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Synopsis 
This paper aims at investigating prediction uncertainty due to parameter and input under 

scale-dependant condition of rainfall-runoff modeling. Moreover, a new rainfall-runoff 
modeling framework considering uncertainty components involved in modeling processes is 
proposed to provide guideline for future modeling direction. First, parameter compatibility is 
evaluated in order to search for the suitable resolution of DEM, which provides better model 
performance and less simulation error but represent natural heterogeneity appropriately. 
Second, scenario-based applications are performed to examine the effect of input uncertainty 
due to spatial variability of rainfall data on model predictions. Finally, three guideline indices 
with respect to model performance, model structural stability and parameter identifiability 
are proposed to explain limitations of a conventional modeling protocol and then a new 
modeling framework is outlined by incorporating these indices into the model evaluation 
procedure. 

  
Keywords: prediction uncertainty, parameter compatibility, spatial variability of rainfall, new 

modeling framework 
 
1. Introduction 

 
Uncertainty is an integral part of not only 

hydrological modeling but decision making of water 
management policy since, for example, a stochastic 
model like random field generator is used to 
interpolate rainfall over space and time and these data 
are inputs into a rainfall-runoff model for computing 
water levels or discharges at specific locations that in 
turn are used as inputs to an ecological model and 
finally, the outputs from ecologic models can be input 
to an integrated water management model. It is 
therefore crucial to identify sources of uncertainty for 
protecting their propagation into output variables 
(Wagener and Gupta, 2005). A good discussion of 
these sources of uncertainty can be found in Melching 
(1995) and Gupta et al. (2003). They classified the 
uncertainty in the hydrological modeling process into 
three major components; model structural uncertainty, 

parameter uncertainty and data uncertainty. 
Here, data uncertainty is errors introduced by the 

measurement, by the temporal and spatial 
discretization of measurements or by data processing. 
Model structure uncertainty is interpreted as 
simplifications and/or inadequacies in the description 
of real natural systems. Parameter uncertainty is due to 
multiple regions of attraction in model space and 
multiple local optima within those regions, which 
make it difficult to identify the globally-optimum 
model. Besides these well known uncertainty 
components, many other components such as 
imperfect initial conditions, natural randomness and so 
on are also included in hydrological modeling. 

In the context to uncertainty assessment, this paper 
attempts to account for the influence of two main 
sources, parameter and input error on model 
predictions. In addition, the effect of topographic scale 
on prediction uncertainty assessment procedure is also 
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presented. Finally, we propose an extended 
rainfall-runoff modeling framework under uncertainty 
by incorporating two conditioning processes into 
modeling processes. First, a set of model structures 
(from simple bucket model to scale-dependant 
complex models) is evaluated multi-dimensionally 
with respect to model performance, model structural 
stability and parameter identifiability. Note that all of 
evaluative indices are derived on the basis of the 
author’s previous papers including Lee et al. (2006, 
2007, 2008). Second, complementary data is imposed 
on the conditioned model space, given from the first 
stage for either further rejecting unreliable parameter 
set(s) or confirming reliable parameter one(s). In this 
study, spatiotemporal internal responses of catchment 
(Sayama et al., 2007) is utilized as complementary 
constraints to filter out a non-physical parameter set 
among various plausible ones within high dimensional 
parameter space of a distributed rainfall-runoff model. 

Section 2 introduces basic materials for objectives 
of this study, that is, study site, used data and models 
and section 3 presents the analysis of parameter 
compatibility under scale-dependant condition of 
distributed rainfall- runoff modeling. The propagation 
of input uncertainty due to spatial variability of rainfall 
field into model prediction is dealt in section 4. Section 
5 addresses the extended rainfall-runoff modeling 
framework under uncertainty and suitability of the 
newly developed framework is verified by a case study. 
Finally, we conclude the paper with summaries in 
Section 6. 

 
2. Materials 
 
2.1 Hydrologic models 

Three different model structures are built under 
OHyMoS for purposes of each specific application. 
 
2.1.1 Storage Function Method (SFM) 

This model is a simple nonlinear reservoir model 
and it is still widely used in practical engineering 
works in Japan despite its simplicity. The form of SFM 
is expressed as: 
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where S is water storage; re is effective rainfall 
intensity; r is rainfall intensity; q is runoff; t is time; k 
is storage coefficient; p is coefficient of nonlinearity; f 
is primary runoff ratio; lT  is lag time and 

SAR is 
accumulated saturated rainfall. There are four 
parameters (k, p, f and

SAR ) to be optimized in SFM. 
 

2.1.2 Kinematic Wave Method for Subsurface and 
Surface runoff with Single Threshold (KWMSS1) 

In this model, the catchment surface is assumed to 
be covered with a highly permeable stratum entitled 
‘A-layer’, having uniform thickness, D within 
pre-defined computational building blocks (e.g., grid 
cell, sub-catchment). A depth, d is referred to as a 
threshold to take into account the surface flow and 
subsurface flow and it is defined as γ=d D , where 
γ  is the porosity of the A-layer (see Figure 1(a)). 
Takasao and Shiiba (1988) proposed the following 
piecewise relation between water depth, h and 
discharge per unit width, q. 
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where = dv k i ; /α = i n ; v is velocity through 
A-layer; i is slope gradient; dk  is saturated hydraulic 
conductivity; n is Manning’s roughness coefficient and 
 

 

Fig. 1 Schematic model structures for (a) KWMSS1 
and (b) KWMSS2.
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Fig. 2 The study site; (a) elevation map and (b) ~ (d) Drainage networks of 90m, 250m and 500m DEMs built with 
a set of slope elements (solid line) and river nodes (circle). 
 
if the overland flow follows Manning’s resistance law, 
m=5/3. Three model parameters (n, 

dk and d) require 
to be adjusted against observed data. 
 
2.1.3 Kinematic Wave Method for Subsurface and 
Surface runoff with Double Thresholds (KWMSS2) 

The KWMSS2 assumes that a permeable soil layer 
covers the hillslope as shown in Figure 1(b). The soil 
layer consists of a capillary layer in which unsaturated 
flow occurs and a non-capillary layer where saturated 
flow occurs. According to this runoff mechanism, if 
the depth of water, h is higher than the soil depth, D, 
then overland flow occurs (Tachikawa et al., 2004). 
The stage-discharge relationship is defined as: 
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Flow rate of each slope segment is calculated by  

governing equations (Eq.s(3) and (4)) combined with 
the continuity equation (Eq.(5)), where =c cv k i ; 

=a av k i ; / β=c ak k ; /α = i n ; i is slope gradient; 

ck is hydraulic conductivity of the capillary soil layer; 

ak is hydraulic conductivity of the non-capillary soil 
layer; n is roughness coefficient; the water depth  
corresponding to the water content is sd  and the 
water depth corresponding to maximum water content 

in the capillary pore is cd . Detailed explanations of 
the model structure appear in Tachikawa et al. (2004). 
There are five parameters (n, ak , sd , cd  and β ), 
which are assumed to be spatially-homogeneous, to be 
optimized in KWMSS2. 
 
2.2 Study site and historical data 

The study site is the Kamishiiba catchment, 
upstream area of the Kamishiiba dam, which lies 
within Kyushu region in Japan and covers area of 
211km2. The topography of this area is hilly with the 
elevation varying from 431m to 1720m and most of 
land use type is forest. The observed discharge data 
converted from water level of dam inflow having 
10min temporal resolution is available (Kyushu 
Electric Co., Inc.). Operational radar rainfall data 
observed from Ejiroyama X-band radar covering a 
radius of 128km are available for this study area. The 
rainfall field contains 10min temporal and 1km spatial 
resolutions.  
 
2.3 Delineation of drainage networks for five 
different DEMs 

Distributed rainfall-runoff modeling usually relies 
on topography, land use and soil property for both 
overland flow and sub-surface flow. In general, the 
drainage network is derived by connecting each grid 
within study domain of interest and this drainage 
network controls the rate at which runoff is routed to 
the downstream outlet. In this study, the Kamishiiba 
catchment is represented by a set of slope elements and 
river nodes. Figures 2(b) ~ (d) illustrate the examples 
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Fig. 3 Resolution effect on topographic characteristics 
of the study area. 
 
of drainage networks for 90m, 250m and 500m DEMs, 
respectively. The drainage network with the fine 
resolution (e.g., 90m) is much denser than the one 
based on the coarse resolution (e.g., 500m). 

Figure 3 clearly shows that the grid cell 
resolution profoundly affects the topographically- 
based distributed rainfall-runoff model. Total length 
of the drainage networks is shortened and mean 
slope of the catchment is flattened as the spatial 
resolution becomes coarser. Mean slope varies 
mildly while drainage network length is changed 
drastically according to the spatial resolution but a 
more dominant factor into the runoff simulation is 
still unknown since both characteristics affects a 
hydrological response in combination. Nevertheless, 
it is true that this topographic variation due to the 
spatial resolution of DEM directly influences 
catchment responses (Vieux, 1993). It means that 
shorter drainage length reduces the lag time of water 
through the catchment while steeper slopes 
accelerates the arrival time of water to the outlet. 

 
3. Parameter Compatibility under Scale-dependant 
Condition  
 
3.1 Model calibration and resolution effect on 
parameter 

Shuffled Complex Evolution (SCE; Duan et al., 
1992), computer-based single-objective automatic 
optimization algorithm, is used for calibration of 
KWMSS2 with an objective function, Simple Least 
Square (SLS), defined as: 
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Fig. 4 Normalized optimal parameter sets of each 
resolution. 
 
where obs

tq is observed streamflow value at time t; 
( )tq θ is simulated streamflow value at time t using a 

parameter set θ  and N is the number of flow values 
available.  

Calibrated parameter sets of each resolution are 
plotted in Figure 4, as a normalized form. Normalized 
parameter sets indicate that spatial resolution affects 
the model calibration significantly. That is, different 
topographic characteristic controlling runoff processes 
over the catchment, needs different parameter sets for 
best matching to the observed hydrograph. Indeed, 
parameters, sd and β  are relatively constant but 
the other parameters are very much fluctuated 
irregularly according to the resolution. All models 
using the calibrated model parameters lead to very 
good model performances regardless of DEM size 
while calibration time of the finest resolution is far 
slower than the coarsest resolution. It can be seen that 
modelers don’t need to insist on the model based on 
fine resolutions in practical rainfall-runoff modeling 
for streamflow estimation. However, if the resolution 
is too coarse, important variation in space will be 
missed and it will cause inaccurate model results. On 
the other hand, over-sampling at too fine resolution 
deteriorates computer efficiency and causes the model 
to run more slowly. Therefore, the ideal in distributed 
rainfall-runoff modeling is to find the resolution that 
adequately samples the data for the simulation yet is 
not so fine that computational burden results. In this 
regard, parameter compatibility is assessed to test 
transferability of tuned parameter of each resolution to 
different resolutions. 
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Fig. 5 Computed assessment indices of parameter compatibility; (a) Peak Discharge Ratio (PDR), (b) 
Nash-Sutcliffe Coefficient (NSC) and (c) 3-D plot of NSC. 
 
3.2 Assessment of parameter compatibility 

Parameter compatibility is evaluated by two 
indices, Peak Discharge Ratio (PDR) and 
Nash-Sutcliffe Coefficient (NSC), expressed as: 

 

PDR /peak peak
sim obsq q=  (7) 
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where peak

simq is simulated peak discharge and peak
obsq  

is observed peak discharge. The PDR measures 
tendency of the simulated peak discharge to be larger 
or smaller than the observed peak discharge. The NSC 
measures a relative magnitude of the residual variance 
to the variance of the observed stream flows and the 
optimal value of both measures is 1.0. 

Figures 5(a) and 5(b) present the computed PDRs 
and NSCs, respectively for all applications. Squares in 
the plots indicate average values of two indices and 
vertical lines indicate the boundary for maximum and 
minimum values of two indices. Figure 5(c) is the 
three dimensional plot of NSCs to show the parameter 
compatibility in an easy-to-understand manner. 

The assessment results shows that all model 
performances with optimal parameter sets are good 
(NSC > 0.95, see the circles in Figure 5(c)) and the 
optimal parameter sets based on coarser DEMs are 
well applicable for hydrograph simulations for finer 
resolution based models while contrary applications 
gives very poor model performances (i.e., both the 
boundaries and the average values of two indices for 
finer resolutions are very narrower and better than 
those for coarser resolutions). Indeed, PDR of the 
coarsest resolution is much over-estimated and also 
NSC value is much under-estimated when comparing 
to the 250m DEM showing the best parameter 
compatibility. There are two interesting findings. First, 
if the resolution which is based on model calibration is 
coarser than the resolution to be transferred, parameter 
compatibility is good while the contrary applications 
lead to worse parameter compatibility. For example, 
the best-performing parameter set of 50m resolution 
tends to be less transferable as the applied resolution 
becomes coarser from 50m to 1km (see solid arrow in 
Figure 5(c)) while the optimal one of 1km is well 
applicable for all resolutions (see dashed arrow in 
Figure 5(c)). Second, the model with the finest 
resolution, 50m does not guarantee the best parameter 
compatibility. Instead, 250m-based model gives stable 
model performances regardless of parameter sets given 
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different DEMs (see Figures 5(a) and (b)). In spite of 
different parameter values, they can lead to practically 
identical measures (e.g., NSC) of model performance. 
Beven and Binley (1992) used the special term 
‘equifinality’ to define this hydrological phenomenon. 
In the context of equifinaility problem, a complex 
drainage network has higher potential causing 
equifinality problem than a simple drainage network 
derived from large spatial resolutions.  

 
4. Input Uncertainty due to Spatial Variablity of 
Rainfall and Their Effect on Runoff Simulation 
 
4.1 Rainfall Scenarios 

Radar rainfall fields of two historical flood events 
by Typhoon No. 9, 1997 (Event 1) and No. 7, 1999 
(Event 2) are obtained from the Ejiroyama radar 
station. However, there are no ground raingauge 
stations within the study catchment. For various 
rainfall scenarios, five grid cells are selected from 
observed radar fields and then we assume these cells as 
virtual gauge stations representing downstream (gauge 
1), mid-stream (gauge 2) and upstream (gauges 3, 4 
and 5) in the Kamishiiba catchment. Six rainfall fields 
are generated based on the chosen virtual stations 

using Nearest Neighborhood Interpolation (NNI) 
method in the order of number of gauges used in 
interpolation; from scenario 2 to scenario 7. Moreover, 
raingauges of scenario 6 are rearranged randomly to 
examine the effect of spatial arrangement of 
raingauges on runoff simulations. Scenario 7 indicates 
this rearranged rainfall field. Scenario 8 is the 180° 
rotated original radar data in order to investigate more 
clearly the influence of the rainfall spatial pattern due 
to relocation of rainfall cells, on catchment responses. 
KWMSS2 is calibrated by the scenario1-based rainfall 
data of two events and the rainfall of scenario 1 is 
assumed to provide the best estimate of input to the 
model. 

Figures 6(a) and 7(a) describe the spatial 
distributions of the total rainfall depths of two events 
for all rainfall scenarios used in this study. Moreover, 
Figures 6(b) and 7(b) show the areal mean rainfall 
sequences of each rainfall scenario under 250m DEM; 
the blue thick solid line is the original radar rainfall 
data (i.e., scenario 1) and other lines are the rainfall 
time series of other different scenarios. For each 
rainfall scenario, the relative errors in rainfall and 
catchment responses are computed and summarized in 
subsequent subsection. 

 

 
Fig. 6 (a) Spatial patterns of accumulated rainfall and (b) time series of areal mean rainfall for all rainfall scenarios 
of Event1. 
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Fig. 7 (a) Spatial patterns of accumulated rainfall and (b) time series of areal mean rainfall for all rainfall scenarios 
of Event 2. 
 
4.2 Effect of Input Uncertainty on Runoff Volume, 
Peak Flow and Time of Peak flow 

The relative error of rainfall and runoff simulation 
is computed as: 
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where 

1SR  is either the accumulated areal rainfall or 
the general properties of runoff such as runoff volume, 
peak flow and timing of peak based on input of 
scenario 1 and 

iSR is the variable of interest in 
scenario i. The relative error of rainfall to all rainfall 
patterns is illustrated in Figure 8. Figure 8(a) clearly 
shows that the most spatially uniform rainfall fields 
fail to estimate accurate amounts of areal rainfall for 
both events. Regardless of DEM sizes the rainfall of 
scenario 2 is overestimated approximately 25% for 
Event 1 and 32% for Event 2, respectively. However, 
more spatially distributed rainfall pattern does not 
yield more accurate areal rainfall in this catchment. All 
scenarios except for scenario 2 do not exceed the 
relative error of ±5% in Event 1 while errors of 
scenario 6 and 7 in Event 2 are much larger even if 

their spatial patterns are more heterogeneous than 
scenarios 3, 4 and 5. The reason is that the values of 
rainfall of raingauge 4 at each time step are much 
higher than those of the other raingauges so that total 
amounts of rainfall in the cases including raingauge 4 
are computed highly. Figure 8 supports that all of areal 
rainfall depths across the catchment and error patterns 
for each scenario are identical without regard of DEM 
sizes because of similar contributing areas in spite of 
different topographic resolutions. 

The relative error of prediction according to the 
rainfall scenarios is summarized in Figure 9. The 
computed results present that total amount of rainfall 
and temporal variability of rainfall during storm events 
affect more significantly runoff simulation than the 
spatial pattern itself of rainfall in the study catchment. 
Previous researches also highlighted the importance of 
estimating global volume of rainfall input for 
prediction of hydrographs (Beven and Hornberger, 
1982; Obled et al., 1994). The difference of rainfall 
volume due to raingauge sampling results in very 
similar error patterns with respect to runoff volume 
and peak discharge while peak time error is less 
sensitive to the spatial pattern according to rainfall 
scenarios. 
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Fig. 8 (a) Relative error of rainfall for 8 scenarios and (b) comparison of rainfall derived from each scenario under 
250m DEM (S1 and Si indicate scenario 1 and scenario i respectively, i=2,…,8) 
 

 
Fig. 9 Effect of rainfall error to catchment responses for all of 8 scenarios; (a) the results of Event 1 and (b) the 
results of Event 2 (REV, REP and REPT indicate relative error of runoff volume, relative error of peak discharge 
and relative error of peak time, respectively). 
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Even peak times of scenario 2 in Event 1 and 
scenario 2, 6 and 7 in Event 2 show the relative error 
less than 12% while the errors in terms of runoff 
volume and peak flow for these scenarios are much 
deviated from original data of scenario 1. Propagation 
of rainfall error to the general properties of runoff does 
not show significant difference between two DEM 
sizes. From these results, it is important to note that 
spatially less distributed rainfall data can satisfy 
rainfall-runoff simulations regardless of the level of its 
spatial heterogeneity in this small mountainous 
catchment if the interpolated rainfall fields by a few 
raingauges capture a similar global volume of rainfall 
input during specific event periods. Therefore, it is not 
surprising that a practitioner often prefers a 
parsimonious model with uniform rainfall input to a 
complex distributed model with non-uniform input if 
his objective is just streamflow forecasting because 
well-calibrated lumped runoff models also produces 
good simulated results (Franks et al., 2006). However, 
it does not imply that the scenario 3 with only 2 
raingauges in Event 1 and the scenario 4 with 3 
raingauges in Event 2 optimally present the actual 
spatiotemporal variability of rainfall. 

In the context of equifinality, indistinguishable 
runoff simulation in spite of poor consideration of 
spatial variability rainfall, we can be concerned about 
the following questions. 
1) How internal responses of catchment whatever they 

are react to plausible rainfall data containing very 
similar information regarding the total amount and 
temporal variability (e.g. scenario 3 and 8 in Event 
1; scenario 4 and 8 in Event 2)? 

2) If unlike reproduced hydrographs from plausible 
input sets, the variation of internal responses of a 
catchment is very sensitive to plausible scenarios, 
how can we demonstrate the difference between 
modeled results? 

3) How significant is scale effect in terms of 
topographic spatial resolution on internal responses 
of a catchment? 
To account for the influence of plausible input data 

on interior catchment responses, we adopt the 
computational tracer method developed by Sayama et 
al. (2007). This method is useful and effective to trace 
the spatiotemporal origins of simulated hydrographs 
without any hydrochemical measures for a catchment 
scale. We present the spatiotemporal variation of flow 

pathways as comparing results between original input 
based on scenario 1 of both events and plausible inputs, 
scenarios 3 and 8 for Event 1 and scenarios 4 and 8 for 
Event 2. The comparison results also may provide 
helpful information to solve geochemical problems in 
distributed environmental modeling regarding 
pollutant transport and acidification of groundwater 
and so on.  
 
4.3 Effect of input uncertainty on internal responses 
of catchment. 
 
4.3.1 Comparison of spatial origin of streamflow 
between original and plausible rainfall data 

The Kamishiiba catchment is represented by 3490 
and 860 slope elements for 250m and 500m DEMs 
respectively, as shown in Figure 2 (i.e. S=3,401 and 
860 for 250m and 500m DEMs). Each slope element 
contains the information of spatial origins of 
streamflow for every 1hr time step of two events. The 
degree of contribution of each slope element to runoff 
generation at the specific time step of interest is 
represented by Relative Ratio of Total Discharge 
(RRTD), defined as: 
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where i is slope number and ( )iD t  is runoff from 

slope element i to the outlet at time t. ( )outletD t  is the 
hydrograph ordinate of the outlet at time t. Four 
particular time steps, 1, 12, 36 and 72 hours for Event 
1 and 1, 72, 132 and 168hours for Event 2 are selected, 
respectively in order to visualize the spatial origins of 
the runoff for two historical events and compare those 
from plausible rainfall scenarios to the results based on 
scenario 1, original radar rainfall data. Each RRTD for 
four chosen time steps is categorized into seven classes 
as shown in Figures 10 and 11. Colorful snapshots for 
spatially distributed origin apparently present that even 
though global responses of catchment with respect to 
the plausible rainfall patterns are nearly identical, the 
internal responses are completely different according 
to the spatial patterns of rainfall. 

－ 37 －



 

 
Fig. 10 Effect of input uncertainty due to spatial variability of rainfall on internal catchment response, spatially 
distributed origins of streamflow for scenario 1, 3 and 8 in Event 1; (a) 250m-based and (b) 500m-based result. 
 

At the beginning of rainfall-runoff process (e.g. 
1hour), the adjacent slope elements to river channel, 
referred to as riparian zone constitute primarily the 
streamflow while water stored in upstream slope 
elements still do not reach the river channel. As time 
goes on, contributive slope elements spread gradually 
across the catchment and eventually, all of slope 
elements influence streamflow generation. How much 
each slope element contributes to generate streamflow 
at each time step is quantified by simple index, 
Contributing Percentage of sub-catchment (CP), 
expressed as: 
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where j is sub-catchment number; the study catchment 
is divided into 8 sub-catchments to compare the 
variation of contributing area due to plausible rainfall 
scenarios. The variations of CPs for applied scenarios, 
summarized in Figure 12 (Event 1) and 13 (Event 2), 
show that the spatial pattern of plausible rainfall 
scenarios leads to the significant predictive uncertainty 
of internal catchment response despite their equivalent 
runoff. 

At 1hour time step of both events, the patterns of 
contributing sub-catchment are too much different 
while the patterns of scenario 1 and 3 in Event 1 and of 
scenarios 1 and 4 in Event 2 show similar trends of the 
runoff generation as the catchment is saturated during 
events. However, the results for scenario 8 shows the 
opposite drifts to original rainfall fields of scenario 1 
because of the orderly rearranged rainfall cells while 
the discrepancy of contributing patterns to scenario 1  
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Fig. 11 Effect of input uncertainty due to spatial variability of rainfall on internal catchment response, spatially 
distributed origins of streamflow for scenario 1, 4 and 8 in Event 2; (a) 250m-based and (b) 500m-based results. 
 
becomes narrower during non-storm periods such as 
72hours in Event 1 and 168hours in Event 2 (i.e. after 
stopping rainfall). Moreover, the effect of topographic 
resolutions on the distribution of spatial origin is not 
considerable since the volume of rainfall falling on 
each sub-catchment is not different significantly for the 
applied DEM sizes.  

From these results, it can be seen that a distributed 
rainfall-runoff model can allow multiple alternative 
flow pathways, yielding very similar hydrographs, due 
to the spatial variability of rainfall even though the 
modeling is conducted based on the single optimal 
parameter set. In other words, it means that the effect 
of difference in spatial pattern of rainfall is smoothen 
and attenuated as a result of the diffusive redistribution 
of water when the rainfall over the catchment drains 
into the downstream outlet in form of either surface 
/subsurface flow or a mixture of both. 

4.3.2 Comparison of temporal origin of streamflow 
between original and plausible rainfall data 

The historical two events are split into six temporal 
classes (i.e., T=6: pre-event, 0~15hrs, 16~22hrs, 
23~30hrs, 31~34hrs and 35~84hrs in Event 1; 
pre-event, 0~24hrs, 25~95hrs, 96~108hrs, 109~119hrs 
and 120~192hrs in Event 2) and then the simulated 
hydrographs based on scenario 1 and plausible 
scenarios are separated into six corresponding runoff 
components to each rainfall duration by using 
spatiotemporal matrix of streamflow records. 

Figure 14 presents the results based on 250m and 
500m DEMs under the original and plausible scenarios, 
temporally separated hydrographs with respect to 
selected rainfall durations for the two events. The 
volume of pre-event water for 500m DEM-based 
modeling is similar as those of 250m DEM-based 
result for both events. It implies that even if the density 
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of drainage network is different due to different spatial 
resolution of DEM, temporal variation of internal 
responses of catchment is quite similar since both 
amount of rainfall depth over the catchment and 
corresponding best-performing parameters to each 

resolution provide the equivalent results. This result 
would be very important for distributed environmental 
models related with groundwater-induced pollutant 
release or transport, which are in need of antecedent 
soil condition of a catchment.

 

 

 

Fig. 12 Variation of the Contributing Percentage (CP) of each sub-catchment due to mimic rainfall scenarios for 
Event 1; (a) 250m-based and (b) 500m-based results. 
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Fig. 13 Variation of the Contributing Percentage (CP) of each sub-catchment due to mimic rainfall scenarios for 
Event 2; (a) 250m-based and (b) 500m-based results. 
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Fig. 14 Corresponding variation of the Contributing Percentage (CP) to each rainfall duration selected under scale 
dependent condition with three rainfall scenarios; (a) Event 1 and (b) Event 2. 
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Fig. 15 Schematic stepwise procedures of the newly proposed modeling framework. 

 
5. Extended Rainfall-Runoff Modeling Framework 
under Uncertainty 

 
Figure 15 presents the extended modeling 

framework considering uncertainty which consists of 
two conditioning processes in order to narrow down 
reliable model structures and their corresponding 
parameter sets. 

Initially, a set of model structures, ranging from 

simple lumped bucket model to scale-dependant 
distributed models (refer to section 2.1) is prepared to 
analyze the influence of model complexity on 
performance and prediction uncertainty. All initial 
model structures are developed under Object-oriented 
Hydrological Modeling System, OHyMoS (Takasao et 
al., 1996, Ichikawa et al., 2000). It is assumed that 
initial model structures can be potential simulators, 
until there appears an obvious evidence to reject it.  
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One should then apply three evaluative criteria to 
the competing models. It means that under-performing 
structures can be rejected at this stage, based on the 
each evaluative criterion value. First measure of model 
evaluation is a model performance index (MPI), which 
allows to assessing whether or not the model is capable 
of accurately simulating a hydrological behavior. The 
second is a model structural stability index (MSSI) in 
order to assess the suitability of process description 
underlying the model’s structure for the various 
response modes (e.g., low and high flow period within 
single event or different climatic conditions). Last 
measure is a model parameter identifiability index 
(MPII) capable of assessing whether or not the model 
parameters are well identified within predefined 
parameter feasible space. As a consequence, the 
estimated values in different ways form the basis of a 
knowledge-based guide to confirm or reject model 
structure(s). 

However, even the best balanced model structure 
still suffers from equifinality problem. Plausible 
parameter combinations (i.e., light grey shaded 
elliptical region of feasible parameter space in Figure 
15; ,i jP  is a model parameter where i is the number 
of parameter to be calibrated and j is the number of 
possible model structure) that yield similarly good 
outcomes, as well as those obtained by global optima 
(i.e., ex marks on parameter space of each model), are 
widely distributed in parameter space so that it is 
essential to impose additional constraints on the 
calibrated model for filtering out non-physical 
parameter sets. 

If we have additional observed data sufficiently, 
which are apart from streamflow data, this auxiliary 
constraint in terms of the second conditioning process 
is meaningful to directly reject unreliable parameter 
combinations. In spite of efficiency of complementary 
data, many of catchment do not have enough 
additional measured data. In line with practical way, an 
indirect filtering approach based on hydrologists’ 
expertise can be an alternative constraint, but still be 
likely to receive criticism because of its subjectivity. 
However, it is sure that the complementary 
information containing physics-based meaning is 
necessary for further rejection or corroboration, 
irrespective of whether it is measurable or not.  

Finally, surviving model(s) with behavior 
parameter set(s) should be retained unless and until 

they violate new evaluative criteria and then used to 
make prediction of catchment response. In other words, 
prediction result of the new modeling framework 
under uncertainty is not a single output time series but 
an ensemble prediction of the system behavior. 

The above mentioned simple bucket model (i.e., 
SFM) and kinemtic wave models (i.e., KWMSS1 and 
KWMSS2) with three different DEMs, 250m, 500m 
and 1km are evaluated under this new modeling 
framework. 

 
5.1 Model evaluation; First conditioning process 

The purpose of model evaluation is fundamentally 
to understand characteristics of each model structure 
and establish preferences between competing model 
structures in regard of three different criteria, model 
performance, parameter identifiability and structural 
stability. An ideal model may have a perfect model 
structure (i.e., the most appropriate representation of 
natural hydrological system), and then provide an 
accurate prediction results. In addition, its response 
surface of parameter may be very convex or concave 
so that global optimum can be easily found out using 
efficient automatic optimization algorithms. One 
dimensional model space (Beven, 2002) based on only 
model performance is replaced by three dimensional 
one in order to provide a more extensive guideline 
with respect to selecting an adequate model structure. 

 
5.1.1 Model Performance Index (MPI) 

In this study, the hydrograph is simply partitioned 
into two components; high and low flow period 
separated by mean value of observed discharge data. 
The performance of each model structure is assessed 
using NSC value for two periods and the average of 
two measures is referred to as the MPI, defined as: 

 

MPI 0.5(NSC NSC )= +High Low  (12) 
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Table 1. MPI for each model structure 

KWMSS1 KWMSS2 Model 
 

Value 
SFM 

250m 500m 1km 250m 500m 1km 

NSELow 0.944 0.885 0.885 0.812 0.993 0.993 0.974 
NSEHigh 0.987 0.969 0.969 0.967 0.993 0.992 0.983 

MPI 0.977 0.95 0.95 0.931 0.993 0.993 0.981 
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where ( )obsq t  is the observed discharge at time step t, 

( )simq t  the simulated discharge, High
obsq , Low

obsq  the 
mean observed discharge over the simulation periods 
of length, HighN , LowN . 

A flood event with short duration (84hr) is 
designated for calibration of each model and 
parameters of all testable model structures are tuned 
using SCE-UA algorithm with SLS (see Eq.(6)). 
Evaluation of model performance is quantified by the 
MPI value as summarized in Table 1. 

This table shows that all models yield acceptable 
values quantitatively. In particular, KWMSS1 provides 
a good agreement during high flow period while it 
cannot reproduce accurately rising and recession limbs 
of hydrograph. It means that its underlying assumption 
of model structure is not proper to simulate the low 
flow so that it is in need of further modification. On 
the other hand, both SFM and KWSSM2 reproduce 
relatively balanced hydrographs even if the simulated 
recession part of SFM is slightly underestimated. It 
supports the fact that the hydrologists, if armed with 
sufficient data in terms of quality and quantity, do not 
need to choose a complicated hydrologic model for 
simulating streamflow because it does not lead to 
significant improvements (Jakeman and Hornberger, 
1993).  

 
5.1.2 Model Structural Stability Index (MSSI)  

Structure error is unavoidable problem in 
hydrological modeling since a hydrologic model is 
conversion and simplification of reality, thus no matter 
how sophisticated and accurate they may be those 
models only represent aspects of conceptualization or 

empiricism of modelers. In consequence, output time 
series of hydrologic models are as reliable as 
hypothesis, structure of models, quantity and quality of 
available forcing data, parameter estimates. Gupta et al. 
(1998) demonstrated that one parameter set might be 
insufficient to represent the entire behavior of the 
catchment due to the inadequacy of model structures. 
In other words, a subjective selection of objective 
functions for calibration of conceptual hydrologic 
models results in an overemphasis on different 
response modes such as low and high flow period. In 
this regard, the result of variation of optimal parameter 
combination calibrated by a single-objective 
optimization method can be used as one of the 
well-founded indicators to account for model structural 
stability (Lee et al., 2007). Moreover, such model 
structures provide relatively acceptable simulated 
hydrographs when applying parameter set for various 
type and magnitude of floods within a particular study 
site. It means that a structurally-stable model has high 
parameter transferability from event to event. As a 
result, model structural stability can be estimated as a 
degree of ability capable of reducing the influence of 
objective functions and flood events on model 
parameter sets. 

SCE-UA with two different objective functions, the 
SLS and Heteroscedastic Maximum likelihood 
Estimator (HMLE, Sorooshian and Dracup, 1980) is 
used to calibrate each model structure. Note that the 
several objective functions, conversions of SLS have 
square terms in their function, thereupon, they are in 
danger of emphasizing on the similar particular 
response like high flow. Accordingly, the objective 
functions having different characteristic should be used 
for the structural stability analysis. HMLE is 
formulated as: 
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Table 2. MSSI for each model structure 

KWMSS1 KWMSS2 Model 
 

Value 
SFM 

250m 500m 1km 250m 500m 1km 

MSSI 92.21 3.63 49.46 86.59 9.97 12.97 31.47 

 

Table 3. MPII for each model structure 

KWMSS1 KWMSS2 Model 
 

Value 
SFM 

250m 500m 1km 250m 500m 1km 

MPII 0.103 0.472 0.538 0.402 0.151 0.112 0.429 

 

2

1

1MSSI ( ( ) ( ))
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= −∑
N

SLS HMLE
t

q t q t
N

    (16) 

 
where ( )2( 1)( ) λ−=t obsw q t  is weight, λ is the 
transformation parameter, N is total number of 
simulation time step, ( )SLSq t  and ( )HMLEq t  are the 
simulated discharges with each optimal parameter set 
based on SLS and HMLE, respectively. The lower 
value of MSSI indicates the more stable model 
structure. 

Table 2 shows that there is slight or no influence of 
objective functions on model performance in the 
KWMSS2 applications but the finer grid size leads to 
smaller difference between two reproduced 
hydrographs. This result implies that the parsimonious 
models used in this study such as the SFM and the 
KWMSS1 with coarse resolutions are structurally 
unstable in terms of dependency of model 
performances on the objective functions so that we 
need to change the model parameter set according to 
the modeling purpose. On the other hand, the problem 
of subjectivity related with selection of objective 
functions for the automatic calibration can be ignored 
in the distributed hydrological modeling using the 
KWMSS2.  

Another interesting finding is that although the 
sophisticated model structure has high structural 
stability, the constant parameter set is not obtained for 
SLS and HMLE. Instead, both parameter combinations 
provide equally good measures in terms of model 
performance. The result suggests that increased model 
complexity in terms of description of rainfall-runoff 
process leads to increased structural stability while the 

identifiability of the model parameters decreases. In 
the subsequent subsection, we discuss in detail the 
method to assess parameter identifiability. 

 
5.1.3 Model Parameter Identifiability Index (MPII)  

In this study, we apply Shuffled Complex 
Evolution Metropolis (SCEM-UA; Vrugt et al., 2003) 
method to estimate posterior parameter distribution 
and then the highest density value of each distribution 
is referred to as the indicator of individual parameter 
identifiability. The mean of these maiximum 
identifiability values for each model structure is 
utilized as MPII. Moreover, we can quantify the 
uncertainty associated with parameters of the estimated 
posterior distributions and then it gives the basis for 
making probabilistic predictions. 

SCEM-UA algorithm was implemented with 
iteration numbers 10000, a population size 200, 
complexes 10 and 20 points in each complex. The first 
4000 simulations of each parallel sequence are referred 
to as non-behavioral parameter sets and then are 
discarded. From the remaining 6000 simulations, the 
prior ranges of each parameter are split into 100 
containers and the samples within each bin are counted 
to calculate the frequencies. Resulting frequencies are 
transformed into probability density function so that 
the best performing parameters are assigned the 
highest value and all measures sum to unity. This 
highest density function value is utilized as the index 
for parameter identifiability. Figure 16 and Table 3 
present the estimated posterior parameter density and 
MPII for each model structure. 

In distributed modeling, it can be seen that the 
simpler model structure, KWMSS1 shows generally  
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Fig. 16 Estimation of parameter identifiability for (a) p of SFM and (b) β of KWMSS2 based on different DEMs 

 

 
Fig. 17 Hydrograph prediction uncertainty associated with the most probable set derived using the SCEM-UA; (a) 
SFM, (b) KWMSS2 based on 500m DEM and (c) KWMSS1 based on 500m DEM. 
 
higher MPII than KWMSS2. It is interpreted that 
parameter interaction of two additional parameters of 
KWMSS2 with other parameters results in poor 
identifiability. However, the structurally-simplest 
model, SFM has the lowest MPII and the coarse 
DEM-based models sometimes lead to worse 
identifiability than the fine DEM-based models (i.e., 
indeed, the 1km-based KWMSS1 shows lower MPII 
than the 250m and 500m-based ones). It implies that 

MPII is rather dependant on the level of interaction due 
to additional parameter than the degree of abstraction 
with respect to either rainfall-runoff mechanism or 
topographic representation. 
 
5.2 Parameter filtering; Second conditioning 
process 

Probabilistic predictions of the hydrograph are 
obtained from the ensemble simulation of poorly 
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Fig. 18 Separated hydrographs into old water and new water components by three plausible parameter sets. 

 
identified models, SFM and KWMSS2 based on 250m 
DEM and well identified model, KWMSS1 based on 
500m DEM for the behavioral parameter combinations 
sampled from the each posterior parameter distribution. 
Figure 17 illustrates how the parameter uncertainty can 
be translated into estimates of hydrograph prediction 
uncertainty.  

In these figures, the black marks indicate the 
observed streamflow data and the grey shaded region, 
90% hydrograph prediction uncertainty associated with 
the posterior distribution of the parameter estimates. 
The parameter uncertainty of SFM results in very wide 
prediction uncertainty boundary while the simulated 
hydrographs of KWMSS2 mostly propagate into 
narrow range like single line. It supports that complex 
hydrological modeling is likely to be overly exposed to 
equifinality problem so that it makes difficult to 
discriminate quantitatively and qualitatively between 
reliable and unreliable parameter sets. Moreover, 
prediction boundaries estimated by the posterior 
distributions of SFM and KWMSS2 fail to bracket the 
observations for the most period; particularly, the 
recession part of simulated hydrograph is not matched 
to the observed one. It means that improvements in 
model structures or calibration data may result in more 
accurate predictions when compared with KWMSS2. 

 
5.2.1 Potential use of additional constraint, 
catchment response 

We used the same method described in section 
4.3.2 to show how the runoff components, new water 

and old water, react to plausible parameter sets. They 
are reproduced by three sample parameter sets 
containing different values, which are given from 6000 
behavioral parameter combinations in KWMSS2 with 
500m spatial resolution.  

Figure 18 clearly shows that even if overall 
responses of catchment to these three mimic parameter 
sets are nearly identical, internal responses to them are 
too much different according to parameter values. In 
other words, this information can be potentially used to 
reject unreliable parameter set. However, we do not 
have observed data with respect to proposed 
complementary information. If this methodology is 
applied to the specific study area with the observed 
data such as hydrochemical materials including isotope 
tracers, more reliable parameter sets will be selected.  

Because of no comparable data, it is still 
questionable which parameter is more physically- 
based among three samples. It means that these 
plausible sets should be retained for model prediction 
unless and until additional evidence to the contrary 
(e.g., actual old water data) becomes apparent because 
even auxiliary information used here cannot constrain 
the model completely. 
 
6. Conclusions 
 

This paper aims at investigating prediction 
uncertainty due to input and parameter under 
scale-dependant condition of a rainfall-runoff 
modeling. Moreover, a new rainfall-runoff modeling 
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framework considering uncertainty components 
involved in modeling processes is proposed to provide 
guideline for future modeling direction. The results 
obtained in this study can be summarized as follows: 
1) Parameter compatibility is evaluated for both 

improving computational efficiency of distributed 
rainfall-runoff modeling with very fine resolution 
and exemplifying ‘equifinality’ problem arising 
from a complex drainage network derived from 
small spatial resolution of DEM. 

2) The model based on fine spatial resolution has good 
parameter compatibility but high potentiality of 
equifinality problem 

3) Scenario-based applications are performed to 
examine the effect of input uncertainty due to 
spatial variability of rainfall data on model 
predictions. 

4) Plausible rainfall scenarios result in equally good 
hydrographs but internal responses to them show 
too much different aspects 

5) Three guideline indices with respect to model 
performance, structural stability and parameter 
identifiablity are proposed to explain limitations of 
a conventional modeling protocol and then new 
modeling framework is developed by incorporating 
these indices into model evaluation procedure. 
In further study, we apply the proposed new 

modeling framework to the area having abundant 
observed data including streamflow and other 
hydrological variables in order to verify it and to 
articulate the need of alternative direction toward 
model testing in hydrology. 
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要 旨 

本研究では，降雨流出モデリングにおけるスケール依存性のもとでのモデルパラメータと入力に起因する水文予

測の不確実性を分析することを目的とする。さらに，水文モデリングにおけるガイドラインを提供するために，水文

モデリングの過程で含まれる不確かさの要素を考慮した新しい降雨流出モデルの枠組みを示す。まず，分布型流出モ

デルの構成に用いる数値標高モデルの適切な分解能を定めるためにモデルパラメータの適応性を評価する。次に，降

雨の空間分布による入力の不確かさが流出予測に及ぼす影響を分析する。最後に，水文モデルの予測性能，モデル構

造の安定性，パラメータの唯一決定性に関して３つの指標を提案する。これによって，従来の水文モデリングの限界

を説明することが可能となる。また，これらの３つの指標をモデル評価の手順に導入した新しい水文モデルの枠組み

を提案する。 

 

キーワード: 予測の不確かさ，パラメータの適合性，降雨の空間分布，新たなモデル化の枠組み 
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