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Temporal Variations in the Gutenberg-Richter distribution prior to the Kobe
earthquake

Christine SMYTH and Jim MORI

Synopsis

We test if the parameters of the Gutenberg-Richter distribution vary on a

short-term temporal scale in the seismically active Tamba region of Japan prior to the

Kobe earthquake. Both the least squares and maximum likelihood estimates of the

parameters are considered. To statistically test if the parameters differ temporally,
ANOVAs and ANCOVAs are applied. The results show that the parameters vary

significantly over the study region.
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1. Introduction

The frequencies of earthquakes are linearly
related to their size, with smaller magnitude
earthquakes being more common. This relationship
has been quantified with the Gutenberg-Richter

formula:

log,, N =a—bM. 1)

The formula states that the logarithm of the
number of earthquakes is linearly dependent on the
magnitude of the earthquakes. The parameter a
gives the total number of earthquakes and the
parameter b generally takes a value close to one.
The Gutenberg-Richter
global

distribution applies to

catalogs of earthquakes or small
Gutenberg-Richter

how many

geographical regions. The

distribution estimates earthquakes
greater than or equal to the magnitude M can be
expected in some time period for a given region, if
accurate values of the parameters a and b are
Therefore, the

distribution plays a major part in earthquake

known. Gutenberg-Richter

forecasting and subsequent earthquake hazards
modeling.

The spatial variability of the parameters a and b
studied

consensus is that the parameters vary spatially, and

has been extensively. The general
that using a common value of the parameters over a
large areca will result in a poor fit of the model
(Schorlemmer et al., 2004).

In contrast, the temporal variability of the
parameters @ and b has not been studied as
rigorously. There are various reasons behind this
incongruity. For example, some studies have shown
that the temporal variability is not as great as the
spatial variability (Wiemer and Wyss, 2002). Other
studies have shown that the parameters’ variations
will “average out” over time and as earthquake
forecasts are often specified for a long period of
time, short-term fluctuations in the parameters are
not of interest (Schorlemmer et al., 2004).

Here we statistically test if the parameters of the
distribution change temporally from year to year in
a specific region in Japan.

2. Data

The data used in this study came from the
Tamba region of Japan. We use data collected over
a 19 year period (1976-1994).The four corner
vertices of the region are given in Table 1.
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Table 1. Tamba region of Japan.

Latitude Longitude
34.3691N 134.7391E
34.3691N 136.2609E
35.6310N 134.7272E
35.6310N 136.2728E
Fig. 1 shows the cumulative number of

earthquakes in the region over the period of interest.

There is an obvious change in slope after 1995
(following the Kobe earthquake). This change in
slope may be indicative of a change in recording
quality or simply the result of the Kobe earthquake
triggering a greater number of earthquakes in the
area. To avoid the complications resulting from this
change in slope, the following analysis is performed
on the data pre-1995.
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Fig. 1. Cumulative number of earthquakes.

3. Method

3.1 Minimum Magnitude of Completeness

Here, we use the method of Wiemer and Wyss
(2000) to calculate the minimum magnitude of
completeness of the data. Briefly, the method
assumes a magnitude of completeness and
calculates the maximum likelihood estimates of the
Gutenberg-Richter distribution. Then, a simulated
distribution is created using these estimates. Finally,
the difference between the simulated number of
observed number of

obtained. This

earthquakes and the

earthquakes is information is

summarized in the value R:

i |0, -S| x100
i=M g _ (2)
(o)

R=100-

i _ g assumed
i=M¢

where O; and S; are the observed and simulated
number of earthquakes in each magnitude bin. Here
we use a bin size of 0.1. Different values of R are
obtained by varying the assumed magnitude of
completeness.

3.2 Gutenberg-Richter Distribution

After deciding upon the minimum magnitude of
completeness, we then obtain the estimates of the
parameters of the Gutenberg-Richter distribution.
We use both the usual method of maximum
likelihood and the relatively non-favored method of
least squares. Maximum likelihood weights all
earthquakes equally in the determination of the
parameter values however the least squares
estimates are biased towards the ends of the
distribution. We believe there is merit in using the
least squares estimates. Therefore, we trial both
estimates here. The maximum likelihood estimate

of b is given by:

~ log(e
bML B I’T’]_grf’]r:in

3)

where M is the mean magnitude of the data and
M, 18 the minimum magnitude of the data, that is
the magnitude for which the data can be considered
complete (Aki, 1965). The value m,,;, is given by
m,~ Am where Am is the resolution of the
earthquake catalogue (Guo and Ogata, 1997).

The least squares estimate of b is given by:

A

b =(m'm) " m" logn )

where the vector m contains the magnitudes of
interest, m=(m,,m,+Am,m_+2Am,...m_ ), and
the vector logn gives the respective log number
of earthquakes in the dataset greater than or equal
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to these magnitudes.

The estimates, BML and BLS are obtained for
cach year in the data to give Dbi, and b,
where i€l,..,19. We perform a two-sided paired
t-test to assess the equality of the maximum
likelihood and least squares estimates for each year.

It is the main intent of this work to test if these
estimates vary year to year. The manner in which
this hypothesis is tested is different for each

parameter estimation technique.

3.3 ANCOVA Tests

To test if the least squares estimates differ, an
analysis of covariance (ANCOVA) is applied. The
ANCOVA is a statistical test employed to test for
significant differences between slopes of linear
regression lines. Here, we have a regression line
and associated parameters for each year of the data.
The ANCOVA considers if the data should be
modeled by a different regression line each year or
if a common regression line over all years can be fit
to the data. We present the results of fixed effects
ANCOVAs here — readers interested in the
difference between random effects and fixed effects
are directed to Pinheiro and Bates (2004).

3.4 Likelihood Ratio Tests

To test if the maximum likelihood estimates
vary, a different approach needs to be taken. A
different
ANCOVA tests for differences between regression

approach is necessary because the
lines, however we do not obtain the necessary
intercept with the maximum likelihood approach.
Therefore, a likelihood ratio test between the null
hypothesis (a common b models the data for each
year), and the alternative hypothesis (a common b
cannot be used to model the data) is performed.
The test statistic can be simplified to:

_2 Iog A = 2[2 ni Iog(b:)j - 2ntotal Iog(bt:)tal ) (5)

where bi" is the value b'w/log(e) for the
i" year in the series, and the test statistic is
distributed asymptotically as chi-square. For further
explanation of the derivation of general test

statistics, the reader is directed to Hogg et al.

(2005). The likelihood ratio test is designed to test
if the simple model, with one common b across
years, is sufficient to model the data, and its intent
is exactly the same as the ANCOVA’s.

4. Results

The estimates for the minimum magnitude of
completeness are shown in Fig. 2. A line is drawn at
the value 10, below this line more than 90% of the
data are explained by the assumed magnitude of
completeness. We stress that this is purely a
subjective value, some investigators may believe a
value of 90% is too stringent, some may believe it
is too low. Due to these differing opinions, and as it
is the major parameter of this study, we trial other
minimum magnitude of completeness values in our
analysis.

We also show in Fig. 3 an estimate of minimum
magnitude of completeness for a window of 500
(grey line). The
completeness is calculated for the

earthquakes magnitude of
first 500
earthquakes in the dataset, then the window is
shifted by 10 earthquakes, and the magnitude of
completeness calculated and so on (grey line). The
darker line shows a moving average of the lighter
grey line (Fig. 3). The average always stays below
1.1. Therefore, we trial magnitudes of completeness
of 1.1, 1.3, and a more common value of 2 for this
analysis.

The results of interest are shown in Table 2. The
first column shows the trialed minimum magnitude
of completeness. For each minimum magnitude of
completeness of the data we also trial three values
of M,y in (4). The least squares estimates are tested
with a fixed effects model. The p-value within the
table shows the result of the test of the null
hypothesis: the simple model (with a common b
across years) is sufficient; versus the alternative
hypothesis: the complex model (with different b for
each year) better fits the data. A p-value of less
than 0.05 is considered significant. It may be
argued that because we are testing numerous
hypotheses on the data, we should employ a
Bonferroni correction. The Bonferroni correction
requires that we test at «/n significance level,
where n is the number of tests being performed.
Here we indicate if the result of the test changes
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(becomes insignificant) after taking into account
the Bonferroni correction with an asterisk and
displaying the p-value. In the text however, we do

not consider the Bonferroni correction results.
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Fig. 2. Minimum magnitude of completeness of the
data pre-1995
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Fig. 3. Moving average of the minimum magnitude
of completeness for the data pre-1995

The results show that irrespective of minimum

magnitude of completeness and maximum

magnitude, the data are better represented by
different parameters at each year, when considering
the least squares estimates.

To further illustrate the differences in the least
squares estimates of the parameters over the years
we show the fit to the data with a single » value
(the same for every year) (Fig. 4) versus a different
b value for each year of the data (Fig. 5). Allowing
the b value to vary over the years obviously gives a
better fit to the data.

Table 2. Results of pre-1995 data.

Minimum Least Squares Maximum Likelihood T-test
Magnitude of | M,,,, | Fixed Effects | Ratio Fixed
Completeness ANCOVA Test Effects
ANOVA
1.1 5 p<0.05 p<0.05 p<0.05 Different p<0.05
6 p<0.05 Different p<0.05
7 p<0.05 Different p<0.05
1.3 5 p<0.05 p<0.05 p<0.05 Different p<0.05
6 p<0.05 Different p<0.05
7 p<0.05 Different p<0.05
2.0 5 p<0.05 p>0.05 p<0.05 Not Different p>0.05
6 p<0.05 Not Different p>0.05
7 p<0.05 Not Different p>0.05
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The maximum likelihood estimates tell a similar
story. The likelihood ratio statistic tests if a
common b can be used to model the data. Here the
results show evidence that a common b cannot be
used to model the data for lower minimum
magnitudes of completeness.

We investigate the maximum likelihood
estimates further using an ANOVA. To do so, we
obtain a bootstrap distribution of b for each year
(Schorlemmer et al., 2003). The distribution is
obtained by sampling, with replacement, from the
data at each year to create a bootstrap dataset the
same size as the original dataset. The maximum
likelihood estimate of this bootstrap dataset is
obtained. The process is repeated here 1000 times.
We then possess 1000 bootstrap estimates for the
maximum likelihood estimate of D at every year.
We can obtain confidence intervals of these
estimates using the quantiles of the distribution to
depict graphically the differences in parameter
values. The confidence intervals are shown in Fig.
6 (for a minimum magnitude of completeness of
1.3). The green line depicts the common b over all
years.

We then perform an ANOVA over the bootstrap
estimates across all years. An ANOVA tests for
significant differences between means, here we test
for differences in mean b across all years. As
expected, the ANOVA shows that there are in fact
differences in the mean b across years.

Interestingly, the least squares and maximum
likelihood estimates differ for each year for the
lower minimum magnitudes of completeness.
However, as the minimum magnitude of
completeness increases to 2, the least squares
estimates and maximum likelihood estimates are
identical. If the minimum magnitude of
completeness is low, there are more data to use to
fit the linear relationship. Therefore, the least
squares estimates, strongly influenced by the
extremes of the data are likely to be different from
the maximum likelihood estimates. However, if the
minimum magnitude of completeness is raised,
there are less data, and the extremes of the
magnitudes are not as varied and therefore the least
squares estimates are likely to be indistinguishable

from the maximum likelihood estimates.
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Fig. 4. Linear fit using equal parameter values.
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Fig. 5. Linear fit using different parameter values.
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Fig. 6. Confidence intervals for the maximum
likelihood estimates for the data pre-1995.

5. Conclusions

We have shown that the parameters of the
Gutenberg-Richter distribution vary temporally in
the Tamba region of Japan. The models with
temporally-variant parameter values described the
data significantly better than a temporally-invariant
model, irrespective of reasonable minimum
magnitudes of completeness values of the data. It is
not always true that the maximum likelihood
estimates and the least squares estimates agree from
year to year. This is important, as it suggests that
there may be valuable information in the least
squares estimates of the parameters, particularly if
the investigator is interested in modeling the

extremes of the distribution.

Acknowledgements

The authors are grateful to Professor Katao

(DPRI, Kyoto University), who made the data
available.

Christine Smyth is a recipient of a Japan Society
for the Promotion of Science Post Doctoral
Research Fellowship.

References

Aki, K. (1965): Maximum Likelihood Estimate of b
in the Formula log N = a-bM and its Confidence
Limits, Bulletin of the Earthquake Research
Institute, Vol. 43, pp. 237-239.

Guo, Z. and Ogata, Y. (1997): Statistical relations
between the parameters of aftershocks in time,
space and magnitude, Journal of Geophysical
Research, Vol. 102, pp. 2857-2873.

Hogg, R. V., McKean J. W. and Craig, A. T.
(2005): Introduction to Mathematical Statistics,
Upper Saddle River, Pearson Prentice Hall.

Pinheiro, J. C. and Bates, D. M. (2004):
Mixed-effects models in S and S-PLUS, Statistics
and Computing, New York, Springer Science.

Schorlemmer, D., Neri, G, Wiemer, S. and
Mostaccio, A. (2003): Stability and significance
tests for b-value anomalies: Example from the
Tyrrhenian Sea, Geophysical Research Letters,
Vol. 30, No. 16, pp. 1835.

Schorlemmer, D., Wiemer, S. and Wyss, M. (2004):
Earthquake statistics at Parkfield: 1. Stationarity
of b values, Journal of Geophysical Research Vol.
109, pp. B12307.

and Wyss M. (2000):

of Completeness

Wiemer, S. Minimum

Magnitude in Earthquake
Catalogs: Examples from Alaska, the Western
United States, Bulletin of the
Seismological Society of America, Vol. 90, No. 4,
pp- 859-869.

Wiemer, S. and Wyss M. (2002): Mapping spatial
variability of  the

and Japan,

frequency-magnitude
earthquakes, Advances in
259-301.

distribution  of
Geophysics, Vol. 45, pp.

— 260 —



FE B Rt E DI ZGutenberg-Richter DMEDEENHNDLER

Christine SMYTH - Jim MORI
E B
EERERMEMMEOR ., FHEMFICERE SO T MERSHOLRELRE L, RLHE LR/ 2REMFBHL
Gutenberg—Richter OMZBEDSEE /AT D /8T A —H —ZHEE LTz, SEOHT L 58O EEAL, 207 2 —%
—IFEELED D L OO FREIFRERN T,

F—T— K EEREME, BUES, H

— 261 —





