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Synopsis 

Stream water temperature has a direct impact on the water quality and ecosystem 

through its influences on many chemical processes. The main objectives of this study is 

to investigate the long term monthly and yearly variation of stream water temperatures 

in cold regions for both historical and future periods.  Firstly, the long-term trends 

(1961-2001) in the monthly and yearly time series of water temperature at Sapporo were 

identified. Then, to predict the future water temperatures, the approach of downscaling 

the outputs of a global climate model (GCM) to a local scale was investigated by 

employing the Statistical Downscaling Model to downscale air temperature (T) in both 

the present and future climate scenarios. The above downscaling approach was applied 

to the Sapporo meteorological station in Japan by simulating the local scale daily 

temperature based on large scale atmospheric variables including National Center for 

Environmental Prediction (NCEP) reanalysis datasets (1961-2000) and a general 

circulation model (HadCM3) outputs (1961-2099).  
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1. Introduction  

 

 As a fundamental physical characteristic 

describing properties of surface waters, stream 

water temperature has a direct impact on the flora 

and fauna of aquatic systems through its influences 

on many chemical processes in river systems. High 

stream temperatures can have adverse effects on 

fisheries resources by limiting fish habitat and 

mortality. Most of the variations in stream water 

temperatures is affected by a number of variables 

such as the depth of water, cloud cover, solar 

radiation, low flow, etc. In recent decades, climate 

change has been reported as an important source of 

aquatic disturbance on a large scale and global scale 

(Fig. 1). A good knowledge of stream water 

temperature is therefore essential in the 

management of stream water and aquatic resources 

(Webb et al., 1993). The main objectives of this 

study is to investigate the long term monthly and 

yearly variation of stream water temperatures in 

cold regions for both historical and future periods. 

For this purpose, the observation and scenarios data 

of air and water temperature was collected in this 

study.  

    As for the future scenarios data of air 

temperature, the output from General circulation 

models (GCMs) was used. The GCMs representing 

physical processes in the atmosphere, ocean, 

cryosphere, and land surface are the most advanced 
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Fig.1 Schematic representation of the climate change and examples of impacts summarized from 

literatures (IPCC, 2007; etc.). 

 

 

 
numerical tools currently available for simulating 

the response of the global climate system to 

increasing greenhouse gas concentrations (Mendes 

and Marengo, 2010). While they demonstrate 

significant skill at the continental and hemispherical 

scales and incorporate a large proportion of the 

complexity of the global system, they are generally 

not designed for local or regional climate change 

impact studies and are inherently unable to present 

local subgrid-scale features and dynamics owing to 

their coarse spatial resolution (Coulibaly, 2004). 

Thus, GCMs simulations of local climate at 

individual grid points are often poor, especially in 

areas near mountains or coastlines (IPCC, 2007). 

As a result, GCMs are not directly suitable for local 

impact studies, since local climate depends on 

topographical features, such as elevation or aspect 

(Sailor et al., 2000). For applications to impact 

studies such as hydrological impacts of climate 

change, impact models are usually required to 

simulate sub-grid scale phenomenon and therefore 

require input data (such as precipitation and 

temperature) on a similar sub-grid scale (Schoof 

and Pryor, 2001). There is need to convert the 

GCMs outputs into higher spatial resolution 

scenarios (Giorgi et al., 2001). 

   The methods used to convert GCMs outputs to 

regional high-resolution meteorological fields 

required for reliable hydrological modeling are 

usually referred to as “downscaling” techniques 

(Hewitson and Crane 1992). There are two major 

approaches established well at the moment, namely 

the dynamic downscaling and the empirical (or 

statistical) downscaling. The former is a method of 

extracting local scale information by developing 

and using limited-area models or regional climate 

models (RCMs) with the coarse GCMs data used as 

boundary conditions. In this approach, the outputs 

of GCMs grid cells are used to provide boundary 

conditions for other models with higher resolution, 

which better represent local topography and provide 

a more realistic simulation of fine-scale weather 

features. Recent studies have shown the capacity of 

RCMs to reproduce fine-scale features of different 

regional climates, however, they still exhibit 

systematic errors due to imperfect representation of 

even smaller-scale features (Hulme et al. 2002). 

The latter seeks to derive the local scale 

information from the larger scale through inference 

from the cross-scale relationship using some 
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Fig.2 Schematic representation of the 

downscaling methodology used in this paper for 

generating local air temperature using historical 

surface temperature data and NCEP data. 

 

 

 

random or deterministic functions (Wilby et al., 

2002). They are generally based on the assumption 

that GCMs are reliable predictors of both 

large-scale variables and atmospheric conditions 

which are sufficiently far removed from the surface 

of the earth (Cavazos, 1999). This approach does 

not require lengthy computation times and is based 

on finding clear relationships between large-scale 

atmospheric variables and local climate (Schoof et 

al., 2001). To date, linear and non-linear regression, 

artificial neural networks, canonical correlation and 

principal component analysis have all been used to 

derive predictor-predictand relationships (Xu, 1999; 

Busuioc et al., 1999). Even though it is not yet clear 

which method provides the most reliable and 

accurate downscaling results (Schoof and Pryor, 

2001), the most widely used empirical downscaling 

method is the Statistical Down-Scaling Model 

(SDSM) which implements a simple linear 

regression (Wilby et al., 2002). 

    In this study, to investigate the long term 

monthly and yearly variation of stream water 

temperatures in cold regions for both historical and 

future periods, firstly, the long-term trends 

(1961-2001) in the monthly and yearly time series 

of water temperature at Sapporo were identified. 

Then, to predict the future water temperatures, the 

approach of downscaling the outputs of a global 

climate model (GCM) to a local scale was 

investigated by employing the Statistical 

Downscaling Model to downscale air temperature 

(T) in both the present and future climate scenarios. 

The above approach was applied to the Sapporo 

meteorological station in Japan by simulating the 

local scale daily temperature based on large scale 

atmospheric variables including National Center for 

Environmental Prediction (NCEP) reanalysis 

datasets (1961-2000) and a general circulation 

model (HadCM3) outputs (1961-2099). 

 

2. Methodology 

 

2.1 Statistical Downscaling Model 

   The SDSM is a multiple regression-based tool 

for generating future scenarios to assess the impact 

of climate change and it has the ability to capture 

the inter-annual variability better than other 

statistical downscaling approaches, e.g. weather 

generators, weather typing (Wilby et al. 1998; 

1999). It is a combination of a stochastic weather 

generator approach and a transfer function model 

(Wilby et al. 2002; 2004) needing two types of 

daily data. The first type corresponds to local 

predictands of interest (e.g. temperature, 

precipitation) and the second type corresponds to 

the data of large-scale predictors (NCEP and 

GCMs) of a grid box closest to the study area. 

Correlation and partial correlation analysis are 

performed in SDSM between the predictand of 

interest and predictors to select a set of predictors 

most relevant for the site in question (Wilby et al. 

1999; Wilby and Dawson, 2007). 

 

2.2 Selection of predictor variables 

   For SDSM, selecting the most relevant predictor 

variables is the first and an important task in the 

downscaling process. The selection of the most 

relevant predictor variables is achieved with linear 

correlation analysis and scatter plots (between the 

predictors and the predictand variables). In this 

study, the observed daily data of large scale 

predictor variables (NCEP data) is used to 

investigate the percentage of variance explained by 

each predictand–predictor pair. The influence of 

individual predictors varies on a month-by-month 
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Fig.3 Location of study areas in Hokkaido (The 

red circles represent the observation sites of 

water temperature)  

 

 

 

basis. Therefore, the most appropriate combination 

of predictors has to be chosen by checking the 

analysis output of all of the 12 months. Finally, 

only one set of selected predictors is used as input 

to the downscaling models of all of the months.    

Figure 2 demonstrated the schematic representation 

of the downscaling methodology used in this paper 

for generating local air temperature using historical 

surface temperature data and NCEP data. 

 

3. Data description 

 

3.1 Observation data 

Observed local variables of air temperature and 

river water temperature for Sapporo site (Fig. 3) 

were collected from the observation database of 

Automated Meteorological Data Acquisition 

System (AMeDAS) and The Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT) 

database. The temporal resolution of temperature is 

daily. 

 

3.2 NCEP  

Observed large-scale atmospheric variables for 

the period 1961–2000 were obtained from the 

reanalysis of NCEP-NCAR (National Centers for 

Environmental Prediction-National Center for 

Atmospheric Research) data. The dataset consists of 

large-scale predictor variables presented in Table 1 

(Asian domain: 80.0°N-10.0°S, 56.25-191.25°E; 

NCEP dataset: http://www.cics.uvic.ca). Daily 

mean of predictors including geo-potential height at 

500 and 850 hPa (ncepp500as, ncepp850as), 

relative humidity at 500 hPa (ncepr500as), mean 

sea level pressure (ncepmslpas) with a grid 

resolution of 2.5° × 2.5° were interpolated to match 

GCMs spatial resolution (2.5° Lat. × 3.75° Long.). 

The resulting time series of the grid cell nearest to 

Hokkaido (45° N, 142.5° E) were used as predictor 

variables to develop and test the SDSM model with 

observed air temperature data (1961–1990), and to 

validate the capability of SDSM to reproduce 

large-scale variables and atmospheric conditions 

(1991–2000).  

 

3.3 HadCM3 

The GCM adopted in this work were the 

HadCM3, developed by the Hadley Centre, UK.   

HadCM3 is a coupled atmosphere–ocean GCM 

described by Gordon et al. (2000) and Pope et al. 

(2000). The atmospheric component of HadCM3 

has 19 levels with a horizontal resolution of 2.5° 

Lat. × 3.75° Long., while the oceanic component 

has 20 levels with a horizontal resolution of 1.25° 

Lat. ×1.25° Long. A number of scenarios of future 

changes in greenhouse gases and aerosols were 

used to drive the model run. In order to simulate 

climate change, the emission scenario A2 was 

selected among those proposed by the Special 

Report on Emission Scenarios (SRES) (IPCC, 

2007) for their wide and representative range of 

changes in temperature patterns. The predictors 

which are similar to NCEP (Table 1) were 

simulated from HadCM3 for the periods 1961–2099 

and were extracted for the respective grid cell 

closest to Sapporo. In particular, as mentioned 

above, the HadCM3 data for the present climate 

were compared with the NCEP-NCAR data to test 

the capability of the GCM to reproduce large-scale 

variables and atmospheric conditions. All predictors 

in these datasets (presented in Table 1) have been 

normalized with respect to the 1961–90 mean and 

standard deviation. 
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Fig.4 Time series variation of observed daily air and water temperature (Unit: °C) from 1961 to 2001. 

 
Fig.5 Scatter plots of observed and simulated daily temperature (Unit: °C) for both calibration and 

validation of SDSM model. 

 

 
 

Table 1 Description of all predictors in NCEP. 

NCEP code Predictors (NCEP reanalysis) NCEP code Predictors (NCEP reanalysis) 

ncepmslpas Mean sea level pressure ncepp500as 500 hPa geopotential height 

ncepp5_fas 500 hPa airflow strength ncepp850as 850 hPa geopotential height 

ncepp5_uas 500 hPa zonal velocity ncepp__fas Surface airflow strength 

ncepp5_vas 500 hPa meridional velocity ncepp__uas Surface zonal velocity 

ncepp5_zas 500 hPa vorticity ncepp__vas Surface meridional velocity 

ncepp5thas 500 hPa wind direction ncepp__zas Surface vorticity 

ncepp5zhas 500 hPa divergence ncepp_thas Surface wind direction 

ncepp8_fas 850 hPa airflow strength ncepp_zhas Surface divergence 

ncepp8_uas 850 hPa zonal velocity ncepr500as Relative humidity at 500 hPa 

ncepp8_vas 850 hPa meridional velocity ncepr850as Relative humidity at 850 hPa 

ncepp8_zas 850 hPa vorticity nceprhumas Near surface relative humidity 

ncepp8thas 850 hPa wind direction ncepshumas Surface specific humidity 

ncepp8zhas 850 hPa divergence nceptempas Mean temperature at 2 m 
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Fig.6 Histogram of observed and simulated 

monthly minimum and maximum extreme T 

(Unit: °C) for historical climate (1961-2000) and 

future climate (2070-2099). (OBS: observation 

of T by AmeDAS; SIM: simulation of T using 

current HadCM3 data; SCE: scenarios of T using 

future HadCM3 data) 

 

 

 

4. Results and analysis 

 

4.1 Long term variation 

   The long-term trends (1961-2001) in the 

monthly and yearly time series of water temperature 

at Sapporo (Hokkaido, Japan) were identified. 

Figure 4 shows the time series variation of observed 

daily air and water temperature from 1961 to 2001. 

The data was observed once or twice a month. From 

Fig. 4, it is obvious that the river water temperature 

has high correlation with air temperature. Using the 

multiple regression techniques, an empirical 

relationship can be derived between monthly stream 

water temperatures and monthly atmospheric 

temperatures, monthly discharge, and some other 

factors as well, using the observed data between 

1961 and 2001. Here, as the preliminary stage of 

this study, the simple relationship between air 

temperature and river water temperature was 

employed. 

 

4.2 Future air temperature 

To predict the future stream water temperatures, 

the approach of downscaling the outputs of a global 

climate model (GCM) to a local scale is 

investigated by employing the Statistical 

Downscaling Model (SDSM) to downscale air 

temperature (T) in both the present and future 

climate scenarios (IPCC scenarios A2). The above 

approach were applied to the Sapporo 

meteorological station in Japan by simulating the 

local scale daily temperature based on large scale 

atmospheric variables including National Center for 

Environmental Prediction (NCEP) reanalysis 

datasets (1961-2000) and a general circulation 

model (HadCM3) outputs (1961-2099) with a 

coarse spatial resolution of 2.5º latitude by 3.75º 

longitude. 

Results also show that atmospheric predictors 

such as surface specific humidity, mean air T at 2 

meter, and 500 hPa geopotential height are 

identified as the most relevant inputs to the 

downscaling model. Furthermore, the performance 

of the downscaling methods is compared for both 

calibration period (1961-1990) and validation 

period (1991-2000). Figure 5 shows the scatter 

plots of observed and simulated daily temperature 

for both calibration and validation of SDSM model. 

The downscaling model’s performance shows that 

SDSM is efficient for downscaling daily air T with 

R
2
 index higher than 90%. The simulated monthly 

average air T (1961-2000) by using HadCM3 

datasets also reproduced well the observed ones in 

the local station (Fig. 6). 

   As for yearly variation, Fig.7 shows the 

histogram of observed (using AMeDAS data) and 

simulated (using HadCM3 data) yearly average and 

maximum extreme air temperature from 1961 to 

2099.  

 

4.3 Future river temperature 

   Using the empirical relationship derived 

between stream water temperatures and 

atmospheric temperatures, monthly discharge, and 

some other factors as well, using the observed data 

between 1961 and 2001, it is possible for us to 

predict the future river water temperature. In this 

paper, the simple relation between air temperature 
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Fig.7 Histogram of observed (using AmeDAS data) 

and simulated (using HadCM3 data) yearly average 

and maximum extreme air temperature (Unit: °C) from 

1961 to 2099. 

 

 

Fig.8 Histogram of observed and simulated yearly 

average and maximum river water temperature 

(Unit: °C) from 1961 to 2099. 

 

 

 and river water temperature was applied to predict 

the future river water temperature in Ishikari River. 

Figure 8 shows the histogram of observed and 

simulated yearly average and maximum river water 

temperature (Unit: °C) from 1961 to 2099.  

 

5. Conclusions 

 

In this paper, the statistical downscaling method 

is presented to simulate local scale daily air 

temperature and monthly extreme (maximum and 

minimum) temperatures based on large scale 

atmospheric variables. They were applied to a 

weather station in Hokkaido, Japan along with 

NCEP reanalysis datasets. Results show that 

atmospheric predictors such as surface specific 

humidity, mean air T at 2 meter, and 500 hPa 

geopotential height are identified as the most 

relevant inputs to the downscaling models. The 

performance of the downscaling methods is 

compared for both calibration period (1961-1990) 

and validation period (1991-2000). The 

downscaling models’ performance show that SDSM 

is efficient for downscaling daily air T with R
2
 

index higher than 90%. This study demonstrates the 

applicability of downscaling technique in 

evaluating the reliability of the downscaled data for 

climate scenarios development. The results 

obtained from this study show the predicted river 

water temperature reproduced well the yearly 

variation of observed river water temperature. From 

the Fig. 8, the river temperature has the increasing 

trend. However, the results of Fig. 8 were highly 

influenced by the output of GCMs data, which has 

many potential uncertainties currently. Even though 

those uncertainties, this study still proposed a way 

to predict the future river water temperature. 
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ダウンスケーリングしたGCMデータによる寒冷地域における河川水温の統計解析 
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要 旨 

河川水温の上昇は，水質や生態系に重大な影響を及ぼすことが懸念される。本研究は，寒冷地域における河川水温の

長期間(現在と将来)変動の解析を目的とする。まず，札幌における長期間（1961年-2001年）の季節変動と年変動を解析

する。その後，将来の水温を予測するため，統計的ダウンスケーリング法を用い，北海道における将来の日単位気温を

ダウンスケーリングする。また，札幌における観測された日単位の気温と水温の関係を解析し，米国大気海洋庁の NCEP 

再解析データ(1961-2000)と英国ハドレーセンター(Hadley Centre)のHadCM3(Hadley Climate Model)のGCMデータ

(1961-2099)を用い，札幌における将来の河川水温を予測する。 

 

キーワード: 寒冷地域, 河川の水温，ダウンスケーリング，統計解析 
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