the potential of 

forecasting with EPS is described alongside more 

cautious approaches to the considerable variability 

and uncertainty in operational flood forecasting. 

First, the time/spatial scale of the hydrological 

model is still much finer than that of the 

meteorological model. Although the NWP-based 

QPF can generally catch the rainfall pattern, the 

uncertainties of rainfall to the catchment scale were 

always significant. Schaake et al. (2004) analyzed 

the statistical properties of the prediction outcomes 

from the US National Centers for Environmental 
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Prediction (NCEP) during 1997 and 1999 over the 

continental US. They stated that ensemble forecasts 

contain biases that must be removed before they are 

used as an input for hydrologic models. 

Second, NWP models have challenges with 

misplacement of the forecasting rainband, which 

means that the intensity and shape of the forecasted 

storm cell may be correct, but the location of the 

storm cell is wrong. Ebert and McBride (2000) 

stated that QPF quality needs to be improved, in 

order to provide reliable hydrologic prediction, and 

that errors in location misplacement, timing, and 

intensity hampered the direct application of QPF 

from the NWP into hydrologic prediction models.  

Given the current issue and problem with EPSs 

with NWP models, a proper pre-processing dealt 

with spatial misplacement of rainfall distributions 

should be considered carefully, in order to use EPSs 

effectively in flood forecasting systems on a small 

catchment scale. Yu et al. (2013b) have utilized and 

investigated this ensemble NWP rainfall forecast 

for real-time flood forecasting, and proposed the 

spatial shift (hereafter, transposition) of ensemble 

rain distributions to improve the accuracy of flood 

forecasting. However, in case of the transposition 

of rain distributions in mountainous areas, the 

problem arises that the orographic rain patterns also 

move to non-mountain area with the transposition 

scheme. As a result, it results in a great loss of 

physical meaning of orographic rainfall. 

The aim of this research is to address the 

uncertainties in ensemble hydrological forecasting 

driven by ensemble NWP rainfall and to explore an 

accuracy improvement of flood forecasting by 

transposition of ensemble NWP rainfall fields with 

the separation of orographic and non-orographic 

rainfall. For these objectives, ensemble NWP 

rainfalls are separated into orographic and 

non-orographic rain fields by solving 

physically-based equations, including additional 

atmospheric variables, such as vertical wind 

velocity. And then, the non-orographic rainfall 

fields are examined by transposition method to 

correct the misplaced spatial position. Lastly, 

Ensemble NWP rainfall fields are calculated by 

combining the transposition results of 

non-orographic rain fields with the orographic 

rainfall fields. We also apply into rising limb and 

peak discharge periods to confirm an accuracy 

improvement of flood forecasting skill. The flood 

forecasting results of proposed method on ensemble 

NWP rainfall prediction was compared with the 

results of original ensemble flood forecasting, 

which was carried out by Yu et al. (2013b) using 

the Typhoon Talas event of 2011. 

 

2. METHODOLOGY 

 

2.1 Physically-based method for orographic 

rainfall 

Tatehira (1976) proposed a physically-based 

method for calculating orographic and 

non-orographic rainfall fields from observed radar 

rainfall measurements. In this method, the 

orographic effect is calculated based on the 

seeder-feeder mechanism. The precipitation 

droplets or ice particles fall from an upper-level 

precipitating cloud (seeder) and collect cloud water 

as they pass through a lower-level orographic 

stratus cloud (feeder) by collision and coalescence, 

thus producing greater precipitation on the 

mountainous area under the cap cloud than on the 

nearby flat regions.  

The strong rain-bands stagnated near the 

mountain top (orographic rainfall) are estimated 

using additional atmospheric variables. The flux of 

cloud water content L (g/m
3
) in rising air parcel 

along with a wind is calculated by equation (1). 
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 (1) 

 

where ρv is the density of water vapor (g/m
3
), c 

is the ratio of cloud drops captured by seeder 

hydrometeors of an upper-level, a is the ratio of 

precipitation particles to cloud drops, Lc is the 

threshold amount of water content before 

conversion into precipitation (g/m
3
) and G is the 

amount of saturated water vapor ρs increased by a 

rising saturated air parcel (g/m
4
) (i.e. –dρs/dz). 

Finally, W is the vertical wind velocity (m/s), which 

is estimated by an inner product of horizontal wind 

and gradient of topographic height using DEM. 

These atmospheric variables (Air temperature, 

horizontal wind, relative humidity) are estimated by 
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the use of Grid Point Value (GPV) data from Japan 

Meteorological Agency (JMA), and are solved in 

the seven layers at heights of 200, 400, 1000, 2000, 

3000, 4000, and 5000 m in the  -vertical 

coordinate system using the method of Nakakita et 

al. (1996). In equation (1), the first and second 

terms on the right-hand side are related with that 

the amount of water content is decreased. The third 

term shows the water vapor condensing as the air 

parcel ascends with a unit distance. The last term 

expresses the influence of atmospheric 

compressibility, and can be ignored because the 

order of this term is less than other terms. The 

amounts of cloud water content in an inflow and 

outflow mesh (Lin and Lout) can be calculated by the 

integral of equation (1) with respect to time t.  
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  (2) 

 

In this study, the ensemble NWP rainfall RNWP 

is interpreted to be the summation of orographic 

rainfall Ro and non-orographic rainfall Rn (Equation 

(3)). Nakakita and Terazono (2008) suggested the 

equation (4) for orographic rainfall intensity Ro 

(mm/h) and assumed that the ratio c of cloud drops 

captured by raindrops is estimated by equation (5). 

Finally, the orographic rainfall is supposed to be a 

function of non-orographic rainfall and is calculated 

by solving the simultaneous equations (2) ~ (5) in 

multi-atmospheric layers. 

      

 
NWP o nR R R      (3) 
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 0.731 30.6778 10Nc R      (5) 

 

where Lin and Lout are amounts of cloud water 

content (g/m
3
) in an inflow and outflow side mesh, 

respectively. Δt is a timescale (s) during an air 

parcel passes one mesh, and H is the thickness of 

each layer (m).  

Fig. 1 shows the procedure for the separation of 

orographic and non-orographic rainfall. First, cloud 

water content is calculated from atmospheric 

variables of grid mesh in each layer vertically, and 

the ensemble NWP rainfall (RNWP) is assumed to be 

that of the lowest layer (200 m height). It is 

separated into orographic (Ro1) and non-orographic 

(Rn1) rainfall by solving equations of (2) ~ (5). It is 

supposed that the non-orographic rainfall (Rn1) is 

expressed as the sum of the orographic rainfall (Ro2) 

and non-orographic rainfall (Rn2) in the upper layer. 

In this way, orographic rainfall and non-orographic 

rainfall of each layer can be separated from the 

lowest to the highest layer repeatedly. Then the 

non-orographic rainfall field of highest layer is 

utilized as an input domain for the transposition 

scheme to make additional ensemble information. 

And total orographic rainfall in each layer gives the 

value by recombining the transposition results of 

non-orographic rainfall field.  

 

 

Fig. 1 The procedure of transposition method with 

consideration of orographic rainfall 

 

2.2 Physically-based method for orographic 

rainfall 

As previously stated, we examined the 

transposition scheme of non-orographic rainfall 

field in order to produce additional ensemble 

information and consider the misplacement from 

the original spatial position. Many EPSs are based 

on a Monte Carlo framework of NWP model with 

one realization starting from a central analysis (the 

control forecast) and others generated by perturbing 

the initial and/or boundary conditions (the 

perturbed forecasts) (Cloke and Pappenberger, 

2009). In this study, we also used ensemble NWP 

rainfall created by perturbation of initial and 

boundary conditions, and we took into 

consideration the transposition scheme for more 
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additional ensembles. The technique for making 

additional ensemble information is fairly 

straightforward in this study. We utilized spatial 

transposition of each separated non-orographic rain 

fields.  

Fig. 1 shows also a schematic of transposition 

scheme using non-orographic rainfall fields, and 

recombining with the total orographic rainfall in 

each vertical layer. For the transposition with 

separated non-orographic rainfall fields from the 

established ensemble prediction, the transposed 

catchment mask (100 km × 100 km) moved into the 

original forecast domain from location 1 to 80 with 

a maximum distance in the x and y directions of 

each at about 20 km with 5 km interval in order to 

produce additional ensemble information. We 

finally constructed additional 891 transposed 

ensemble domains (existing 11 ensemble members 

× 80 locations + 11 original locations of established 

ensemble members). Then final place-corrected 

ensemble rainfall fields are estimated by integrating 

the transposed non-orographic rain fields with the 

total orographic rainfall, which is calculated in each 

vertical layer. 

 

3. DESIGN of METEOLOLOGICAL 

EXPERIMENT 

 

In Japan, the operational one-week ensemble 

prediction model from JMA was developed to 

provide probabilistic information of 51 ensemble 

members with a horizontal resolution of 60 km, and 

it used to be applied for hydrological applications 

(e.g., prior and optimized release discharge for dam 

operation; Matsubara et al., 2013). However, the 

operational short-term (1-2 days) ensemble 

prediction with much finer resolution has not been 

developed yet. For that reason, the ensemble 

forecast systems that are composed of 11 members 

(1 unperturbed and 10 perturbed member) with a 

horizontal resolution of 10 km and 2 km, the later 

nested inside the former with a 6-hour lag, has been 

experimentally conducted by the Meteorological 

Research Institute (MRI) of JMA for the 2011 

typhoon Talas event. 

Both 10 km and 2 km resolution systems used 

the JMA Non-Hydrostatic Model (NHM) as the 

forecast model (Saito et al., 2006; Saito, 2012). 

Whereas the 10km resolution forecast adopted the 

cloud microphysical process and Kain-Fritsch 

convective scheme, the 2km resolution forecast did 

not use a convective scheme because of its cloud 

resolving resolutions. The domain of the two 

ensemble systems with 10 km and 2 km horizontal 

resolution are illustrated in Fig. 2. 

 

 

Fig. 2 Forecast domains of 10km and 2km 

horizontal resolution. The rectangle inside 2km 

domain denotes the verification area 

 

The coarse resolution system of 10 km had a 

domain of 361×289 grid points with 50 vertical 

levels, forecasted up to 36 hours. For initial and 

lateral boundary conditions, 10 km used the 

analysis from the JMA non-hydrostatic 4DVAR 

(JNoVA) data assimilation system (Honda and 

Sawada, 2008) and the forecasts of JMA’s 

high-resolution (TL959L60) global spectral model 

(GSM). The control run (cntl) is the forecast with a 

non-perturbed analysis, and the 10 perturbed 

forecasts were generated from JMA’s 1-week 

global EPS (WEP) for the initial and boundary 

perturbations. 

The fine resolution system of 2 km was 

conducted from downscale forecast of 10 km 

resolution systems. This system had a domain of 

350×350 grid points with 60 vertical levels, and 

forecasted up to 30 hours. The initial and boundary 

condition for each member in 2 km were 

interpolated from the forecasts on the 

corresponding member in 10 km resolution with a 

6-hour lag. 10 km started running at 21 JST every 

day, and 2 km with 6 hours later. Fig. 3 shows a 

schematic of forecast runs with 10 km and 2 km 
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resolution. 

 

 

Fig. 3 Schematic of forecast runs with 10 km and 2 

km horizontal resolution. 

 

The ensemble prediction with a horizontal 

resolution of 2 km was performed with up to 30 h 

forecast time. In this study, the ensemble surface 

precipitation (Psrf) from 2 km-downscaled NWP 

data with 30 h forecast time was utilized as input 

data into a hydrologic model. 

 

4. A HYDROLOGICAL MODEL 

AND STUDY AREA 

 

4.1 Distributed hydrologic model: KWMSS 

In this study, we used a spatially-distributed 

hydrologic model, based on one-dimensional 

kinematic wave method for subsurface and surface 

flow (hereafter, KWMSS) with a conceptual 

stage-discharge relationship, which was introduced 

by Takasao and Shiiba (1988) and enhanced by 

Tachikawa et al. (2004).  

In this model, the rainfall–runoff modeling 

system accepts spatially variable information in 

terms of topographic and meteorological data. The 

drainage network is represented by sets of hillslope 

and channel elements from digital elevation model 

(DEM). In this study, the drainage network was 

represented by a 250 m × 250 m spatial resolution 

of DEM. Fig. 5 is a conceptualization of spatial 

flow movement and flow process in hillslope 

elements of KWMSS. The rainfall over all hillslope 

elements flows one-dimensionally into the river 

nodes and then routes to the catchment outlet. The 

rainfall-runoff transformation conducted by 

KWMSS is based on the assumption that each 

hillslope element is covered with a permeable soil 

layer, as shown in Fig. 4. This soil layer consists of 

a capillary layer and a non-capillary layer. In these 

conceptual soil layers, slow and quick flow are 

simulated as unsaturated Darcy flow and saturated 

Darcy flow, respectively, and overland flow occurs 

if water depth, h [m] exceeds soil water capacity.  
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where vc=kci [m/s], va=kai [m/s], kc=ka/β [m/s], 

α=i
1/2

/n [m
1/3

s
-1

], m = 5/3, i is the slope gradient, kc 

[m/s] is the hydraulic conductivity of the capillary 

soil layer, ka [m/s] is the hydraulic conductivity of 

the non-capillary soil layer, n [m
-1/3

s] is the 

roughness coefficient, ds [m] is the water depth 

corresponding to the water content, and dc [m] is 

the water depth corresponding to maximum water 

content in the capillary pore. 

The flow rate of each hillslope element q [m
2
/s] 

is calculated by equation (6), and combined with 

the continuity equation for channel routing by 

equation (7). 

 

Fig. 4 Conceptualization of spatial flow movement 

and flow process in hillslope elements 

 

4.2 Study area 

The Shingu river basin was selected as the 

target area to compare flood forecast accuracy 

utilizing the original ensemble NWP rainfall with 

the results of transposition scheme of spatial 

rainfall fields as illustrated in Fig. 5(a). The Shingu 

river Basin is located in the Kii Peninsula of the 

Kinki area, Japan and covers an area of 2,360 km
2
. 

The average elevation of the study site is 644.6 m, 
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and the slope is steep; this basin is a mountainous 

area. Fig. 5(b) shows the drainage network, which 

consists of channel and hillslope components of the 

Shingu river basin. The five dams, Futatsuno, 

Kazeya, Komori, Nanairo, and Ikehara are located 

upstream. Of the five dam catchments, we focused 

on two sub-catchments, which are Futatsuno (356.1 

km
2
) and Nanairo (182.1 km

2
) dam catchments 

(Nos. 1 and 4 of Fig. 5(a)), to improve the accuracy 

of the flood forecasting in small catchments. Two 

additional dams, Kazeya and Ikehara (Nos. 2 and 5 

of Fig. 5(a)), are located upstream of the Futatsuno 

and Nanairo catchments, respectively. Here, the 

observed outflows from the Kazeya and Ikehara 

dam were directly utilized as the upper boundary 

conditions for the subject dam basins to focus on 

only the Futatsuno and the Nanairo catchments. In 

this study, we assumed that evapotranspiration 

could be ignored during heavy rainfall event and 

directly used total rainfall for the rainfall–runoff 

simulation. 

 

 

Fig. 5 (a) Shingu river basin, which is target area 

within Kii Peninsula in Japan and (b) drainage 

network represented by sets of channel (black line) 

and slope (gray line) elements. 

 

5. RESULTS AND DISCUSSION 

 

We applied the transposition scheme for 

non-orographic rainfall separated from ensemble 

NWP rainfall in order to produce more additional 

ensembles and investigate the misplaced spatial 

locations. As stated above, we finally constructed 

891 transposed ensemble domains by integrating 

the transposed non-orographic rain fields with the 

orographic rain fields. 

Transposed ensemble domains have been 

verified spatially with MLIT observed radar rain 

data in the verification area to investigate the 

appropriate ensemble members and transposition 

locations, which have high efficiency criteria 

during rising limb of flood period (2011/9/2 3:00 ~ 

9/3 9:00; 30 h forecast time with 30 min intervals)  

and applied them to the next peak discharge period 

of the flood forecasting (2011/09/03 3:00 ~ 09/04 

9:00; 30h forecast time) for updating of flood 

forecasting. We used two popular indices to 

evaluate transposed ensemble domains: critical 

success index (CSI) for qualitative verification and 

root mean square error (RMSE) for quantitative 

verification, expressed as follows.  

 

hits
CSI

hits misses falsealarms


 
 (8) 

 
2

1

1
N

t t

t

RMSE O F
N



    (9) 

 

where N is the total grid cells (100 × 100) in 

verification area, Ot and Ft are the observed and 

forecasted rainfall of each grid cell at forecast time 

t, hits is the number of correct forecasts over the 

threshold (i.e., when the rainfall that is forecasted is 

also observed), and misses is the number of times 

rainfall is not forecasted, but is observed. false 

alarms is the number of times rainfall is forecasted, 

but not observed. 

For the calculation of CSI value, the ensemble 

forecasts were expressed as probabilities of 

exceeding a selected rainfall threshold (10mm/h), 

which were used to compare an obvious spatial 

distribution of observed MLIT radar data with 

forecasted NWP rainfall. A contingency table can 

be constructed with a spatial comparison, in which 

each area with more than 10 mm/h of threshold is 

defined as "yes," and other areas are defined as "no" 

for both forecasted and observed rainfall fields. 

Fig. 6 shows the results of the average CSI and 

RMSE of rising limb of flood period (2011/9/2 3:00 

~ 9/3 9:00; 30 h forecast time) in a comparison of 

observed radar rainfall and each transposed NWP 

rainfall domain. Each grid value means the average 

CSI and RMSE when a transposed mask domain 
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with the each grid as the center moved to an 

original domain with zero points of the x and y 

locations. 

And we considered the top 10% transposition 

locations, which have high efficiency criteria for 

each RMSE and CSI value, of total 891 additional 

ensemble members in order to apply them to the 

next peak discharge period of the flood forecasting 

(2011/09/03 3:00 ~ 09/04 9:00; 30h forecast time), 

which we focused on in this study, to assess the 

accuracy improvement.  

 

 

 

Fig. 6 Average CSI and RMSE results of rising 

limb of flood period (2011/9/2 3:00 ~ 9/3 9:00; 30 h 

forecast time) in a comparison of observed radar 

rainfall and each transposed 

 

Base on the simulated results in the rising limb 

and peak discharge period, we compared the 

accuracy improvement with the results of the 

original ensemble flood forecasting for the former 

study using the mean absolute error (MAE), which 

is a quantity used to measure how close each 

forecast was to the observation.  

Fig. 7 and 8 indicate the results of the 30 h 

ensemble flood forecast over the Futatsuno and 

Nanairo dam catchments during the rising limb and 

peak discharge periods using the top 10% 

transposition locations of the ensemble rainfall 

fields. Table 1 compares the forecast skill of the 

original and transposition ensembles using the 

mean and best values of the flood forecasting. 

 

 

Fig. 7 30h ensemble flood forecasting using the 

transposition of ensemble rainfall fields during a 

rising limb period: (a) and (b) are the results of the 

rising limb and peak discharge period over the 

Futatsuno dam catchment. 

 

Table 1 Comparisons of the original and 

transposition ensemble results in flood forecast 

skill: The bold red color indicates the better result, 

and members in parentheses refer to the member 

with the best flood forecast skill. 

Catchment 
Forecast

Period 
Type 

MAE 

Mean Best 

Futatsuno 

Rising 

limb 

Original 655.7 378.3 (m08) 

Transposition 469.2 196.0(cntl_L6) 

Peak 

period 

Original 1548.0 774.3 (m08) 

Transposition 1396.5 467.7(m07_L38) 

Nanairo 

Rising 

limb 

Original 270.8 206.2 (m03) 

Transposition 211.9 182.0(m03_L39) 

Peak 

period 

Original 1125.3 784.9 (m08) 

Transposition 1053.1 666.1(m08_ L37) 
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As shown in Fig. 4 and Table 3, the mean and 

best values during the peak discharge period for the 

Futatsuno dam catchment improved. The top 10% 

of transposition locations during the rising limb 

period and the transposition ensemble range were 

closer to the observed discharge than the original 

ensemble range. In the case of the Nanairo dam 

catchment (Table 1), the mean and best values also 

improved during the rising limb and peak discharge 

periods. 

 

 

Fig. 8 30h ensemble flood forecasting using the 

transposition of ensemble rainfall fields during a 

rising limb period: (a) and (b) are the results of the 

rising limb and peak discharge period over the 

Nanairo dam catchment. 

 

Based on these results, Addition ensemble 

members have the potential to provide the best 

value to flood forecasting skill when using the 

transposition method. Second, flood forecasting 

using the transposition of ensemble rainfall fields 

improved the accuracy for the under-predicted areas, 

and had better values than flood forecasting using 

the original ensemble members. 

 

 

 

 

6. CONCLUSION  

 

This study estimates the accuracy improvement 

of flood forecasting in the Futatsuno and the 

Nanairo dam catchments when driven by the 

transposition of ensemble NWP rainfall fields using 

the spatial verification of the RMSE and CSI values. 

The transposition locations for the rising limb 

period were adopted into flood forecasting for the 

peak discharge period to evaluate the improvement 

in accuracy. The ensemble flood forecasting using 

transposition of NWP rainfall fields produced better 

results than the original and selected ensemble 

members, in terms of the mean and best values of 

flood forecast skill in all periods over the two 

catchments. 

In this study, we assessed the transposition 

method of ensemble NWP rainfall fields separately 

for the rising limb and peak discharge periods 

because they are the most important phases of 

real-time flood forecasting. However, it is very 

important to divide the periods, including the rising 

limb and peak discharge periods, when applying 

this method to an actual operation. Therefore, in 

further research, we need to consider the 

methodology required to divide the periods and to 

verify the applicability of these methods through a 

number of case studies. We expect it to be used in 

hydrological applications operationally, such as in 

real-time flood forecasting for warning systems and 

optimized release discharge for dam operations. 
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