観測桟橋周辺の海底底質調査と海浜形状変化

馬場康之・内山 清・関口秀雄・中川 一

要 旨

上越・大潟海岸のほぼ中央に位置する大潟波浪観測所では、観測桟橋沿いの海底地形と 海底底質の採取が継続的に行われている。本報では、冬季季節風の影響を強く受けている 2月時点での底質の粒度分析結果と、岸沖方向海底地形の計測結果から、桟橋沿いの地形 変化ならびに底質の分布状況の経年的な変化について検討する。桟橋沿いの岸沖方向海底 地形は2000年以降目立った地形の変動の無い状況が続いていたが、2005年以降に汀線が前 進する様子が確認された。最近数年間の海底底質の分布状況の変化からは、2003年~2004 年頃に底質の分布に変化があり、相対的に粒径の小さな土砂の堆積が確認された。

キーワード:海浜形状,底質分布,経年変化,現地観測

1. はじめに

大潟波浪観測所は、上越市郷津から柏崎米山に至 る全長約27kmの上越大潟海岸のほぼ中ほどに位置 している(Fig.1)。観測桟橋近傍では、近年海岸侵 食が顕著であり、海岸全体においても侵食傾向が確 認されている。大潟波浪観測所では、波浪、海上風 に関する現地観測に加えて、桟橋に沿った岸沖方向 の沿岸地形の計測、および海底底質の採取を実施し ている。本報告では、最近数年間の沿岸地形計測の 結果、ならびに採取された底質の粒度分析結果につ いて報告する。

2. 岸沖方向海底地形の時間変化

観測桟橋沿いの沿岸地形の測深作業は,ほぼ毎月 1回の割合で実施されている。Fig.2は1996年後半以 降の岸沖方向の断面形状を時間順に示したものであ る。2000年以前には,比較的規模の大きな地形の変 動が見られるが,2000年以降は地形の変動幅も少な くなっている様子が確認できる。

Fig. 3は、1998年~2006年の2月に計測された地形 である。上越・大潟海岸を含めた日本海沿岸では、 冬季季節風による風浪の影響が強く、例年2月は高波 浪、強風の影響を非常に強く受けている時期である。 Fig. 3に示された断面地形によると、2004年頃までは、 汀線位置が図中約25m付近にあり、断面地形も汀線 近くで急に深くなる傾向を示しているのに対して、 2005年,2006年になると汀線が25mほど前進してい る様子が確認できる。2003年以降の4年間について, 岸沖方向の断面地形を比較したものがFig.4である。 この図からも、2005年、2006年には、2003年と比較 して汀線が25m程度前進していること、汀線位置か ら図中200m付近にかけて土砂が堆積している状況 が確認できる。しかしながら、岸沖方向250m付近で の断面形状の変化が少ないことから、2003年以降の 観測桟橋沿いの岸沖方向の地形変化は、汀線から 200m程度の範囲に留まっていることが分かる。

Fig. 1 Joetsu-Ogata coast and Ogata wave observatory (OWO is located at "Pier")

Fig. 2 Temporal variations of cross-shore profile along the observation pier

Fig. 3 Cross-shore bottom profiles past winter season (February in1998 – 2006)

3. 海底底質の粒度分析結果

海底底質の採取は観測桟橋に沿って約10m間隔で 行われている。採取された底質は十分に乾燥された 後,1/4φ間隔で標準ふるいを用いた粒度分析を実施 した。以下の結果では、ウェントワースの粒径区分 も使用する。

3.1 粒度分析結果による底質分布の比較

Fig. 5は2003年~2006年の2月に採取された海底底 質の粒度分布結果について、平均粒径、標準偏差、 歪み度、尖度をそれぞれ示したものである。また、 平均粒径の隔年変化について、Fig.6に示す。

平均粒径の岸沖方向分布について、2005年と2006 年の結果は似た分布形を示し、2005年の方がやや粒 径が小さい傾向を示している。一方、2003年、2004 年の平均粒径の分布は、2005年と2006年の結果と比 較して大きく異なる結果となっている。2003年と 2004年の分布形状を比較すると、岸沖距離175m付近 を境にして平均粒径1mm以上の粗い砂と1mm以下の 細かい砂の分布が逆転していることがわかる。 2003年:

岸沖距離150m付近 2 \u03c6, 200m付近 -0.5~-1 \u03c6 2004年:

岸沖距離150m付近 -0.5 ϕ , 200m付近 0.5 \sim 1 ϕ 2004年は、計測領域全体に粗い砂(0 ϕ 付近)が分布 するようになる一方で、汀線付近(岸沖距離75m以 下)では、他の計測年よりも相対的に細かい砂が分 布する結果となっている。その後、2005年になると 汀線付近を除く全計測領域において、分布する砂の 平均粒径が細かい値(1 \sim 1.5 ϕ)に大きくシフトし ている。2006年には1 ϕ 付近の砂が目立ち、やや粗く なる傾向を示すものの、2005年には粗い砂(-0.5 ϕ) の分布が見られた岸沖距離200m以上の領域におい ても、0.5 \sim 1 ϕ 程度の砂が分布するようになる。

この期間における粒径の標準偏差を比較すると, 岸沖距離200m以上の地点では,いずれの計測結果も 淘汰度はあまりよくない状況で,計測年による違い は見られない。岸沖距離200m以下で汀線付近を除く 領域では,2003年,2005年および2006年の標準偏差 は小さい値となり,よく淘汰されていることがわか る。その一方,2004年においては,計測領域全体に わたって標準偏差の値が大きく,淘汰が進んでいな い様子が分かり,他の3ヵ年の状況とは明らかに異な る様相を呈している。

歪み度(skewness)については、平均粒径や標準偏差 のように明確な違いは見られないものの、岸沖距離 200m付近では、2003年の結果が他の3ヵ年の結果と 異なる傾向を持つこと、岸沖距離100~150m付近で は、2003年、2004年の結果と、2005年、2006年の結 果が正負逆の傾向を持つことが分かる。

以上の結果を勘案すると、2003年からの4年間においては、2003年、2004年の間に桟橋周辺の底質の性状が岸沖方向に大きく変化しており、結果的に相対的に細かい砂の分布する2005年、2006年の状況に移行してきたと考えられる。

Fig. 5 Comparisons of cross-shore distributions of Md ϕ (a), standard deviation (b), skewness (c) and kurtosis (d)

Fig. 6 Interannual variations of cross-shore distributions of Md ϕ

3.2 粒度分析結果による底質分布の比較

Fig. 3に示した観測桟橋沿いの断面地形形状は,岸 沖距離200mより沖の領域ではほとんど変化が無く, それよりも岸側で全体的に堆積する傾向を示してい る。以下では,底質の分布状況を,粒径加積曲線の 比較を通じて比較・検討する。

Fig. 7は, Fig. 4に示した2003年~2006年の岸沖方向 の断面地形の変化に対応した期間の粒径加積曲線を 示したものである。先の記述の通り,岸沖距離244m の地点では地形自体の変化はほとんど確認されない ものの,平均粒径は時間が経つに従って細かくなる 傾向を示している。粒径加積曲線の比較においても 同様の傾向が確認される。2003年から時間を追って, 粒径の分布が図の右から左に移動しており,2003年 には1mm ($\phi=0$)以下の土砂の割合が30%程度であ るのに対して,2006年になると1mm以下の土砂の割 合が70%程度にまで増加している。

岸沖距離199m地点においては,堆積している土砂 の粒度分布が2003年とそれ以外の年で大きく異なる 様子が見られる。断面地形は経年的に堆積傾向であ

Fig.7 Comparisons of grain size accumulation curves at 94m, 144m, 195m & 244m offshore

り,その過程で堆積している土砂の粒度分布が2003 年を境に細粒化しており,1mm(φ=0)以下の割合 が80~90%程度にまで増加している。

内山(2001)によると、大潟海岸の後背地を形成 する新砂丘砂が周辺海浜の漂砂源となっており、新 砂丘砂の主成分は粗砂~中砂(0~2¢,0.25~1.0mm) であることがわかっている。岸沖距離199m地点に 2003年以後に堆積した土砂は、海岸背後の新砂丘砂 が冬季風浪の影響を受けて侵食、運搬されたと考え ることができる。

上と同様に岸側の2地点(岸沖距離144m,94m)に おける粒径加積曲線を比較したものである(Fig.7 下)。いずれの地点も経年的に堆積傾向を示してい るが,先ほどの沖側の2地点(244m,199m)とは変 化の傾向が異なっている。

岸沖距離144m,94mの2地点では,2003年の時点で 相対的に粒径の小さな土砂が多く分布しており,岸 沖距離144mにおいては1mm(φ=0)以下の土砂で構 成されていることがわかる。2004年には一旦粗粒化 した後,2地点とも再度細粒化する結果となっている。 2005年には相対的に粒径の小さな土砂の分布が多く 認められるが,2006年の時点では岸から沖に向けて 分級が進んだ分布を示す結果となっている。

4. おわりに

本報告では,大潟波浪観測所における岸沖方向海 底地形の計測結果ならびに底質の粒度分析結果につ いて検討した。 最近10年間程度の観測桟橋沿いの海底地形は, 2000年以前にはある程度の規模の地形変化が観測さ れたが、その後は特に目立った地形変化の見られな い状況が継続していた。観測所近辺の海岸は、1960 年代以降海岸浸食の顕著な領域であり、2004年頃ま では江線が後退した状態が確認される。しかしなが ら、2005年以降に汀線が20m程度前進する様子が計 測されている。ただし、観測桟橋先端付近ではほと んど地形変化が見られず、この堆積傾向は岸に近い 領域に限定されていると思われる。

観測桟橋沿いの海底底質の粒度分析結果について は、2003年以降の4ヵ年分について比較検討を行った。 その結果、2003年と2004年の間で海底底質の性状が 大きく変化したことが認められ、また2005年以降に 堆積が見られる領域では相対的に細かな砂が堆積し ていることが確認された。さらに、地形の変化がほ とんど見られない観測桟橋先端付近においても、平 均粒径は時間を追って細かくなる傾向を示している ことも認められた。

参考文献

内山 清(2001):海底底質と海浜底質の粒度組成 - 桟橋に沿った海底底質とビーチカスプにおけ る海浜底質-,京都大学防災研究所年報,第44 号, B-2, pp. 361-374.

Cross-shore Profiles of the Grain Size Composition and Bottom Topography around the Observational Pier

Yasuyuki BABA, Kiyoshi UCHIYAMA, Hideo SEKIGUCHI and Hajime NAKAGAWA

Synopsis

This report shows observed results of cross-shore profiles of the grain size Composition and bottom topography around the observational pier at Ogata Wave Observatory (OWO). The measurements of cross-shore bottom profile have been carried out once a month, and the bottom profile change in recent 10 years is small except before 2000 and after 2005. After 2005, shoreline advance is observed even though Joetsu-Ogata coast have been suffered from severe beach erosion for long time. From the results of grain size analysis, it is found that relative fine sand accumulates around the observational pier after 2005.

Keywords: beach profiles, bottom sediment, interannual variation, field observation