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Synopsis 

We test if the parameters of the Gutenberg-Richter distribution vary on a 

short-term temporal scale in the seismically active Tamba region of Japan prior to the 

Kobe earthquake. Both the least squares and maximum likelihood estimates of the 

parameters are considered. To statistically test if the parameters differ temporally, 

ANOVAs and ANCOVAs are applied. The results show that the parameters vary 

significantly over the study region. 
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1. Introduction  

 

The frequencies of earthquakes are linearly 

related to their size, with smaller magnitude 

earthquakes being more common. This relationship 

has been quantified with the Gutenberg-Richter 

formula:  

 

10log .N a bM   (1) 

The formula states that the logarithm of the 

number of earthquakes is linearly dependent on the 

magnitude of the earthquakes. The parameter a    

gives the total number of earthquakes and the 

parameter b generally takes a value close to one. 

The Gutenberg-Richter distribution applies to 

global catalogs of earthquakes or small 

geographical regions. The Gutenberg-Richter 

distribution estimates how many earthquakes 

greater than or equal to the magnitude M can be 

expected in some time period for a given region, if 

accurate values of the parameters a and b are 

known. Therefore, the Gutenberg-Richter 

distribution plays a major part in earthquake 

forecasting and subsequent earthquake hazards 

modeling.  

The spatial variability of the parameters a and b 

has been studied extensively. The general 

consensus is that the parameters vary spatially, and 

that using a common value of the parameters over a 

large area will result in a poor fit of the model 

(Schorlemmer et al., 2004).  

In contrast, the temporal variability of the 

parameters a and b has not been studied as 

rigorously. There are various reasons behind this 

incongruity. For example, some studies have shown 

that the temporal variability is not as great as the 

spatial variability (Wiemer and Wyss, 2002). Other 

studies have shown that the parameters’ variations 

will “average out” over time and as earthquake 

forecasts are often specified for a long period of 

time, short-term fluctuations in the parameters are 

not of interest (Schorlemmer et al., 2004). 

Here we statistically test if the parameters of the 

distribution change temporally from year to year in 

a specific region in Japan. 

 

2. Data 

 

The data used in this study came from the 

Tamba region of Japan. We use data collected over 

a 19 year period (1976-1994).The four corner 

vertices of the region are given in Table 1. 
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Table 1. Tamba region of Japan. 

Latitude Longitude 

34.3691N                      134.7391E    

34.3691N                      136.2609E    

35.6310N                      134.7272E    

35.6310N    136.2728E    

 

Fig. 1 shows the cumulative number of 

earthquakes in the region over the period of interest. 

There is an obvious change in slope after 1995 

(following the Kobe earthquake). This change in 

slope may be indicative of a change in recording 

quality or simply the result of the Kobe earthquake 

triggering a greater number of earthquakes in the 

area. To avoid the complications resulting from this 

change in slope, the following analysis is performed 

on the data pre-1995. 

 

 

Fig. 1. Cumulative number of earthquakes. 

 

 

3. Method 

 

3.1 Minimum Magnitude of Completeness 

Here, we use the method of Wiemer and Wyss 

(2000) to calculate the minimum magnitude of 

completeness of the data. Briefly, the method 

assumes a magnitude of completeness and 

calculates the maximum likelihood estimates of the 

Gutenberg-Richter distribution. Then, a simulated 

distribution is created using these estimates. Finally, 

the difference between the simulated number of 

earthquakes and the observed number of 

earthquakes is obtained. This information is 

summarized in the value R : 
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where Oi and Si are the observed and simulated 

number of earthquakes in each magnitude bin. Here 

we use a bin size of 0.1. Different values of R are 

obtained by varying the assumed magnitude of 

completeness.  

 

3.2 Gutenberg-Richter Distribution 

After deciding upon the minimum magnitude of 

completeness, we then obtain the estimates of the 

parameters of the Gutenberg-Richter distribution. 

We use both the usual method of maximum 

likelihood and the relatively non-favored method of 

least squares. Maximum likelihood weights all 

earthquakes equally in the determination of the 

parameter values however the least squares 

estimates are biased towards the ends of the 

distribution. We believe there is merit in using the 

least squares estimates. Therefore, we trial both 

estimates here. The maximum likelihood estimate 

of b is given by:  

 

min

log( )ˆ
ML

e
b

m m



  (3) 

    

where m  is the mean magnitude of the data and   

mmin is the minimum magnitude of the data, that is  

the magnitude for which the data can be considered 

complete (Aki, 1965). The value mmin is given by   

mc- m where m  is the resolution of the 

earthquake catalogue (Guo and Ogata, 1997).  

The least squares estimate of b is given by:  

  

 
1ˆ logT T

LSb m m m n


  (4) 

where the vector m  contains the magnitudes of 

interest,  max, , 2 ,...,c c cm m m m m m m    , and 

the vector log n  gives the respective log number 

of earthquakes in the dataset greater than or equal 
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to these magnitudes.  

The estimates, ˆ
MLb  and ˆ

LSb  are obtained for 

each year in the data to give  ˆi
MLb   and ˆi

MLb   

where 1,...,19i . We perform a two-sided paired 

t-test to assess the equality of the maximum 

likelihood and least squares estimates for each year. 

It is the main intent of this work to test if these 

estimates vary year to year. The manner in which 

this hypothesis is tested is different for each 

parameter estimation technique.  

 

3.3 ANCOVA Tests 

To test if the least squares estimates differ, an 

analysis of covariance (ANCOVA) is applied. The 

ANCOVA is a statistical test employed to test for 

significant differences between slopes of linear 

regression lines. Here, we have a regression line 

and associated parameters for each year of the data. 

The ANCOVA considers if the data should be 

modeled by a different regression line each year or 

if a common regression line over all years can be fit 

to the data.  We present the results of fixed effects 

ANCOVAs here – readers interested in the 

difference between random effects and fixed effects 

are directed to Pinheiro and Bates (2004).  

 

3.4 Likelihood Ratio Tests 

To test if the maximum likelihood estimates 

vary, a different approach needs to be taken. A 

different approach is necessary because the 

ANCOVA tests for differences between regression 

lines, however we do not obtain the necessary 

intercept with the maximum likelihood approach. 

Therefore, a likelihood ratio test between the null 

hypothesis (a common b models the data for each 

year), and the alternative hypothesis (a common b 

cannot be used to model the data) is performed. 

 The test statistic can be simplified to: 

  

* *2log 2 log( ) 2 log( )i i total total

i

n b n b
 

   
 
  (5) 

where 
*

ib  is the value ˆ / log( )ML
ib e  for the 

thi year in the series, and the test statistic is 

distributed asymptotically as chi-square. For further 

explanation of the derivation of general test 

statistics, the reader is directed to Hogg et al. 

(2005). The likelihood ratio test is designed to test 

if the simple model, with one common b  across 

years, is sufficient to model the data, and its intent 

is exactly the same as the ANCOVA’s.  

 

4. Results 

 

The estimates for the minimum magnitude of 

completeness are shown in Fig. 2. A line is drawn at 

the value 10, below this line more than 90% of the 

data are explained by the assumed magnitude of 

completeness. We stress that this is purely a 

subjective value, some investigators may believe a 

value of 90% is too stringent, some may believe it 

is too low. Due to these differing opinions, and as it 

is the major parameter of this study, we trial other 

minimum magnitude of completeness values in our 

analysis.  

We also show in Fig. 3 an estimate of minimum 

magnitude of completeness for a window of 500 

earthquakes (grey line). The magnitude of 

completeness is calculated for the first 500 

earthquakes in the dataset, then the window is 

shifted by 10 earthquakes, and the magnitude of 

completeness calculated and so on (grey line). The 

darker line shows a moving average of the lighter 

grey line (Fig. 3). The average always stays below 

1.1. Therefore, we trial magnitudes of completeness 

of 1.1, 1.3, and a more common value of 2 for this 

analysis.  

The results of interest are shown in Table 2. The 

first column shows the trialed minimum magnitude 

of completeness. For each minimum magnitude of 

completeness of the data we also trial three values 

of mmax 
in (4). The least squares estimates are tested 

with a fixed effects model. The p-value within the 

table shows the result of the test of the null 

hypothesis: the simple model (with a common b 

across years) is sufficient; versus the alternative 

hypothesis: the complex model (with different b for 

each year) better fits the data. A p-value of less 

than 0.05 is considered significant. It may be 

argued that because we are testing numerous 

hypotheses on the data, we should employ a 

Bonferroni correction. The Bonferroni correction 

requires that we test at / n significance level, 

where n  is the number of tests being performed. 

Here we indicate if the result of the test changes 
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(becomes insignificant) after taking into account 

the Bonferroni correction with an asterisk and 

displaying the p-value.  In the text however, we do 

not consider the Bonferroni correction results. 
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Fig. 2. Minimum magnitude of completeness of the 

data pre-1995 

 

Fig. 3. Moving average of the minimum magnitude 

of completeness for the data pre-1995 

 

The results show that irrespective of minimum 

magnitude of completeness and maximum 

magnitude, the data are better represented by 

different parameters at each year, when considering 

the least squares estimates.  

To further illustrate the differences in the least 

squares estimates of the parameters over the years 

we show the fit to the data with a single b value 

(the same for every year) (Fig. 4) versus a different 

b value for each year of the data (Fig. 5). Allowing 

the b value to vary over the years obviously gives a 

better fit to the data. 

Table 2. Results of pre-1995 data. 

 

Minimum 

Magnitude of 

Completeness 

Least Squares Maximum Likelihood T-test 

Mmax 

 

Fixed Effects 

ANCOVA 

 

Ratio 

Test 

Fixed 

Effects 

ANOVA 

1.1 5 p<0.05 p<0.05 p<0.05 Different p<0.05 

6 p<0.05   Different p<0.05 

7 p<0.05   Different p<0.05 

1.3 5 p<0.05 p<0.05 p<0.05 Different p<0.05 

6 p<0.05   Different p<0.05 

7 p<0.05   Different p<0.05 

2.0 5 p<0.05 p>0.05 p<0.05 Not Different p>0.05 

6 p<0.05   Not Different p>0.05 

7 p<0.05   Not Different p>0.05 
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The maximum likelihood estimates tell a similar 

story. The likelihood ratio statistic tests if a 

common b can be used to model the data. Here the 

results show evidence that a common b cannot be 

used to model the data for lower minimum 

magnitudes of completeness.  

We investigate the maximum likelihood 

estimates further using an ANOVA. To do so, we 

obtain a bootstrap distribution of b  for each year 

(Schorlemmer et al., 2003). The distribution is 

obtained by sampling, with replacement, from the 

data at each year to create a bootstrap dataset the 

same size as the original dataset. The maximum 

likelihood estimate of this bootstrap dataset is 

obtained. The process is repeated here 1000 times. 

We then possess 1000 bootstrap estimates for the 

maximum likelihood estimate of b  at every year. 

We can obtain confidence intervals of these 

estimates using the quantiles of the distribution to 

depict graphically the differences in parameter 

values. The confidence intervals are shown in Fig. 

6 (for a minimum magnitude of completeness of 

1.3). The green line depicts the common b over all 

years. 

We then perform an ANOVA over the bootstrap 

estimates across all years. An ANOVA tests for 

significant differences between means, here we test 

for differences in mean b across all years. As 

expected, the ANOVA shows that there are in fact 

differences in the mean b across years.  

Interestingly, the least squares and maximum 

likelihood estimates differ for each year for the 

lower minimum magnitudes of completeness. 

However, as the minimum magnitude of 

completeness increases to 2, the least squares 

estimates and maximum likelihood estimates are 

identical. If the minimum magnitude of 

completeness is low, there are more data to use to 

fit the linear relationship. Therefore, the least 

squares estimates, strongly influenced by the 

extremes of the data are likely to be different from 

the maximum likelihood estimates. However, if the 

minimum magnitude of completeness is raised, 

there are less data, and the extremes of the 

magnitudes are not as varied and therefore the least 

squares estimates are likely to be indistinguishable 

from the maximum likelihood estimates.  

 

 

Fig. 4. Linear fit using equal parameter values. 

 

Fig. 5. Linear fit using different parameter values. 
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Fig. 6. Confidence intervals for the maximum 

likelihood estimates for the data pre-1995. 

 

 

5. Conclusions 

  

 We have shown that the parameters of the 

Gutenberg-Richter distribution vary temporally in 

the Tamba region of Japan. The models with 

temporally-variant parameter values described the 

data significantly better than a temporally-invariant 

model, irrespective of reasonable minimum 

magnitudes of completeness values of the data. It is 

not always true that the maximum likelihood 

estimates and the least squares estimates agree from 

year to year. This is important, as it suggests that 

there may be valuable information in the least 

squares estimates of the parameters, particularly if 

the investigator is interested in modeling the 

extremes of the distribution. 
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兵庫県南部地震の前にGutenberg-Richter の地震の頻度分布の変異 

 

 

Christine SMYTH・Jim MORI 

 

要 旨 

兵庫県南部地震の前、丹波地方に焦点を合わせ地震活動の変異を調査した。最尤推定と最小２乗を使用し,  

Gutenberg-Richterの地震の頻度分布のパラメーターを推定した。分散分析と共分散分析を適用し, これらのパラメータ

ーは毎年変わるという有意な結果が出た。 

 

キーワード: 兵庫県南部地震, 頻度分布, 統計 
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