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Synopsis

This study uses a physically-based distributed hydrologic model, Hydro-BEAM
to simulate the observed runoff for the Red River Basin, based on the modified GCM
precipitation and temperature. Statistical bias correction method is applied to improve

the raw GCM. Then adjustment factors at each grid point are estimated from the

correction factors found out at observed points using kriging interpolation method. The

present result of the study supports bias correction method. Kriging method applied for

interpolation has soundly distributed the adjustment factors required to correct the GCM

data. Further study will show an improved reproduction of basin level runoff

observations with bias corrected GCM input.
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1. Introduction

South-east Asia is one of the most frequently
affected regions by flood. Many of the cities in
these regions are vulnerable to floods due to their
geographic locations in floodplains of large rivers
(Dutta and Herath, 2004). Hanoi, the capital of
Vietnam, is one of such cities, which is located in
the Red River delta with average elevation less than
20m and highly vulnerable to flood (Tran et al.,
2007). The Red River Delta is one of the largest
deltas in Vietnam, seriously threatened by flood
(Hansson et al., 2008). The Red River Delta is the
area with all the characteristics of a region in
distress, i.e., increasing numbers of floods, dense
and increasing population and a low land location
(Hansson and Ekenberg, 2002; Hansson et al.,
2008). The problem has been compounded in recent
years by a number of changes, such as
environmental degradation, global climate change,
sedimentation and degradation of the existing

extensive system of dykes (Hansson and Ekenberg,

2002). In order to address these problems, there is
need for studying the hydrological system and
simulating different extreme events to visualize the
probable floods that would exceed the flood control
design standards.

However, in the context of developing countries,
there is always limited data. GCM (Global Climate
Models) data has been used here for simulation to

overcome the data limitation.

2. Study Area
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Figure 1. Location map of the Red River Basin
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The Red River basin (Figl) is located in South
East Asia (from 20°00 to 25°30 North; from 100°00
to 107°10 East) and drains an area of 156,451 km2,
of which 50.3% in Vietnam, 48.8% in China and
0.9% in Laos (Le et al., 2007).

3. Methodology

3.1 GCM Data and Bias Correction

GCM data used here is the super high resolution
(20km spatial and hourly temporal) GCM outputs
based on AIB scenario of IPCC SRES ARA4.
AGCM20 has been chosen here to bridge the
temporal and spatial resolution gap between the
GCMs and hydrologic use. Moreover, it has
advantage in simulating orographic rainfall and
frontal rain bands. Also it has the advantages of
avoiding conventional problem on a spatial scale,
not requiring further regional or statistical
downscaling (Kim et al., 2009 and Kaoru et al.,
2009). GCM data used here are precipitation and
GCMs  are

characterized by biases that limit their direct

temperature. However often
application for basin level hydrological modeling
(Sharma et al., 2007). Bias correction method,
based on Pearson Type iii distribution, has been
applied to improve the raw GCM output. Basic
concept behind the data correction is the existence
of correlation between GCM outputs, observed and
estimated value. The statistical bias correction
method used here is based on the initial assumption
that both simulated and observed values are well
approximated by same probability function as
shown in Fig. 2.

Conversion function f(PGCM) is determined
based on the assumption that the non-exceedance
probability of the GCM output is same as that of
observed. With this, adjustment factors at each
observed point are calculated. Ratio-based and
difference-based corrections are applied to
precipitation and temperature respectively. Scale
factor for precipitation is found out by dividing
corrected GCM output by raw GCM output while
shift factor for temperature is found out as a
difference of corrected GCM output and raw one.
Then adjustment factors at each grid points are
estimated from the correction factors found out at

observed points. For this Kriging interpolation

method is used. This is then applied to get the
corrected GCM precipitation and temperature at
each grid. Observed daily rainfall from 65 stations
for the period of 1979-2000 is used for bias
correction for GCM precipitation, while for
temperature; observed monthly average temperature
from 11 stations for the period of 1996-2000 is

used.
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Jeomqj(P):probability distribution function of
monthly precipitation of GCM output (grid:i,
month:j)
fobs(i,j)(P):probability distribution function
of monthly precipitation of obs. output

Figure 2. Basic concept of data correction (eg.
monthly precipitation)

3.2 Kriging Method for Interpolation

Kriging is an interpolation technique in which
the surrounding measured values are weighted to
derive a prediction for an unmeasured location.
Weights are based on the distance between the
measured points, the prediction locations, and the
overall spatial arrangement among the measured
points. This includes both trend and randomness
while interpolating. Various combinations of trend
models and covariance models are used to find out
the best fit model using Akaike’s Information
Criterion (AIC). The AIC methodology attempts to
find the model that best explains the data with a
minimum of free parameters. Covariance models
used for the analysis are 1-D and 2-D Spherical,
Exponential and Gaussian models. Trend models
used are trend in mean, polynomial trends of 1
degree of 1-D of XY axis and 2-D of XY plane.

Adjustment factors from observed stations are
distributed using kriging interpolation technique.
As there are different models available for kriging
method, best fit model is found out using AIC
Criterion. Then the same model is used for getting
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these factors at each grid point.

3.3 Hydrological Simulation
distributed
(Hydrological

A physically-based model,
Hydro-BEAM

Environment Assessment Model) has been used for

River Basin
rainfall runoff simulation. The model consists of
grid cells with DEM and four soil layers (Kojiri et
al., 2008). The lateral flow from soil layers A, B
and C except D (Fig. 3) can discharge into the river,
and the soil moisture can move down and up among
the four layers with a no-flux boundary condition at
the base of layer D. The model also includes the
representation of the hydrologic processes of
evapotranspiration, runoff from paddy fields,
surface runoff, ground water flow, and flow routing
in channel and intake/ release. For considering the
variations of infiltration due to the land cover
changes, five types of land cover are defined in the
model. They are mountainous areas, paddy fields,
dry fields, urban lands and water-body surfaces.

Figure 3. Schematic structure of Hydro-BEAM

Thornthwaite method has been used to calculate

potential evapotranspiration in the model as
follows:
10T; / \*
E, = 0.553D, ( l/]) 1)

a = 0.000000675J3 — 0.0000771J2 +

0.1792] + 0.049293 (2)
12

J = gy 3
i=1

E, = M.E, C))

Where Ep is the potential evapotranspiration at
month i(mm/day), and Do is the feasible sunshine

duration (h/12 h).a and J are the power index and a
heat parameter, and are computed using Equations
(2) and (3), respectively. Tiis the monthly averaged
temperature at month i (°C). Ea is the actual
evapotranspiration (mm/day), and M is a parameter

for representing available moisture vapor.

Stream routing modeling is done by using the

Kinematic wave approximation (Eq. 5 and 6)

oh 0h
% + Fri r(x,t) 5)
q=ah™ (6)

Where # is the discharge depth (m), and r(x,?) is the
effective rainfall (m/s) at location x and time ¢. a

and m are parameters for computing q.

Surface runoff is calculated using the integrated
kinematic wave approximation. This assumes real
discharge rate, q;, to be composed of overland flow
rate, qs, and interflow rate, q. (Eq. 7).

b= qa when h < d
ar = Vr-N= {qA|h_d + g5 whenh > d
. {Bh whenh <d
“Bh+a(h—d)™ whenh > d

™

Where, v, is the velocity of real flow, 4 is the net
depth of water flow, d is net depth of flow in
saturation level, o, f and m are parameters for
computing ¢,.

The linear storage model is used to evaluate the

subsurface water in the target area (Eq. 8 and 9)

dS—I 0 8
Frintie )
0 = (ky + ky)S ()]

Where, I and O are input and output discharges,
respectively. S is storage and k; and k, are tank
coefficients.

Complex tank model has been used to simulate
the runoff process in paddy field.
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3.4 Data Details

DEM (Digital Elevation models) of 90 m
resolution has been used from CGIAR_CSI SRTM
database. Land use map of 1 km resolution has been
GLCC (Global Land
Characteristics) data version 2.0. Boundary data of

used from Cover

1 km resolution from HydroSHED has been used.

3.5 Data Preparation

9 km by 9km grid size has been used for the
analysis. Longitude and latitude of boundary data
were extracted using arc GIS. Boundary for the
river basin has been shown in Fig. 4. Flow direction
map obtained from DEM has been shown in Fig. 5.
GLCC has 24 land use types while in Hydro-BEAM
only 5 are considered. Most of the area was found
to be forest (61.02 percent) and dry field (31.77
percent). Paddy filed, urban area and water body are

found to be 6.54, 0.11 and 0.56 percent respectively.

Fig 6 shows the land use distribution.

1 N
&

Figure 4. Red river basin boundary
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Figure 5. Flow direction rhap

Figure 6.

Land use maps

4. Findings and Analysis

4.1 Bias Correction

Bias correction at each observed station for
rainfall and temperature is calculated. Results
(Fig.7) shows GCM data which over predicts the
rainfall scenario for dry season while under predicts
the scenario for wet season.
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Figure 7. Comparison of observed, raw GCM and
bias-corrected GCM (for rainfall)
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Figure 8. Comparison of observed, raw GCM and
bias-corrected GCM (for temperature)

In case of temperature, GCM data is found to be
under predicted. Fig 8 can be referred for this.

4.2 Kriging Interpolation

Estimated parameters and evaluated AIC related
to different trends and covariance models have been
presented in Tables 1, 2 and 3 in the case of
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precipitation in January. For January I1-dim
spherical model was found out to be suitable.
Similar analyses were done for all months for
precipitation and temperature. Table 4 and 5
respectively shows the selected models along with
parameters for precipitation and temperature. Then
shift factor

distributions for the month, January have been

interpolation is done. Scale and

shown in Figs. 9 and 10 respectively.

]
Figure 9. Scale factor distribution (Jan)
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Figure 10. Shift factor distribution (Jan)

In case of precipitation combination of
exponential or spherical covariance models with
trend function of fixed mean is found to be the best
model. While for temperature almost all data best
fit in 1-D Spherical models with trend function of
fixed mean. Gaussian models are found to be
unsuitable in all the cases. The problems of the
models are non-convergence or very high value of

AlC.

Table 1 Estimated parameters and evaluated AIC related to the trend of b; (for precipitation of January)

Covarinace Trend fxn Covariance fxn
fxn model m(x)=b; C(h) MLL AIC
b, ¢’ a; a
1-Dim Exponential 3.11E-01 |1.33E-02 | 5.92E-01 2.61E-04 | 6.001E+00
1-Dim Gaussian
1-Dim Spherical 2.94E-01 |5.59E-02 | 3.66E+00 1.91E-04 | 6.000E+00
2-Dim Exponential | 3.29E-01 |2.30E-04 | 2.23E-01 | 4.92E-02 | 2.19E+03 | 4.380E+03
2-Dim Gaussian
2-Dim Spherical 3.29E-01 |1.93E-03 | 8.52E+00 | 1.31E+00 | 2.42E+03 | 4.842E+03

Table 2 Estimated parameters and evaluated AIC related to the trend of b;;+b, Ry (for precipitation of January)

Cov. Trend fxn Covariance fxn
fxn. m(x)=b;+b,x+bzy C(h) MLL AIC
model b, b, bs ¢’ a a,
1-Dim Exponential -3.16E+00|2.60E-02 |3.40E-02 |I.25E-02|5.57E-01 2.73E-04|1.00E+01
1-Dim Gaussian
1-Dim Spherical -1.10E+01|{9.65E-02|5.20E-02 [5.48E-023.65E+00 2.05E-041.00E+01
2-Dim Exponential 1.14E+00 1.16E-02|1.89E-02 2.20E-04{1.81E-01 (4.6 1 E-02[2.13E+034.28 E+03
2-Dim Gaussian
2-Dim Spherical -4.20E+00|4.31E-02 |-2.59E-03|1.93E-03[8.54E+00|1.31E+002.40E+034.82E+03
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Table 3 Estimated parameters and evaluated AIC related to the trend of bj.+b, X +b; y (for precipitation of Jan)

Covariance Trend fxn Covariance fxn
fxn. m(x)=b;+b2R,y C(h) MLL AIC
model b, b, ¢’ a, a,
1-Dim Exponential|-2.30E+00(2.42E-02 |1.27E-02|5.64E-01 3.76E-04 [8.00E+00
1-Dim Spherical |-1.01E+01[9.67E-02 |5.52E-02|3.67E+00 1.32E-04 [8.00E+00
2-Dim Exponential | 2.14E+00 |-1.68E-02|2.20E-04|1.89E-01 |4.65E-02|2.16E+03|4.33E+03
2-Dim Spherical |-4.47E+00|4.42E-02 |1.93E-03|8.54E+00{1.31E+00|2.40E+03|4.82E+03

Table 4 Models chosen for different months and estimated parameters (precipitation)

Trend fxn Covariance fxn
m(x)=b, C(h)
month model b, o’ a; a, MLL AIC
jan 1-Dim Spherical 2.94E-01 [5.59E-02 [3.66E+00 1.91E-04 6.00E+00
feb 1-Dim Spherical ~ [2.93E-01 |6.03E-02 4.37E+00 1.74E-04 |6.00E+00
mar  |I-Dim Spherical ~ [4.09E-01 [7.37E-02 W4.64E-+00 2.29E-04 |6.00E+00
apr 1-Dim Exponential |4.75E-01 |6.03E-02 |1.59E+00 7.86E-05 6.00E+00

may [2-Dim Exponential |7.18E-01 [-6.25E-02 |-4.18E+01 |-2.00E+00 [8.17E-05 |8.00E+00

jun 1-Dim Exponential [9.49E-01 |[1.59E-01 4.03E-01 1.62E+01 [3.85E+01

jul 2-Dim Exponential |[1.25E+00 -1.21E-01 |-3.00E+01 |-1.79E+00 [6.08E-04 [8.00E+00

aug  |I-Dim Exponential [1.42E+00 2.16E-01 [3.22E-01 3.02E+01 |6.65E+01
sep  [2-Dim Spherical 1.37E+00 |-7.89E-02 [-2.21E+00 |-1.81E+00 |1.69E-04 [8.00E+00
oct 1-Dim Exponential [2.08E+00 [2.00E+00 |1.94E-01 1.09E+02 2.24E+02
nov  |1-Dim Exponential [1.48E+00 [1.15E+01 4.36E-01 1.54E+02 |3.14E+02
dec 1-Dim Spherical 2.76E-01 [6.06E-02 |4.00E+00 1.54E-04 |6.00E+00

Table 5 Models chosen for different months and estimated parameters (temperature)

Trend fxn Covariance fxn
C(h)
month model b, b, ¢’ a, MLL AIC
jan 1-Dim Spherical [2.65E+00 2.21E+00 |5.17E-01 [1.92E+01 4.45E+01
feb 1-Dim Spherical |7.49E-01 2.29E+00 (5.34E-01 |[1.94E+01 [4.49E+01
mar 1-Dim Spherical [1.21E+02 |-1.12E+00 [2.78E+00 |5.17E-01 [2.05E+01 [4.90E+01
apr 1-Dim Spherical 2.11E-01 4.09E+00 [6.93E-01 [2.25E+01 [5.10E+01
may |1-Dim Spherical [9.94E-01 1.94E+00 |8.28E-01 [1.83E+01 4.26E+01
jun 1-Dim Spherical [1.94E+00 1.51E+00 |7.89E-01 [1.70E+01 [3.99E+01
jul 1-Dim Spherical [1.44E+00 1.55E+00 |8.74E-01 [1.70E+01 4.00E+01
aug 1-Dim Spherical [1.24E+00 1.72E+00 [8.16E-01 [1.77E+01 4.14E+01
sep 1-Dim Spherical [3.47E-01 2.23E+00 (7.76E-01 [1.91E+01 |4.43E+01
oct 1-Dim Spherical [1.06E+00 2.57E+00 [5.21E-01 2.01E+01 [4.62E+01
nov 1-Dim Spherical [1.09E+00 2.65E+00 [5.29E-01 [2.02E+01 |4.65E+01
dec 1-Dim Spherical [1.73E+00 2.68E+00 |5.09E-01 [2.03E+01 [4.66E+01
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4.3 Hydrological Simulation
Simulation is carried out

Hydro-BEAM. While

roughness coefficients, peak discharge coefficient

using  the
calibrating the model,
and hydraulic conductivity are found to be more
sensitive parameters. Further work on calibration is
yet to be completed.

5. Conclusions

Bias correction method, based on Pearson Type
iii distribution, effectively reduces the biases from
raw GCM precipitation and temperature. Kriging
method efficiently distributes correction factors at
AGCM are
hydrological simulation because of its high spatial

each grid point. suitable for

and temporal resolution. Moreover, the study
findings indicate that precipitation and temperature
scenarios developed with bias-correction provide an
improved reproduction of basin level runoff
observations. Further study will come up with a
soundly calibrated and validated model which will
be able to precisely simulate the discharge at the

point of interest.

Acknowledgements

The authors are grateful to the KAKUSHIN
Program of the Ministry of Education, Culture,
Sports, Science and Technology of Japan (MEXT)
for providing the GCM data and Global Center for
Education and Research on Human Security
Engineering for Asian Megacities for supporting
this work.

References

Dutta, D. and Herath, S. (2004): Trends of floods in
Asia and Flood Risk Management with Integrated
River Basin Approach, Proceedings of the 2nd

of Asia

Hydrology and Water Resources Association,

International ~ Conference Pacific

Singapore, Volume I, pp. 55-63.

Hamaguchi, T. (1998): Studies on inverse problems
relating to design for underground dam through
new modeling for groundwater flow with moving
boundaries, Doctoral dissertation, Kyoto
University.

Hansson, K. and Ekenberg, L. (2002): Flood
Mitigation Strategies for the Red River Delta,
Commons in an Age of Globalisation”, the Ninth
Conference, 2002 - dlc.dlib.indiana.edu

Hansson, K., Danielson, M. and Ekenberg, L.
(2008): A framework for evaluation of flood
management strategies, Journal of Environment
Management, Vol. 86, Issue 3, pp. 465-480.

Kaoru, T., Kim, S. Tachikawa, Y. and Nakakita, E.
(2009): Assessing Climate Change Impact on
Water Resources in the Tone River Basin, Japan,
Using Super-High-Resolution Atmospheric Model

Output, Journal of Disaster Research Vol. 4, No. 1,

pp. 12-23.
Kim, S., Tachikawa, Y., Nakakita, E. and Kaoru, T.
(2009): Climate Change Impact on Water

Resources Management in the Tone River Basin,
Japan, Annuals of Disas. Prev. Res. Inst., Kyoto
Univ., No. 52B, pp 587-606.

Kojiri, T., Hamaguchi, T. and Ode, M. (2008):
Assessment of global warming impacts on water
resources and ecology of a river basin in Japan, J.
of Hydro-environment Research, Elsevier, Vol.1,
pp-164-175.

Le, T.P.Q., Garnier, J., Gilles, B., Sylvian, T. and
Minh, C.V. (2007): The changing flow regime and
sediment load of the Red River, Vietnam. Journal
of Hydrology, vol. 334, pp. 199-214.

Sharma, D., Gupta, A.D. and Babel, M.S. (2007):
Spatial disaggregation of bias-corrected GCM
precipitation for improved hydrologic simulation:
Ping River Basin, Thailand, Hydrol. Earth Syst.
Sci., Vol. 11, No. 4, pp. 1373-1390.

Tran, V.A., Masumoto, S., Raghavan, V. and
Shiono, K. (2007): Spatial
Subsidence in Hanoi Detected by JERS-1 SAR

vol.18,

Distribution of

Interfeormetry, Geoinformatics, no.l,

pp.3-13.

— 681 —



BRI L - R AR EGCMIE h &2 ALV ADAREOAX S aL—Ya Yy

Mukta SAPKOTA* « It V2N - efifissi - /NaklR
AR R LR

% F

AWGENE, A T AHIE L7-GCMMHIERRIEGERE 7 /W ) OFEK R & KR 2 FLZ LT, ~ M ARk Hl
B3 2 b—3a U AT ICOARK T 7L (OHydro-BEAM(FEE K SCBRESIIE T /W) & AV 5, AR TlE, $x o
GCM Z /K SCFANIHT T B BRAFET HRFZEFIN 22 X L A 5728, AGCM20 &\ 5 HIERIR. BE(L - U A% i8A 72,
AT Y MGG % T LT A 7 ARHIEIEZ ADOGCMIHMEDIEEIZHEA LT\ 5, #1R 2 & OffEIE, B
THH LIS 7 U X 2 R E O CERIFNCMAHEE ST D, AR CRTHEFIIGCMHE AT — # 1ol
DID A T AEENMEX 2 Z L 2R LD, ZERHIRICEAT 5 27 U 2 ZTEEGCMIE )7 — # ilEIC g & S
NDFHIMEDZEE i % 5 % < MEEICEH LT e, A5ITHIE SN 7-GCMZ AR & U it BT & oo i85
A ESETCWL FETH D,

F—T—F:GCMU), AT ARE, 27 V¥r s, KXy Ialb—iay

— 682 —





