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Synopsis 

River structures such as bridges and spur dykes cause water level rise during 

flood situations. Flood analysis considering this effect is very important for an accurate 

prediction of inundation flow. In this study, a numerical model is proposed and applied 

to a river channel with river structures and a river channel connected with floodplain. 

The numerical model is carried out on the unstructured meshes with finite volume 

method. The standard k-ε turbulence model and the volume of fluid (VOF) method are 

adopted for the turbulence closure and the free-surface modeling, respectively. The 

numerical simulations are carried out about the river channel with structures and the 

river connected with a floodplain. The proposed model is compared with the results of 

the experiment and another simulation. The results show tendencies of the overflow 

from the river and effects by the river structures with reasonable accuracy. 
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1. Introduction  

 

Flood disasters caused by typhoon and heavy 

rainfall are frequently occurring all over the world. 

In urban area, the flood disasters divided into the 

river water flooding like levee overtopping and the 

inundation due to insufficient drainage capacity of 

the sewer. In the former case, the estimation of 

overflow discharge from the river channel is very 

important for the reduction of the flood damages. 

Many inundation analysis models have been 

suggested, but there are few or no models 

considering complicated flow within river as well.  

The river structures such as bridge and spur dyke 

generate the water level rise during a flood situation. 

Therefore, the consideration of the water level rise 

by river structures is necessary for exact prediction 

of flood inundation area. Three-dimensional (3D) 

model is required for exact prediction of the 

overflow discharge by river structures because 

two-dimensional (2D) model is not sufficient to 

estimate the flows around river structures. In this 

study, in order to analyze the river water flooding 

exactly, the proposed numerical model is evaluated 

through the simulations of the overflow from a river 

and the water level rise by river structures. 

The simulation of the flow around river 

structures is related to the flow with the free surface. 

Most of the numerical simulation of open channel 

flow has usually replaced the free surface with a 

rigid lid. This approximation is reasonable if the 

free water surface is simple. This approximation 

will generate nonphysical errors for rapidly 

changing free surface. There are many computing 

methods available to simulate the free surface. One 

of the most successful methods is volume of fluid 

(VOF) method proposed by Hirt and Nichols (1981). 

This method has great advantages like convenience 

of operation, computational accuracy and efficiency. 

The VOF method is a powerful approach, but it is 
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not known to have been implemented on the 

unstructured meshes. Several researchers have been 

used to compute the free surface on the structured 

meshes. However, instances of non-physical 

deformation of the free surface shape also have 

been reported (Ashgriz and Poo, 1991; Lafauie et 

al., 1994; Ubbink, 1997). Therefore, in this paper, a 

differencing scheme proposed by Ubbink and Issa 

(1999) is used to improve the computation of the 

free surface. The proposed methodology is applied 

to two cases of a river connected with a floodplain 

and a river with river structures. 

 

2. Numerical model 

 

In this study, 3D Reynolds-Averaged Navier- 

Stokes (RANS) model proposed by Zhang et al. 

(2005) is employed and improved to simulate the 

free-surface flow. The model is carried out on the 

unstructured meshes with finite volume procedure. 

The proposed model is applied to estimate the flows 

considering the overflow from the river channel 

without structures and the water level rise in the 

river channel with structures. The results of the 

former case are compared with the results by 2D 

horizontal (2DH) model proposed by Zhang et al. 

(2006) and the latter case is compared with the 

experimental results. 

 

2.1 Governing equations 

3D modeling in engineering practice is built 

upon the RANS equations with the turbulence 

closure method. 2DH model can be used with 

advantage in case of the mean flow quantities 

varying but little in the vertical direction. The 

governing equation is obtained by integrating those 

in 3D model from the riverbed to the free-surface. 

 

(1) 3D RANS model 

The governing equations for continuity and 

momentum with the tensor notation are as follows: 
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where t is the time; ui is the time-averaged velocity; 

xi is the Cartesian coordinate component; ρ is 

density of the fluid; gi is body force; p is the 

time-averaged pressure; ν is molecular kinematic 

viscosity; ηij are the Reynolds stress tensors; α is 

volume fraction function. The standard k - ε model 

is used for the turbulent flow field. The Reynolds 

stress tensors are acquired through the linear 

constitutive equation: 
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where k is the turbulent kinetic energy; δij is the 

Kronecker delta; νt is the eddy viscosity and Si j is 

the strain rate tensor defined as: 
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where ε is dissipation rate of turbulence kinetic 

energy. The two transport equations are employed 

to estimate k and ε: 
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where G is the production rate of the turbulent 

kinetic energy k and is defined as: 
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The constants in equations (5), (7) and (8) take 

the values suggested by Rodi (1980) and generally 

the universal values are as follows: 
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09.0Cμ   44.1C ε1   92.1C ε2   

00.1ζk   30.1ζε                     (10) 

 

(2) 2DH model 

Integrating the governing equations in 3D 

model from the riverbed to the free-surface, one 

obtains the following equations: 
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where H is water stage (i.e. H=h+zb); h is water 

depth; zb is bed elevation; x and y are Cartesian 

coordinate components; u and v are depth-averaged 

flow velocity components in the x and y directions, 

respectively; ηxx, ηxy, ηyx and ηyy are depth-averaged 

turbulent stresses; ηbx and ηby are bottom shear 

stresses; Dxx, Dxy, Dyx and Dyy are dispersion terms 

due to vertical non-uniformities of the mean flow. 

The turbulent stresses are related to the 

depth-averaged eddy viscosity. The two quantities k 

and ε are solved from their transport equations as 

follows: 
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in which ζt is Schmidt number expressing the 

relation between the eddy viscosity and the 

diffusivity for scalar transport (ζt=1.0); e* is 

dimensionless diffusivity coefficient. 

 

2.2 Free-surface modeling 

In the 3D simulation, the conservative form of 

the scalar convection equation for the free-surface 

modeling with the tensor notation as follows: 

 

0
x

uα

t

α

i

i 








                       (19) 

 

where α is volume fraction function. The density 

and dynamic viscosity in the equations of motion 

are computed with the constitutive relations as 

follows: 
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where the subscripts 1 and 2 stand for the different 

fluids. The volume fraction function α is defined as 

follows: 
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where δ is small finite thickness. The values of α 

are associated with each fluid and is defined as 1 

for the point (x,t) inside fluid 1, 0 for the point (x,t) 

inside fluid 2 and 0<α<1 for the point (x,t) inside 

the transitional area. 

 

(1) Advection algorithm 

The discretised transport equation for the 

volume fraction function α is obtained by 

― 609 ―



discretising eq. (19) as follows: 
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where Ff is the volumetric flux at the face.   is the 

approximation of the time-averaged volume 

fraction value at the face. 

 

In order to calculate eq. (23) precisely, the 

advection algorithm to minimize the numerical 

diffusion of   at the face is needed. In other words, 

a numerical scheme to calculate   is obtained by 

appropriate interpolation of the value of the cell 

center so that maintain the boundary side of sharp 

gradient with the boundedness of the value. In 

general, the scheme is combined form of upwind 

differencing with and downwind differencing. The 

former scheme guarantees the boundedness of the 

value, but has large numerical diffusion. The latter 

is not guaranteed the boundedness of the value, but 

has a characteristic to conserve the boundary side 

with sharp gradient. The donor-acceptor scheme 

used generally in VOF method is using this 

combined form to calculate   effectively. But, this 

scheme has defect that shape of free-surface is 

deformed. Therefore, a numerical scheme is needed 

to avoid the numerical diffusion and non-physical 

deformation of the interface shape on unstructured 

meshes. 

 

(2) CICSAM differencing scheme 

The scheme proposed by Ubbink and Issa 

(1999) is employed to simulate the free-surface. 

The whole domain is treated as a mixture of water 

and air. The volume fraction is used to get the 

mixture properties such as density and viscosity. 

Most of the methods applied in volume fraction 

convection employ the fractional steps or 

operator-splitting method. Ubbink and Issa (1999) 

proposed CICSAM (Compressive Interface 

Capturing Scheme for Arbitrary Meshes) method, 

in which through semi implicit disposal the 

convection equation of the volume fraction can be 

solved. Particularly, this method is efficient even 

with unstructured meshes. The concept of 

normalized variable diagram and the main idea of 

Hirt and Nichols (1981) are employed to select 

diffusive scheme or dispersion scheme according to 

the direction of interface in this method. And, a 

switch parameter between diffusive and dispersion 

scheme is introduced to improve the accuracy of 

diffusive and dispersion scheme. The volume 

fraction at a face can be written as: 
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where αD is volume fraction value in donor cell; αA 

is volume fraction value in acceptor cell; βf is 

weighting factor. 

 

All boundary criteria are not always satisfied 

even if eq. (24) is applied. According to a case, α 

can appear smaller than 0 or larger than 1. To revise 

such values, the donor-acceptor scheme used in 

VOF method solved by replacing non-physical 

values compulsorily as 0 and 1. But, revising 

non-physical values affect the equation of motion 

and cause the error of conservation quantities. In 

CICSAM differencing scheme, it is solved by 

calculating α due to predictor and corrector solution 

procedure. The predictor solution procedure 

consists of calculation of the weighting factor and 

volume fraction values. In order to decrease the 

effort of the calculation, the corrector solution 

procedure is executed when computational results 

have non-physical values. 

 

2.3 Discretisation method 

The finite volume method based on the 

unstructured mesh is employed and the governing 

equations are integrated over a number of 

polyhedral control volumes covering the whole 

domain in the finite volume method, the general 

form is as follows: 
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where V is the volume of the control volume; S is 

the surface of the control volume with a unit normal 

vector n directing outwards; θ is the general 

conserved quantity representing either scalars or 

vector and tensor field components; Г is the 
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diffusion coefficient and b is the volumetric source 

of the quantity θ. 

The equation system is mesh independent and is 

valid for arbitrary polyhedral control volumes. The 

conserved equations are discretised on a collocated 

unstructured mesh. The surface fluxes are 

calculated from the Rhie-Chow (1983) interpolation 

to avoid the checkerboard variable distribution, 

which has caused the slow acceptance of the use of 

collocated mesh. The second order implicit 

Crank-Nicolson scheme is employed in the 

temporal integral. The continuity equation does not 

include the pressure information explicitly, but 

provides constraints for the velocity field. The 

widely used SIMPLE (Semi-implicit method for 

pressure-linked equations) algorithm is used for the 

coupling of the pressure and the velocity. 

 

2.4 Solution methods 

The final algebraic equation system resulted 

from the discretisation process for the iteration step 

n may be written as follows: 
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Krylov subspace iterative methods considering 

the sparseness and non-symmetry characteristics of 

the coefficient matrices are preferred in this study. 

The iterative solver works with a suitable 

preconditioner. Two solvers are integrated in this 

study: a Bi-CGSTAB (Bi-conjugate gradient 

stabilized method) solver and a preconditioned 

GMRES (Generalized minimal residual method) 

solver together with an ILUTP (Incomplete LU 

factorization with threshold and pivoting) 

preconditioner (van der Vorst, 1992; Sleijpen and 

Fokkema, 1993; Saad, 2003). 

 

2.5 Boundary conditions 

The boundary conditions include the inlet, the 

outlet, and the impermeable wall. 

For the inlet boundary, it is generally considered 

as a Dirichlet boundary and all the quantities have 

to be prescribed. The turbulence quantities such as 

k and ε are also set as constant and Neumann 

boundary with zero gradients is applied to the 

pressure. At the outlet, Neumann boundary with 

zero gradients can be assumed. 

Near the impermeable wall, the flow velocity is 

assumed to be parallel to the wall. The standard 

wall function approach is used to link the turbulent 

domain with the near-wall area. The turbulence 

kinetic energy k and the dissipation rate ε are 

specified corresponding to a viscosity ratio and 

taking the turbulence intensity 8%. In order to 

represent the computational domain accurately, the 

unstructured meshes consist of hexahedra and 

quadrilateral. 

 

3. Flood analysis of river connected with 

floodplain 

 

The numerical simulations are carried out to 

represent the flow in a river connected with 

floodplain without river structures on 2D and 3D 

mesh, respectively. The 3D numerical results are 

compared with 2D numerical results and estimate 

the water level and the velocity. 

 

3.1 Computational domain and conditions 

The computational domain consists of a river 

channel and floodplains. The width of the river 

channel is 40cm, the width of the floodplain is 

10cm and the height of the floodplain is 4cm. The 

initial water depth of river channel is 3cm and 

initial inflow discharge is 0.002m3/s. The total 

number of mesh is 6000 quadrilateral in 2D model 

and 36000 hexahedra in 3D model. The discharge 

hydrograph expecting the overflow into the 

floodplain is considered by increasing the inflow 

discharge linearly from the initial inflow discharge 

and is used as inlet boundary condition. Fig. 1 and 

Fig. 2 show the inflow discharge hydrograph and 

the computational domain, respectively. 

 

 

Fig. 1 Inflow discharge hydrograph 
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Fig. 2 Computational domain 

 

 

Fig. 3 Result of velocity (2D model) 

 

 

Fig. 4 Result of velocity (3D model) 

 

3.2 Computational results 

The results of the water level and the velocity 

obtained in the 2D and the 3D simulations are 

compared in this section. Figs. 3-6 are the 

computational results when water level overflowed 

from river by the increase of the inflow discharge. 

Fig. 3 and 4 show the results of the velocity in 2D 

and 3D model, respectively. Fig. 5 and 6 show the 

results of the water level in 2D and 3D model, 

respectively. In the 3D numerical simulation, the 

result of velocity shows by depth-averaged velocity 

to compare with the 2D result. 

 

Fig. 5 Result of water level (2D model) 

 

 

Fig. 6 Result of water level (3D model) 

 

From the computational results, it is shown that 

the results of the velocity and water level in the 2D 

are slightly larger than those of the 3D, but it is 

judged that the results of the 2D and the 3D model 

have generally good agreements. 

 

4. Flood analysis of river with structures 

 

In the situation without considering river 

structures, 2D model is useful, but otherwise 2D 

model is not sufficient. Since 2D model is difficult 

to reproduce exactly the flows around river 

structures such as bridge pier and girder, the 

consideration of 3D model is necessary. In this 

chapter, the proposed 3D model is evaluated 

whether it has the reasonable accuracy for 

reproduction of the water level rise by the effects of 

river structures. 

 

4.1 Laboratory experiments 

The objective of the laboratory experiment is to 

compare the variations of flow according to a kind 

of river structures under the same hydraulic 

conditions. And, the laboratory experiment is 
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performed to compare with the numerical results.  

The experimental channel used in this study is 

located at Ujigawa Open Laboratory, DPRI, Kyoto 

University and is straight channel of width 40cm, 

depth 23cm, and length 14.6m. The detail of the 

experimental conditions is described in Table 1. The 

experimental cases are shown in Table 2. 

Case-1, Case-2 and Case-3 are the experiments 

to consider the effect of water level rise by the pier, 

girder and bridge, respectively. In the laboratory 

experiments, the distributions of velocity are 

measured at the free water surface and the depth 

z=2cm measured from the bottom. And, the water 

level is also measured for the shape of free water 

surface. The water gauge of servo type is used for 

the measurement of the shape of free water surface. 

The distribution of velocity at the depth z=2cm 

measured by using the electromagnetic velocity 

meter. The velocity of free water surface measured 

by using the PIV (Particle Image Velocimetry) 

method (Fujita et al., 1998). The PIV measurement 

is a method to determine the velocity by demanding 

a mean transferring distance of tracer for each 

measuring point based on a similarity of tracer 

shape between continuous pictures on the 

inspection domain. The PVC (Polyvinyl Chloride) 

powder of mean diameter 50μm is used as tracer in 

these experiments. The measuring domain is the 

range of each 50cm in the upstream and 

downstream side from the center of river structures. 

The spatial interval of measurement is 2cm. 

 

Table 1 Hydraulic conditions (uniform flow) 

 

Parameters Symbols(unit) Values 

Flow discharge )/( slQ  7.00 

Water depth )(0 cmh  4.76 

Slope I  1/987 

Mean velocity )/( scmum  36.80 

Reynolds number Re 17,517 

Froude number Fr 0.54 

Table 2 Experimental cases 

 

 Structures Figure 

Case-1 
Cylinder 

pier 
 

Case-2 Girder 

 

Case-3 

Cylinder 

pier 

+ 

Girder 
 

 

4.2 Computational results 

The simulated results are compared with the 

experimental data. The computational domain is 

shown in Fig 7. The domain for comparison of the 

water level and the velocity at z=2cm is the range 

of each 150cm in the upstream and the downstream 

side from the center of the river structures. And, the 

domain for comparison of the velocity at the free 

water surface is the range of each 50cm in the 

upstream and the downstream side from center of 

the river structure. 

 

(1) Results of water level 

The results of plane distribution of the water 

level are compared in this section. Fig. 8, Fig. 9 and 

Fig. 10 show the results of Case-1, Case-2 and 

Case-3, respectively. Case-1 is not considering the 

overtopping flow over the river structures. Case-2 

and Case-3 is considering the overtopping flow 

over the river structures. 

 

 

Fig. 7 Computational domains 
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Fig. 8 Results of water level (Case-1) 

 

 

Fig. 9 Results of water level (Case-2) 

 

 

Fig. 10 Results of water level (Case-3) 

 

In Figs. 8-10, the upper one is experimental 

results and the lower one is computational results. 

From the computational results, it is judged that the 

effect of backwater and water level rise by the river 

structures generally have good agreements although 

the computational results underestimate the results 

of water level a little than the experimental results. 

And, it is shown that the occupied area of the river 

structures in a river affects the water level rise. It is 

found that tendency of the water level profile can be 

expressed around the river structures.  

 

(2) Comparison of water level 

The water levels along the center line of the 

flume (y=0) in each case are shown in Figs. 11-13, 

respectively. The computational results of the water 

level are also compared with the experimental 

results. 
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Fig. 11 Results of water level (Case-1, y=0) 
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Fig. 12 Results of water level (Case-2, y=0) 
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Fig. 13 Results of water level (Case-3, y=0) 

 

In Figs. 11-13, the blue triangle is the 

experimental results and the red circle is the 

computational results. From the obtained results, it 

is found that the computational results of the water 

levels generally have good agreements with the 

experimental results. And, it is judged that the 

effect of the backwater and the water level rise by 

the river structures is well represented in the 

numerical simulations. 

 

(3) Comparison of velocity 

The computational results of the velocity at 

z=2cm from the bottom are compared with the 

experimental results as shown in Figs. 14-16. 
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Fig. 14 Results of velocity at z=2cm (Case-1, y=0) 
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Fig. 15 Results of velocity at z=2cm (Case-2, y=0) 
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Fig.16 Results of velocity at z=2cm (Case-3, y=0) 

 

From the above mentioned numerical results, 

the velocities generally have good agreements with 

the experimental results. In the numerical results 

considering river structures, the variations of 

velocity around the river structures could be seen. 

 

In view of the results so far achieved, it is found 

that all the results generally can reproduce well the 

effect of the river structures, but the numerical 

model slightly underestimates the water level. The 

main causes of those under-predictions seem to be 

in the modeling of the turbulence. The turbulence 

model employed in this study is the standard k - ε 

model, which has several problems as pointed out 

by Speziale (1991), for example the inability to 

properly account for the streamline curvature, 

rotational strains and other body force effects and 

the neglect of the non-local and the effects of the 

Reynolds stress anisotropies. In order to correct 

these problems, the consideration of model by 

introducing non-linear constitutive relation between 

the mean strain rate and the turbulence stresses is 

required. 

 

5. Conclusions 

 

In this study, the numerical simulation was 

conducted to estimate the flow of a river connected 

with a floodplain and the effects of water level rise 

by the structures within a river. The proposed 

numerical models were treated on an unstructured 

mesh with finite volume method. The standard k - ε 

model was used for turbulence model and the 

volume of fluid method proposed by Hirt and 

Nichols (1981) was used to represent the free water 

surface. The differencing scheme proposed by 

Ubbink and Issa (1999) is also employed to 

compute the free water surface in unstructured 

mesh. 

The prediction of the overflow by the river 

structures is very important from the viewpoint of 

flood disaster. The present study shows that the 

numerical model used in this study can be used to 

simulate the changes of the flow field on the river 

connected with floodplain and the river with 

structures although the results of the numerical 

model with the river structures underestimate the 

water level rise around the river structures. In order 

to improve the model proposed in this study, further 

researches considering different turbulence models, 

laboratory experiments and various flow conditions 

are necessary. 
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要 旨 

橋や水制のような河川構造物は洪水時に水位上昇の原因となり，この影響を考慮した洪水解析は氾濫流の正確な予測

のために重要である。本研究では，このような流れ場を計算するための数値モデルを提案し，河川構造物を有する河川

水路および河川水路と氾濫原が一体となった領域に適用する。この数値モデルでは非構造格子を用いた有限体積法によ

って計算を実行しており，乱流モデルには標準k-εモデルを，自由水面のモデル化にはVOF法を用いている。提案された

数値モデルは実験結果や既往の数値モデルの解析結果と比較し，検討を行った。その結果，河川構造物の影響と河川水

路からの氾濫流の傾向を，妥当な精度を持って表現できることを確認した。 
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