冬季極東域の気温変動と関連する大気循環の特徴

向川均·馬渕未央⁽¹⁾

(1) 京都大学大学院理学研究科

要 旨

再現性と持続性を持つ極東域での冬季の温度偏差パターン(レジーム)を,極東域にお ける長周期温度変動成分の二つの主成分(EOF)で張られる2次元位相空間で定義した確率 密度関数(PDF)を用いて調べた。解析では、1957/58年から2001/02年までの45冬季分の ERA-40再解析データを用いた。解析で得られたレジームは、極東域全域、特に西日本が低 温偏差となる温度偏差パターンで特徴づけられ、対流圏上層における東シベリア域の高気 圧性偏差と極東域の低気圧性偏差を伴う。さらに、このレジームは、アラスカから西進す るブロッキング高気圧と、南シナ海での対流活動偏差で励起されるベンガル湾付近から射 出するロスビー波束、及びヨーロッパ域からのロスビー波束により形成されることが示さ れた。

キーワード:極東域における寒冬,確率密度関数,レジーム

1. はじめに

冬季極東域における持続的な寒波は、半球規模で の大気循環偏差と関連する可能性が考えられる。例 えば, Wallace and Gutzler (1981) で定義された, テ レコネクションパターンのうち, EU (Eurasian) パ ターンとWP (Western Pacific) パターンは極東域の 循環偏差に影響を与える可能性がある。EUパターン では、ヨーロッパ域の高度場偏差と極東域の高度場 偏差との間に正の相関があり、ヨーロッパ域が低温 の場合, 極東域も低温となる傾向がある。一方, WP パターンは、日本南方海上とオホーツク海付近の高 度偏差場の南北シーソーパターンと対応しており, 極東域南部が低温傾向の場合,極東北部は高温傾向 となりやすい。しかし、このようなテレコネクショ ンパターンは,対流圏上層の月平均高度場に基づき 定義されているため、循環パターンの三次元的構造 や、その時間発展は明らかではない。

一方,いわゆる38豪雪や平成18年豪雪など,日本 に基大な被害をもたらした豪雪事例の要因分析につ いては多くの報告があるが,より長期間のデータを 用いて冬季極東域に寒波をもたらす半球規模での大 気循環偏差に関する詳細な記述,及びその要因分析 は充分行われていない。 そこで本研究では、1957年から2002年までの45年 間の冬季についてERA-40再解析データセット (Uppala et al., 2005)を用いて、冬季極東域で卓越す る温度偏差パターンについて解析を行った。具体的 には、EOF解析により冬季極東域で卓越する温度変 動パターンを抽出し、得られた二つの主成分スコア (PC1, PC2)で張られる位相空間を用いて、極東域 で出現しやすい温度偏差パターン(レジーム)を抽 出した。さらに、位相空間を用いた合成図解析によ り、レジームの形成プロセスについて解析した。

2. データ

本研究では, ERA-40再解析データセットを用いた。 データは,6時間毎(00UTC,06UTC,12UTC,18UTC) に,1000hPaから0.4hPaまでの23層の等圧面上の2.5 度×2.5度の緯度経度格子点上で与えられている。解 析に使用した期間は1957/58年から2001/02年までの 45冬季(12月1日~2月28日)である。

ここでは、大気長周期変動成分に着目して解析す るため、6時間毎に与えられた再解析データをまず日 平均し、得られた日平均値にcut-off周期が10日の Lanczos low-pass filter (Duchon, 1979)を適用し、日々 の長周期変動成分を濾波した。用いたLanczos filter

Fig. 1 Spatial patterns of (a) EOF1 and (b) EOF2 for low-frequency 850-hPa temperature variation over the Far East.

のウィンドウ期間は20日間である。一方,気候値は 1957年9月1日から2002年8月31日までの日平均値よ り日々の平均値を求め,さらにこのデータに対して 60日のLanczos low-pass filterを施した値で定義した。 解析期間には4050日分(90日×45冬季)のデータが 存在する。

一方,大気の対流活動の指標として米国国立大気 海洋庁(NOAA)作成の外向き長波放射(Outgoing Longwave Radiation: OLR)データを用いた。このデ ータは,緯度経度2.5°の格子点上で日平均値が与え られている。解析に使用した期間は,1979/80年か ら 2001/02 年の 23 冬季で,ERA-40再解析値と同様 の10日のlow-pass filterを施した値について解析を行 った。

3. 結果

3.1 冬季極東域で卓越する温度変動パターン

冬季極東域で卓越する温度変動パターンを調べる ため,850 hPa面の温度偏差についてEOF解析を実施 した。解析領域は25°N~50°N,120°E~150°Eである。 なお,1000 hPaから200 hPaまでの異なる等圧面温度 偏差についてEOF解析で得られた主要変動パターン は、850 hPa面でのそれとほぼ同様であった。

EOF解析の結果,最大固有値(寄与率は49.9%)に 対応する固有ベクトルEOF1は,極東域全域の温度偏 差が同期して変動する特徴を示すことが分かった (Fig. 1a)。この変動パターンの作用中心は朝鮮半 島付近の125°E,40°N付近に存在する。次に寄与率の 大きい第二モードは,その寄与率が25.8%で,対応 する変動パターン(EOF2)は、40°N付近を境に極側 と赤道側の温度偏差が逆相関で変動する特徴を示す (Fig. 1b)。なお、Fig.1は、対応する主成分スコア (PC1, PC2)が1(標準偏差)となる場合のパターン を示す。このEOF1とEOF2の二つのパターンで、冬 季極東域の850 hPaにおける全温度変動の75.7%を説 明する。

3.2 EOF1, EOF2に伴う大気循環場の特徴

極東域での主要温度変動パターンに伴う大気循環 場の特徴を調べるために、主成分スコアPC1及びPC2 と各層の高度場偏差との回帰分析を行った。PC1と 250 hPa等圧面高度偏差場との同時回帰分析では、ヨ ーロッパ、ユーラシア北部、極東域を作用中心とす るEU(Eurasian)パターンに対応するロスビー波列 を見て取ることができる(Fig. 2a)。このため、EOF1

Fig. 2 Simultaneous regressed map of 250-hPa geopotential height anomaly with respect to (a) PC1 and (b) PC2. (c) The regressed map of 10-hPa height anomaly with respect to PC2. Contour interval is 30 m. Regions with a statistical significance over 99% are color shaded.

Fig. 3 (a) The observed PDF in 2D phase space spanned by the two-leading EOFs. The x – and y – axes correspond to PC1 and PC2, respectively. (b) Inhomogeneity of the observed PDF compared with multivariate Gaussianity. Percentages of random 10000 PDFs having smaller values than the observation are shown by contours. Regions larger (smaller) than 80 (20) % are shaded with warm (cool) color. The additional dotted contours are 95% and 5%. (c) Averaged phase-space velocity vectors V (arrows) in the 2D phase space. Contours show the magnitude of the vector |V|. Regions where |V| > 0.16/day (< 0.08/day) are shaded by cool (warm) color. Regions corresponding to regimes A and B are shown by colored ellipsoids.

はEUパターンと関連して出現することが分かる。一 方,北日本と西日本の温度偏差分布のシーソー的変 動パターンを示すEOF2の時系列PC2と250 hPa等圧 面高度場偏差との同時回帰分析から, PC2はWP

(Western Pacific) パターンと類似した東部シベリア 域の作用中心と本州付近の作用中心との間での高度 場偏差場のシーソー的な変動パターンと関連してい ることが分かる(Fig. 2b)。

一方, PC1と10 hPa等圧面高度場偏差の同時回帰場 では,有意な領域は限定的ではあるが,東西波数1 型の偏差パターンが卓越する(図は省略)。また, PC2との同時回帰場(Fig. 2c)では,中高緯度域で負, 極域で正の高度場偏差が明瞭であり,極夜ジェット が弱化する極性を持つ環状モードパターンとPC2が 関連していることが分かる。

さらに、35°N~70°Nの緯度帯で南北平均した各等 圧面高度場偏差とPC1との同時回帰場(図は省略)で は、バレンツ海付近の負偏差領域と極東域の正偏差 領域において、位相が対流圏で高さとともに西に傾 き、惑星規模のロスビー波束が上方伝播する傾向で あることを示唆している。また、ずらし回帰分析図 でも、高度場偏差の等位相線が高さとともに東傾す る傾向は見いだせなかった。このため、成層圏での 循環偏差が波動の下方伝播を通じて対流圏下層の極 東域における特徴的な温度偏差場を強制する可能性 は極めて小さい。

3.3 冬季極東域で生じやすい温度場レジーム

冬季極東域で出現しやすい温度偏差パターン(レ ジーム)を特定するため、3.1節で求められた冬季極 東域850 hPa温度偏差場に関する二つの主要な主成 分スコア (PC1, PC2) で張られる2次元位相空間での 確率密度関数 (Probability Density Function: PDF) を Kimoto and Ghil (1993) に従い評価した。その結果, 最終的に推定されるPDF *f*(*x*)は,

$$f(\mathbf{x}) = \frac{1}{C} \sum_{i=1}^{N} \eta_i^{-r} K\left(\frac{\mathbf{x} - \mathbf{X}_i}{h\eta_i}\right)$$
(1)

で与えられる。ここで, r = 2で, K(x)は, Epanechnikov kernel functionと呼ばれ,

$$K(\mathbf{x}) = \begin{cases} 1 - \mathbf{x}^t \mathbf{x}, & \text{if } \mathbf{x}^t \mathbf{x} < 1\\ 0, & \text{if } \mathbf{x}^t \mathbf{x} \ge 1 \end{cases}$$
(2)

で与えられる。また、 X_i はある日iにおける偏差場 (PC1, PC2)に対応するサンプル点(2次元状態ベク トル)、 η_i は X_i の分布から求められるバンド幅、Nは サンプル数(4050)、Cは規格化定数(PDFの全領域 積分が1になるように定義)、hはleast-square cross validation (LSCV)に基づいて求められた最終平滑 パラメータで、今の場合h = 0.71となった[手法の詳 細は、kimoto and Ghil (1993)を参照のこと]。

Fig. 3aはこのようにして求められたPDFを示す。 PDFは、おおよそ気候値(原点)付近に極大値を持つ 2次元正規分布に近い形となるが、極大域は原点から やや第4象限側にずれて存在していることが分かる。 また、モンテカルロ法に基づくPDFの有意性検定の 結果(Fig. 3b)、PC1及びPC2がともに負の値をとる 第3象限に存在する領域(以下、レジームA)と、PC1

Fig. 4 Horizontal distribution of 850-hPa temperature anomaly for the representative points of (a) regime A : (PC1, PC2)=(-1.0, -1.4), and (b) regime B: (PC1, PC2)=(1.0, 0.0).

Fig. 5 Trajectory passing through the point O: (PC1, PC2)=(-1.0, -1.4) representing regime A. Small dots indicate daily position. The red curve shows the trajectory estimated by the averaged phase-space velocity in Fig. 3c, while the green curve is obtained from centroids of the observed sample data residing in the vicinity of the point O at day 0.

軸上でPC1の値が正の領域(以下,レジームB)でPDF が2次元正規分布よりも有意に大きいことが分かる。 すなわち,この二つのレジームが,冬季極東域で発 生しやすい温度偏差パターンである。

Fig. 4aで示したように、レジームA は極東域の全域,特に、西日本で大きな低温偏差となる温度偏差パターンに対応する。一方、レジームBは、極東域全域で暖かく、極東域での南北温度傾度が平年並みとなる温度偏差パターンと対応する (Fig. 4b)。

次に、2つのレジーム領域でPDFが大きくなる要因 を調べるために、位相空間における平均速度ベクト ルを求めた。その結果、両レジームの存在する領域 では平均速度が比較的小さく、特に、レジームAでは

Fig. 6 Time evolution of the observed sample data residing in the vicinity of the point O: (PC1, PC2)=(-1.0, -1.4) at day 0 in the 2D phase space. Blue dots indicate their centroids.

その傾向が顕著であることが分かった(Fig. 3c)。こ のため、両レジームとも持続性の高い温度偏差パタ ーンであることが示される。また、レジームAでは速 度変動も小さいたく、個々のイベントの時間変化傾 向も比較的類似していることが分かった(図は省略)。

2.4 レジームA(西日本寒冬パターン)に伴う 大気循環場の特徴

冬季極東域で生じやすい温度偏差パターンである レジームAに伴う大気循環場の特徴を解析するため に、ここでは二通りの手法で、位相空間上での合成 図解析を行った。また、レジームAを代表する点と して、以下では、(PC1, PC2) = (-1.0, -1.4)で 定義する点O(Fig. 5における大きい赤点)を考え、 この点Oを通過する軌道の特徴を解析する。なお、 点O近傍のレジームA内にある点を考えても、以下 の特徴はほぼ同じである。

まず, Fig. 3c で求められた位相空間における平均 速度ベクトルを用いた合成図解析を行った。この手 法では、レジームAを代表する点O(-1.0, -1.4) を通過する軌道を,得られた平均速度ベクトルを時 間積分することにより求め,その軌道に沿って合成 図解析を行う。しかし,この手法で求められた軌道 (Fig. 5の赤線)は仮想的な軌道であり,位相空間の ある領域に存在する観測されたサンプル点が時間の 経過とともに散らばる特徴は考慮されない(Fig. 6 参照)。実際,この手法で合成された偏差場の振幅は,

Fig. 7 Composited anomaly of 250-hPa geopotential height anomaly (m) corresponding to green dots in Fig.5. Contour interval is 30m, and regions with a statistical significance over 99% are color shaded. The arrows indicate wave-activity flux (m^2/s) of Takaya and Nakamura (1997).

充分時間が経過しても減衰しないため,偏差場は無限大の予測可能時間を持つことになってしまう。こ のことは,近接するサンプル点も時間の経過ととも に散らばっていくという観測事実を考慮しないこと が原因であり,中高緯度大気運動の予測可能期間が 有限であるという事実と反する。このため,実際に は以下の手法により,合成図解析を行った。

まず, Fig. 6 で示されたように、レジーム A を代 表する点 $O(x = x_0)$ に位相空間内で近い観測された サンプル点を取り出す。ここで、「近い」サンプル点 を、式(1)で $|(x_0 - X_i)/h\eta_i| < 1$ を満たす点 X_i で定義し た。このように定義された点 O の近傍のサンプル点 X_i のそれぞれについて時間発展を追跡し、以下の式 に基づいて時刻tにおける合成図 $Z_c(x, y, z, 0)$ は

$$Z_{C}(x, y, z, 0) = \frac{\sum_{i=1}^{N} W_{i}(X_{i}) Z_{i}(x, y, z)}{\sum_{i=1}^{N} W_{i}(X_{i})}$$
(3)

で定義した。ここで

$$W_{i}(X_{i}) = \frac{1}{Cf(x_{0})} \eta_{i}^{-r} K(\frac{x_{0} - X_{i}}{h\eta_{i}})$$
(4)

である。さらに, day=j における合成図Z_C(x, y, z, j)は,

$$Z_{C}(x, y, z, j) = \frac{\sum_{i=1}^{N} W_{i}(X_{i}) Z_{i+j}(x, y, z)}{\sum_{i=1}^{N} W_{i}(X_{i})}$$
(5)

で定義できる。ここで、 $Z_i(x,y,z)$ はi日目のサンプル 点 X_i に対応する観測値の空間分布を示す。

式(5)に基づいて求められた 250-hPa 高度場偏差の 合成図を Fig. 7 に示す。極東域全域,特に西日本で 低温偏差となる温度分布パターン (レジーム A)の 形成期 (day -10) には,対流圏上層のアラスカ付 近でブロッキング高気圧が発達していることが分か る。その後,このブロッキング高気圧は徐々に西進 し,オホーツク海上空に高気圧性偏差を形成する (day -5)。一方,day -5 では,ユーラシア大陸上 には EU パターンが形成し始める。レジーム A の最 盛期 (day 0) では,この両者が重畳し,シベリア上 空で高気圧性偏差,日本付近で低気圧性偏差となる, 強い WP パターンが形成される。この WP パターン は,プラネタリー波の上方伝播を抑制するため,成 層圏極渦は強化する (図は省略)。

一方, Fig. 8 に示されたように, レジーム A の形 成期から衰退期までの間, 南シナ海の対流活動は活 発で, その北西に位置するインドシナ半島北東部の 対流圏上層では, day -5 に高気圧性循環偏差が最も 強まる。レジーム A の成熟期 (day 0) では, この高 気圧性循環偏差から射出されるロスビー波束が, 亜 熱帯ジェットを導波管として北東側に伝播し, 日本

Fig. 8 As in Fig. 7 except for the anomaly of OLR (black contour; W/m^2) and 250-hPa stream-function (×10⁵ m). Regions with a statistical significance over 99% for OLR anomaly are color shaded.

付近の低気圧性偏差の形成に寄与していると考えら れる。このように、熱帯域から伝播するロスビー波 束と、高緯度域で卓越する EU パターンとブロッキ ング高気圧により、西日本寒波パターンであるレジ ームAが形成されることが示された。

4. 結論

冬季極東域で卓越する温度変動パターンを抽出す るため、1957 年から 2002 年までの 45 冬季分の ERA-40 再解析データを用いて解析を行った。まず、 冬季極東域における 850-hPa 温度長周期変動成分に ついて主成分分析を行い、この領域の温度変動パタ ーンは、極東域全域でのコヒーレントな温度変動パ ターンを表現する EOF1 と、北日本と西日本に作用 中心を持ち南北の領域間での温度偏差のシーソー的 変動パターンを表現する EOF2 とで、全温度変動の 70%以上を表現することが示された。

次に, EOF1 と EOF2 で張られる 2 次元位相空間に おける存在確率密度関数を求めた。その結果,存在 確率密度関数が 2 次元正規分布よりも有意に大きく なる領域として 2 つのレジーム (レジーム A,レジ ーム B)を取り出すことに成功した。レジーム Aは, PC1 及び PC2 がともに負の状態,すなわち極東域全 域が低温傾向で,しかも西日本で低温傾向が強いパ ターンとして特徴づけられる。また,レジーム A で は解軌道の時間変化も小さく,持続性の高い循環場 であることが分かった。一方,レジーム B は極東域 が暖冬となるパターンで,南北温度勾配は気候値と ほぼ同じである。

次に、レジームAについて、位相空間における解 軌道を用いて合成図解析を行い、その時間変化傾向 について解析した。その結果、レジームAの形成期 (day -10)には、対流圏上層のアラスカ付近でブロ ッキング高気圧が発達することが分かった。その後 (day -5)、このブロッキング高気圧は徐々に西進す る。また,ユーラシア大陸上でも EU パターンが形 成し始める。レジーム A の最盛期(day 0)では,こ の両者が重畳し,シベリア上空で高気圧性偏差,日 本付近で低気圧性偏差となる,強い WP パターンが 形成される。この WP パターンが,強い持続性を持 ち,極東域全域が寒冬,特に,西日本が厳冬となる レジーム A を形成する。この WP パターンは,プラ ネタリー波の上方伝播を制限し,成層圏極渦は強化 される。

一方, レジーム A の形成期には, ベンガル湾付近 で,南シナ海における活発化した対流活動により励 起された対流圏上層の高気圧性循環から北東に射出 されるロスビー波束が, 西日本上空の低気圧性偏差 の形成に重要な役割を果たしていることが確認でき た。南シナ海での対流活動の活発化は、海面水温が 高い初冬に生じやすいことが考えられるので、この 形成プロセスを考慮すると、レジームAは初冬に出 現しやすい温度偏差パターンであることが予期され る。一方、地球温暖化に伴い、熱帯域での海面水温 が上昇すると,南シナ海での対流活動も活発化しや すくなると考えられる。このため、レジーム Aの形 成プロセスを考慮すると、地球温暖化時には、レジ ーム A の出現頻度が高くなる可能性が考えられる。 すなわち,初冬の西日本は温暖化しにくいことが予 期できる。このような可能性を検証するため、本研 究と同様の解析を初冬のみについて実施することや, より最近の期間について再解析データを用いた解析 を実施する必要がある。

参考文献

Duchon, C.E. (1979): Lanczos filtering in one and two dimensions, J. Applied Meteor., Vol. 18, pp. 1016-1022.

Kimoto, M. and Ghil, M. (1993): Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes, J. Atmos. Sci., Vol. 50, pp. 2625-2643.

Takaya, K. and Nakamura, H. (1997): A formation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Letters, Vol. 24, pp. 2985-2988.

Uppala, S. M. et al. (2005): The ERA-40 re-analysis,

Quart. J. Roy. Meteor. Soc., Vol. 131, pp. 2961-3012. Wallace, J. M. and Gutzler, D. S. (1981):

Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Wea. Rev., Vol. 109, pp. 784-812.

(論文受理日: 2012年5月17日)

Characteristics of Atmospheric Circulation Related to Wintertime Temperature Variation over the Far-East

Hitoshi MUKOUGAWA and Mio MABUCHI⁽¹⁾

(1) Graduate School of Science, Kyoto University

Synopsis

Recurrent and persistent wintertime temperature anomaly pattern (regime) over the Far-East is thoroughly investigated by constructing multivariate probability density functions (PDFs) in a two-dimensional phase plane spanned by two leading empirical orthogonal functions (EOFs) of the Far-East low-frequency temperature variation using ERA-40 reanalysis dataset from 1957/58 to 2001/02 winter. The obtained regime is characterized by a low temperature anomaly over the Far-East, especially over western Japan, and associated with an anticyclonic height anomaly over Eastern Siberia and a cyclonic anomaly over the Far-East in the upper troposphere. The regime is formed through a superposition of a retrograding blocking high from Alaska with a Rossby wave train emanating from the Bay of Bengal due to anomalous convective activity over the South China Sea and another wave train from Europe.

Keywords: cold winter over the Far East, probability density function, regime