Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 50 B, 2007

水中に没した円柱周辺の河床変動について

武藤裕則・芹澤重厚

要 旨

河川の水際に形成される微地形の保全・創出にあたっては、構造物による流れと地形の擾 乱機能を利用することが考えられる。本研究では、最も基本的な構造物として橋脚を模した 円柱を用い、円柱高さが周辺河床の地形形成に与える影響を、円柱頂部が水没するケースも 含めて、基礎的実験により検討した。本研究の結果、円柱高さを水深の70%以下とすると、 上流への水位のせき上げはほとんど無視できることが示された。一方、円柱周辺の局所洗掘 は、円柱の高さを減じるほど洗掘深・洗掘範囲共に減少し、特に生態的に重要とされる下流 側の浅水・緩傾斜領域への影響が大きいことが示された。

キーワード:円柱、局所洗掘、河床変動、せき上げ、水没円柱、水際

1. はじめに

水際に形成される浅い水域が魚貝類の生息・生育に 重要な場所であることは従来より指摘されている(淀 川環境委員会, 2002;小川, 2004)。そのような浅い水 域の代表例としては、水制に起因するわんど(矢田ら、 1999) や,砂州上の副流路に形成されるたまり(紀平, 2002) などが挙げられるが、そのような領域における 流れや土砂動態に関しては、例えば著者ら(2006)や 鍛冶ら(2006)に見られるように、これまで数多くの 研究がなされてきている。一方、橋脚周辺に形成され る洗掘孔もまた、周辺とは異なる多様な流れ場を生み 出すことに寄与しており,特に水際に設置された橋脚 周辺部の洗掘孔は、浅く流れが穏やかなわんど状の水 域として貴重な生息場となっていることが矢野(2003) により報告されている。このような、橋脚とその周囲 の洗掘孔の環境的な機能をより積極的に活用すること を考えた場合、架け替えに伴い不要となった橋脚を残 置することや、水際に橋脚を模した構造物を設置して、 水際の多様な地形の保全・創出を誘導することが考え られる。しかしながら、一般に橋脚は背の高い構造物 であるため, 平水時には威圧感など景観上の問題があ り、また洪水時には水位のせき上げや流木等の補足に 寄与するなどの問題が考えられる。

これらの問題点を軽減する方策としては、橋脚ない

しはそれを模した構造物の高さを減じること、径を減 じること、スリットのような空間を構造物に設けるこ となどが考えられる。これまでの構造物周りの局所洗 掘に関する検討結果(土木学会, 1985)によれば,洗 掘深さや洗掘領域の面積に関しては構造物の径が第一 義的な変数として扱われており、径を減じることやス リット等を設けることは、洗掘地形ひいてはその環境 的な機能に与える影響が大きいことが想定される。さ らに、従来の研究では対象として橋脚を想定している ため構造物の頂部は常に非水没として扱われており, 構造物の高さを変化させた検討は皆無である。そこで 本研究では、構造物の高さを変化させることに注目し、 その場合に構造物周辺の洗掘孔形状がどのように変化 するのか、特に構造物が完全に水没するような条件で は洗掘領域や最大洗掘深がどのように変化するのかを 基礎的実験により検討した。具体的には、橋脚模型と して従来から多数検討されている円柱を用い、単円柱 および縦列に配置した複円柱の水没・非水没を含む数 種のケースを対象として,直線水路における定常状態 での移動床実験を行い,水面形および平衡河床形状の 計測を行った。検討のねらいとしては、前述のように 治水および景観の観点から高さはできるだけ下げつつ も、同時に円柱周辺、特に下流側における洗掘孔の環 境機能を維持するために、その形状を激変しない円柱 高さの条件を模索することに留意した。

			ļ		8 1 2			
Casa	Discharge	Water depth *	Mean velocity	Friction velocity	Sediment discharge	Pier height	Bed	
Case	$Q (\text{cm}^3/\text{s})$	h (cm)	<i>u</i> (cm/s)	<i>u</i> * (cm/s)	Q_s (cc/min)	$T(\mathrm{cm})$	condition	
SO								
S 1	5 700	5.00	29.5	1.02		7.5	Statio	
S2	5,700	5.00	28.3	1.98		3.5	Static	
S 3						2.5		
D0								
D1	10.000	7.00	25.7	2.25	65	7.5	Live had	
D2	10,000	7.00	55.7	2.25	05	3.5	Live-bed	
D3						2.5		
Bod m	atarial. Maar	diameter $d = 1.4$	5mm Spacific or	with a -1 0 Critica	1 friction value it u = 2	00am/a		

Table 1Hydraulic conditions (single pier)

Table 2	Hydraulic of	conditions	(double	pier
---------	--------------	------------	---------	------

a	Discharge	Water depth *	Mean velocity Friction velocity	Pier height			
Case	$Q (\mathrm{cm}^3/\mathrm{s})$	h (cm)	<i>u</i> (cm/s)	<i>u</i> _* (cm/s)	upstream T_l (cm)	downstream T_2 (cm)	
S11					7.5	7.5	
S22					3.5	3.5	
S33	5,700	5.00	28.5	1.98	2.5	2.5	
S20					3.5	0	
S 30					2.5	0	
Used bed material, pier diameter and definition of the water depth are the same as in Table 1.							
All experimental cases for the double piers are conducted in the static bed condition.							

2. 実験装置および方法

実験は、京都大学防災研究所宇治川水理実験所に設置された、長さ8m、幅40cm、深さ40cmの循環式勾配可変型ガラス製直線水路を用いて行った。水路の一部(流入部~4mおよび5.7m~7.5m部分)をベニヤ板を用いてかさ上げし、流入部から4m~5.7mの区間に深さ20cmの掘込区間を設け、この部分に河床材料を充填して移動床部分とした。

円柱模型は、直径 D=5cm の塩化ビニル棒を用い、 単円柱のケースの場合、水路流入部より 4.7m の水路中 央部に設置した。複円柱のケースでは縦列配置とし、 設置間隔を円柱中心間距離で円柱径 D の 2.5 倍(= 12.5cm)とした。なお、円柱模型は 3 種類の長さのも のを用意し、実験ケースごとに円柱の高さを変化させ、 円柱周辺部の局所洗掘および下流側河床変動への影響 を比較検討した。Table 1 および 2 に実験ケースを示す。 表に示したように、複円柱のケースでは、2 本の円柱 高さを同じとしてその高さを変化させた 3 ケース (Case S11, S22 および S33)と、上流側の水没円柱と 下流側の高さを 0、すなわち円柱頂部を初期河床高さ に合わせた円柱を組み合わせた 2 ケース (Case S20 お よび 30)の、合わせて 5 ケースについて検討した。こ こに、下流側の高さを 0 としたケースは、上流側円柱 と組み合わせて設置することで,ある程度洗掘孔が単 円柱の場合よりも拡大ないし維持されることを期待し たものである。

実験においては、水理条件としては流量および擬似 等流水深を変化させることで、静的および動的洗掘状 態の2種を検討した。流量の計測は、循環系に設置さ れた面積流量計によった。また、いずれの場合でも、 擬似等流状態となるように水路下流端の越流堰を調節 している。水路床勾配は1/1000に設定した。なお、表 中の疑似等流水深とは、ケース間の比較を容易にする ため、円柱によるせき上げを局所的なものと見なし、 円柱なしの場合の等流水深を代表値として示したもの である。

実験手順としては、最初に試験区間(移動床部分) の河床を前後の固定床部分と同じ高さに平坦に敷き均 した後に、水路に湛水し河床材料(スラジライト、平 均 粒 径 d_m=1.45mm,比重 1.9,限界摩擦速度 u_{*c}=2.09cm/s)自体および材料間の空隙が十分に飽和す るまで待ち(約1時間),その後バルブを操作すること で所定の流量となるように素早く調節した。次に、円 柱周辺部の河床変動が平衡状態となるまで定常流量を 供給し、この間の河床変動状況を観察した。なお、動 的洗掘状態となる実験ケースでは、所定量の給砂を試 験区間の上流側から供給した(Table 1 参照)。試験区

Fig. 1 Effect of backwater by the single pier

間の河床変動が平衡状態となったと判断された時点で, 水路中央部において水面形計測を行い,通水停止後河 床形状計測を行った。

水面形の計測はポイントゲージを用い,試験区間に おいては 10cm ピッチ,試験区間前後の固定床部分に ついては 50cm ピッチで水路中央部における水深を計 測し,水面形を求めた。河床形状の計測は、レーザ距 離計(キーエンス社製LK-500)を用いて行った。円柱 設置箇所を中心として,上流側に 1B(ここで B は水路 幅=40cm),下流側に 2.5B の範囲の河床形状について, 横断方向に 1cm ピッチ,縦断方向は河床形状の変動状 況に合わせて 1cm~4cm ピッチの範囲で計測を行った。

3. 実験結果および考察

3.1 単円柱の場合

(1) 水面形計測結果

Fig.1は、水路流入部〜円柱設置地点の範囲における 水位について、円柱を設置しないケース(Case-SOおよ び Case-DO)を基準とした変化量として示したもので ある。図より、いずれのケースについても、円柱上流 側に水位の上昇する範囲が見られることがわかる。円 柱の高さとせき上げ区間の関係を見ると、円柱が水没 しないケース(Case-S1および Case-D1)においてせき 上げ区間は最も大きく、水路流入部近くにまで及んで いることがわかる。しかしながら、円柱が水没する場 合は Case-S2 を除いてせき上げ区間は明瞭ではなく、 水位は円柱を設置しないケースとあまり変わらない。 次に、水位上昇量の場所的な変化を見ると、Case-S1、S2

Table 3 A	veraged	backwate	r height	(mm)	
-----------	---------	----------	----------	------	--

	Ũ	``````````````````````````````````````		
Case	All	Fixed bed	Movable bed	
	(<i>x</i> =0∼4.6m)	$(x=0\sim 4.0m)$	(<i>x</i> =4∼4.6m)	
S1	1.82	1.70	1.93	
S2	0.45	0.21	0.69	
S3	0.21	0.19	0.24	
D1	2.08	2.17	1.99	
D2	0.16	0.43	-0.11	
D3	-0.10	0.20	-0.40	

および D1 については円柱の直上流(x=4.6m)の地点 で水位上昇量が最大であるが、その他のケースについ ては同地点での水位上昇量が小さく、円柱高さ/水深 (T/h)が小さくなれば水位上昇に対する円柱の影響が ほぼ無視できることが示されている。一方、円柱が水 没するケースについては、円柱設置地点(x=4.7m)で は水位が低下している。

Table 3 は、Fig. 1 に示した水位上昇量の空間的な平均値を各ケース別に示したものである。表では、全区間、固定床範囲(x=0~4m)および移動床範囲(x=4~4.6m)それぞれにおける平均値を示している。表より、静的洗掘・動的洗掘いずれの場合でも、円柱が水没しないケースにおける水位上昇量が最大となっており、その値は円柱を設置しない場合に対して約3%の水深の増加となっている。これに対し、円柱が水没するケースではいずれも1mm以下の上昇量となっており、円柱を設置しない場合とほとんど変わらない。次に、静的洗掘と動的洗掘を比較すると、静的洗掘の場合は移動床範囲の方が大きいのに対し、動的洗掘の場合は

Fig. 3 Equilibrium bed configuration (Single pier, Live-bed condition)

Case	h (cm)	$T(\mathrm{cm})$	Equilibrium maximum scour depth Z (cm) Z/D h/D		Z/Z_0	T/h	
S1		5.0	6.75	1.35		1	1
S2	5.0	3.5	6.00	1.20	1.0	0.89	0.7
S 3		2.5	4.96	0.99		0.73	0.5
D1		7.0	7.38	1.48		1	1
D2	7.0	3.5	5.67	1.13	1.4	0.77	0.5
D3		2.5	4.81	0.96		0.65	0.36
Note: $D=5$ cm : Z_0 denotes equilibrium maximum scour depth in Case-S1 and D1.							

 Table 4
 Equilibrium maximum scour depth for the single pier cases

移動床範囲の方が固定床範囲より平均水位上昇量が小 さく、河床の状態が水位に影響を及ぼしていることを 示唆している。さらに、水没した円柱の高さの影響を 見ると、静的洗掘・動的洗掘いずれの場合でも、円柱 の高さが低い方が水位上昇量が全区間・固定床範囲・ 移動床範囲いずれでも小さくなっている。しかしなが らその差は、例えば固定床範囲で0.1mm~0.2mm 程度 であり、実験の精度を考慮すると、円柱高さと何らか の相関傾向が認められるもののそれほど明確とは言え ない。

(2) 河床形状計測結果

Fig.2は,静的洗掘の各ケースにおける平衡河床形状 の計測結果をコンターで示したものである。数値は初 期河床からの低下量である。図より、円柱が水没しな いケース(Case-S1)では、従来の研究結果と同様に、 洗掘孔の形状は、円柱前面では逆円錐形状を持ち、円 柱側面から後方にかけては円柱から緩い角度をもって 斜め方向に離れながら徐々に浅くなり、また円柱の後 方では河床材料が堆積していることがわかる。このよ うな洗掘孔形状が形成されるのは、円柱周辺の渦構造 と密接な関連があり,円柱前面部の馬蹄形渦や円柱後 流のはく離渦の関与が宇民(1975)により指摘されて いる。今回の実験では、円柱の後方で底面付近からは く離し洗掘孔の形状に沿って巻き上がる強い流れが観 察され、この流れにより円柱前面より運ばれた河床材 料が堆積している様子がうかがえた。次に、円柱が水 没した場合(Case-S2 および S3)では、円柱前面部で は Case-S1 と同様に逆円錐形の洗掘孔が形成されてい るが、その範囲は円柱高さが低くなるにつれて縮小し ている。また、円柱後方への影響は Case-S1 ほど顕著 ではなく、その影響範囲も円柱の高さが低くなるにつ れて大きく縮小しており、とりわけ Case-S3 では、円 柱を中心とした同心円上の範囲にほぼとどまっている。

一方, Fig. 3 は動的洗掘の各ケースにおける平衡河床 形状の計測結果をコンターで示したものである。図よ り,円柱が水没しないケース(Case-D1)では,円柱前 面部では静的洗掘(Case-S1)とほぼ同様の洗掘孔形状

となっている。それに対して円柱後方では、円柱側面 から形成される洗掘孔のはく離角度が静的洗掘に比し てやや大きく,かつその範囲も大きい。その一方で, 円柱後流部に形成される堆積域はやや小さく、その開 始位置も下流側にずれている。図からは明らかではな いが、動的洗掘の場合、移動床区間全域に渡って河床 は変動しており、一部には河床波(波高数 mm 程度) も形成されているため、そのような変動構造との重畳 により堆積域が明瞭とはならなかったと考えられる。 円柱が水没したケース(Case-D2 および D3)では,洗 掘孔が Case-D1 に比して全体的に縮小する点,ならび に洗掘孔の大きさと円柱高さとの相関がある程度見ら れる点など,静的洗掘の場合と同様である。一方で, 円柱の高さが同じ各ケース間の比較をすると、円柱が 水没しないケース(Case-S1 および D1)では、前述の 下流域への影響を除いては洗掘孔形状に大きな差異は 見られないが、円柱が水没するケースでは、動的洗掘 の場合の方が静的洗掘より洗掘領域がやや小さい。

橋脚周辺の洗掘孔を産卵場とする魚種の中には、ゼ ゼラ(Biwia zezera)のように橋脚下流側のより緩やか な河床勾配の箇所を好んで利用するものがいることが 矢野(2003)により報告されているが、今回の実験結 果は、円柱を水没させることで、そのような箇所に大 きく影響を与えることを示している。

(3) 最大洗掘深の評価

前節で示したように、今回の実験条件では、静的洗 掘・動的洗掘いずれの場合でも洗掘孔の形状は、円柱 前面では逆円錐形状を持ち、円柱側面から後方にかけ て徐々に浅くなり、また円柱の後方では河床は上昇傾 向にあった。この結果、従来の非水没型円柱と同様に、 円柱前面部に最大洗掘深が現れる結果となった。本節 では、最大洗掘深と円柱高さとの関係を検討すると共 に、従来提案されてきた最大洗掘深の予測式の拡大援 用の可能性について検討する。

Table 4 は,各ケースにおいて計測された平衡状態に おける最大洗掘深をまとめたものである。Fig. 2 および 3 に示した結果からも推測されるように,水理条件が

Fig. 4 Equilibrium maximum scour depth

同じケース間で比較すると、円柱が水没しないケース において最大の値となっており、水没したケースでは 円柱の高さが低い方が最大洗掘深が小さい。一方、静 的洗掘と動的洗掘の比較をすると、円柱が水没しない ケースでは動的洗掘の方が最大洗掘深は大きいが、水 没するケースでは2ケース共静的洗掘の方が若干大き な値を示している。

Fig.4は、従来の研究結果をまとめたもの(土木学 会、1985)と同様に、横軸に水深/円柱径(h/D)、縦 軸に平衡最大洗掘深/円柱径(Z/D)をとり今回の実験 結果をプロットしたものである。図には, Laursen-Neill (1963)の式, Cunha (1970)の式および中川・鈴木 (1974) の式による予測値も示している。図より、今回の実験 結果はこれらの予測値から大きくは外れてはおらず, また,円柱が水没しないケース(Case-S1 および D1) に対しては、Cunha による予測式が非常に高い適合性 を示している。しかしながら,従来の結果は円柱が水 没し,かつその高さが変化することは考慮されていな いため、当然のことながら同一の h/D に対して洗掘深 が複数プロットされる結果となっている。これまでの 検討の結果、円柱高さが低くなるにつれて、最大洗掘 深が小さくなることが伺えたことから,両者の関係を 示したものが Fig. 5 である。なお、横軸には円柱高さ /水深(T/h)を、縦軸には非水没ケースを基準とした 最大洗掘深の割合(Z/Z₀,ここに Z₀は非水没ケースに

ける円柱高さ*T*は水深*h*と同じとしている。図より, 両者には強い相関関係が伺われ,その関係は図中にも 示したように次式によって表される。

おける洗掘深)をとっており、また非水没ケースにお

$$\frac{Z}{Z_0} = 1.0 \left(\frac{T}{h}\right)^{0.41}$$
(1)

式(1)と, 次に示す Cunha の式

$$\frac{Z_0}{D} = 1.35 \left(\frac{h}{D}\right)^{0.3}$$
 (2)

を組み合わせることで,円柱が水没した場合も含む平 衡最大洗掘深の予測式は,以下のように表される。

$$\frac{Z}{D} = 1.35 \left(\frac{h}{D}\right)^{0.3} \left(\frac{T}{h}\right)^{0.41}$$
(3)

式(3)を今回の実験ケースに適用したところ,いずれの ケースに対しても誤差は±3%以内となった。以上のこ とから,式(3)のような比較的簡便な一つの式で,円柱 の水没・非水没にかかわらず最大洗掘深を精度良く予 測できることが示された。

3.2 複円柱の場合

(1) 水面形計測結果

Fig.6は、高さが同じ円柱を2本縦列に配置した場 合における水路流入部~上流側円柱設置地点の範囲に おける水位の上昇量について, Fig. 1 と同様の方法によ り示したものである。図より、単円柱の場合(Fig.1) と同様に、円柱が水没しないケース(Case-S11)にお いて水位上昇量・せき上げ区間共に最大となっており, 円柱が水没するケース(Case-S22 および 33)では、せ き上げ区間は水路流入部にまでは及んでいない。一方, これら2ケースの差異はそれほど明確ではなく、円柱 高さの影響が明瞭には伺えない。次に、水位上昇量の 場所的な変化を見ると、いずれのケースでも上流側円 柱の直上流地点である x=4.6m で極大となる他, x= 3.8mおよび2.3mでも水位上昇量が大きくなっており, ある種の周期性が伺える。Fig.1に示した単円柱の場合 にはこのような周期性は明瞭ではない。一方、円柱が 水没するケースにおいて円柱設置地点である x=4.7m で水位が低下しているのは単円柱の場合と同様である。

Table 5Averaged backwater height (mm)

Case	All	Movable bed
	(<i>x</i> =0~4.6m)	(<i>x</i> =4~4.6m)
S 1	1.82	1.93
S2	0.45	0.69
S 3	0.21	0.24
S11	0.92	1.08
S22	-0.01	0.18
S33	0.21	0.33
S20	0.20	0.35
S30	0.07	0.24

Fig.7は、下流側円柱の高さを0とした場合の水位の 上昇量について、単円柱の場合と共に示したものであ る。図より、各地点ごとに0.5mm内外の差異はあるも のの、上流側円柱の高さが同一であるケース間 (Case-S2とS20、およびCase-S3とS30)の水面形は ほぼ一致し、したがって下流側円柱の高さが0の場合 には、上流側水位へ及ぼす影響は単円柱の場合とほぼ 同様と考えることができる。

Table 5 は、Fig. 6 および7 に示した水位上昇量の空間的な平均値を各ケース別に示したものである。表では、全区間と移動床範囲(x=4~4.6m)それぞれにおける平均値を示しており、また比較のため Table 3 に示した単円柱(静的洗掘)の場合を再掲している。表より、複円柱の場合も単円柱の場合と同様に、円柱が水没しないケースの水位上昇量が、全区間・移動床区間共に最大となっているが、その値は単円柱の場合と比

してやや小さい。このことは、後に示すように、円柱 による洗掘範囲が単円柱の場合に比してやや拡大して いることが影響しているものと思われる。一方、円柱 が水没するケースでは、Case-S22の全区間を除いて全 てのケース・区間で+となっており、水位はやや上昇 傾向であることが伺えるが、いずれの値も0.5mm以下 であり、円柱無しの場合とほぼ変わらないと言える。 また、円柱高さと水位上昇量の関連も明確ではない。 今回の実験条件の範囲では、上流区間の水位上昇は上 流側円柱の高さによって規定され、その結果は、円柱 高さが同じである単円柱の場合とほぼ同様であること が示された。

(2) 河床形状計測結果

Fig. 8 は,高さが同じ円柱を縦列に配置した場合にお ける平衡河床形状の計測結果を示したものである。ま ず,複円柱とすることによって,それぞれの円柱周辺 に洗掘孔が形成されており,円柱間に凸部が形成され, それぞれの円柱前面に最深部が形成されていることが わかる。最大洗掘深は,今本・大年(1983)による検 討結果と同様に,上流側円柱の前面に観察される。し かしながら同時に,各円柱ごとの影響範囲は,その範 囲が最大となる円柱が水没しないケース(Case-S11) においても,円柱壁面から距離D(=円柱径)程度に とどまり(図中青色:z<-5cmの範囲),円柱からそれ より離れた部分では,2本の円柱があたかも一体とな って洗掘領域が形成されているように見受けられる (図中,緑~黄色の部分)。その結果,単円柱の場合(Fig. 2)と比較すると,特に横断方向と上流側へ洗掘領域が

Fig. 9 Equilibrium bed configuration (double piers)

拡大していることがわかる。なお,円柱の高さが減少 するにつれて,洗掘範囲・最大洗掘深共に減少する傾 向は単円柱の場合と同様である。下流側への影響は, 洗掘範囲の大きさはあまり変化しないが,洗掘量がや や拡大している。

Fig. 9は、下流側円柱の高さを0とした Case-S20に おける平衡河床形状を示したものである。比較のため に、Fig. 2に示した単円柱の場合の結果(Case-S2)を 再掲している。図に示されるように、単円柱の河床変 動結果と下流側の高さが0である複円柱の結果はほぼ 同一である。すなわち、下流側円柱の存在に起因する 洗掘領域は、その高さが0の場合には明確には形成さ れていない。下流側円柱の高さを0とした目的は、上 流側円柱による洗掘の影響範囲に設置することから、 仮に円柱頂部を初期河床に合わせたとしても、流砂の 非平衡状態に伴う河床変動が下流側円柱周りに生じる ことを期待しての条件設定であるが、その効果はほと んど発揮されなかったと言える。なお、ここには図示

Case	$T_{\rm r}$ (cm)	T_{2} (cm)	Equilibrium max	Z_1/D	Z2/D			
Cuse		<i>1</i> ₂ (em)	upstream Z_l (cm)	$\operatorname{cam} Z_1 (\operatorname{cm})$ downstream $Z_2 (\operatorname{cm})$				
S1	5.0		6.75		1.35			
S2	3.5		6.00		1.20			
S 3	2.5		4.96		0.99			
S11	5.0	5.0	7.73	6.87	1.55	1.37		
S22	3.5	3.5	6.41	4.27	1.28	0.85		
S33	2.5	2.5	5.25	3.43	1.05	0.69		
S20	3.5	0	5.89	2.22	1.18	0.44		
S30	2.5	0	5.29	1.35	1.06	0.27		
Note: D=5c	Note: D=5cm							

Table 6 Equilibrium maximum scour depth for the double pier cases

Fig. 10 Pier space vs. Maximum scour depth

していないが, Case-S30 と Case-S3 を比較した結果に ついても同様のことが観察された。

(3) 最大洗掘深の評価

Table 6は、複円柱の各ケースにおいて計測された平 衡状態における最大洗掘深をまとめたものである。表 には、比較のために単円柱の場合の結果も再掲してい る。表より、高さが同じ円柱を縦列配置にした複円柱 のケース(Case-S11, S22 および S33)では、上流側円 柱による洗掘深 Z₁と,対応する高さの単円柱における 洗掘深を比較すると,いずれのケースについても複円 柱の方が洗掘深が拡大していることがわかる。一方、 下流側円柱による洗掘深Z2は、単円柱による洗掘深と 同程度かやや小さい。次に、下流側円柱の高さが0の ケース(Case-S20 および S30) について見ると、上流 側の洗掘深 Z₁ は対応する円柱高さ条件の単円柱の結 果とほぼ同様である。なお、下流側円柱については、 前述のように上流側円柱の影響範囲に位置するため, 洗掘孔は明確には形成されていない(Fig.9参照)が, 表に示したように僅かながら周囲より深い領域が形成 されている。

円柱を非水没の条件で縦列配置した場合の洗掘孔 形状に関する検討の先行事例としては,先述の今本・

大年(1983)による研究がある。Fig. 10 は, 円柱の設 置間隔と上流側・下流側円柱それぞれの前面に表れる 最大洗掘深の関係を示したものである。マーカー付実 線が今本・大年による結果(Z₁に関する単円柱の結果 を含む),マーカー単独のプロットが本研究による結果 である。図では、最大洗掘深(Z:縦軸)、設置間隔(S: 横軸)共に円柱径Dで無次元化されており、本研究に おける条件は S/D=1.5 である。なお、ここでいう設置 間隔は円柱の面間距離であり、中心間距離から円柱径 を減じたものである。図より明らかなように、本研究 による結果は、今本・大年によるそれより、上流側・ 下流側いずれにおいても最大洗掘深は過大となってい る。原因は、河床材料の選択や水路幅/水深比の影響 などが考えられるが,詳細は不明である。本研究では, 円柱の設置間隔については1ケースしか検討しておら ず、今後設置間隔を変化させた実験を行って比較検討 を行う必要があると考える。

Fig. 8 にも示したように、本研究における円柱の設置条件では、2 本の円柱が一体となって河床変動全体に影響を与えていると見なされる特徴が伺える。Table 6 に示したように、複円柱とすることによって、最大洗掘深は単円柱の場合の約 1.1 倍となることがわかった。この値を単円柱で得るために必要な円柱径を式(2)より逆算すると、D'=1.15Dとなった。なお、D'は所要の最大洗掘深を得るために必要な仮の円柱径である。このことより、今回の複円柱の設置条件である S/D=1.5 は、最大洗掘深に関しては、単円柱の径を 1.15 倍したのと同等の影響をもたらしたと考えられる。

4. おわりに

本研究により得られた成果を列挙すると以下のよう である。

1. 水中に没した円柱周辺に形成される局所洗掘孔の

形状は,円柱前面においては水中に没しない場合 とほぼ相似形であり,最大洗掘深は円柱前面に現 れる。

- 円柱高さを低下させることで、洗掘範囲および最 大洗掘深は減少する。円柱が水没した場合におい ても、最大洗掘深は、Cunhaの式に円柱高さをパ ラメタとする新たな変数を導入することでほぼ予 測可能である。
- 静的洗掘状態と動的洗掘状態の結果を比較すると、 動的洗掘の方が下流洗掘領域への影響範囲は大きいが、静的洗掘の方が堆積域の形成は明瞭である。
 この傾向は、円柱が水没しないケースにおいて特に顕著である。
- 円柱を水没させた場合、上流側へ及ぼす水位のせき上げへの影響は円柱が水没しない場合に比していずれも小さい。水位上昇に及ぼす円柱高さの影響は、今回の実験条件の範囲では顕著には見られなかった。
- 5. 複円柱とした場合,水没円柱による水位のせき上 げは、上流側の円柱高さにより規定される。洗掘 孔は、個々の円柱に起因する深い部分と、両者が 一体として機能する浅い部分との複合的な形状を 示し、全体の最大洗掘深は上流側円柱の前面に表 れる。
- 6. 複円柱で下流側円柱の高さを0とした場合,流砂の非平衡効果による下流側円柱周辺の洗掘孔は形成されず,単円柱の場合とほぼ同様の結果となる。今回の実験結果からは、単円柱・複円柱いずれの場合でも、円柱の高さを低くすることで洗掘孔が縮小するという傾向が確認された。このことは、例えば不要となった橋脚の高さを低くして残置したとしても、従来と同様の生息環境は確保されない恐れがあることを示唆している。しかしながら、河川地形とその生態機能の定量的な関係は必ずしも明確にはなっておらず、今後特に浅水域や緩傾斜領域に着目し、その物理過程を明らかにすることを通してそのような検討に対して貢献していきたい。

加えて,円柱以外の断面形状を有する橋脚を対象に した検討や,浮遊砂が卓越する状態での検討,ならび に今回提案した式(3)の現地に対する適用性について も検討を進める予定である。

謝 辞

本研究を遂行するにあたり,大阪教育大学教授・長 田芳和氏,中間法人水生生物保全研究会会長・紀平肇 氏,大阪市立大桐中学校・河合典彦氏ならびに大阪府 立西野田工業高等学校・小川力也氏には,わんど・た まりにおける魚貝類の生態について多くのご教示を得 た。また,京都府山城土木事務所および財団法人河川 環境管理財団には,木津川下流部わんど・たまり群に おける生物調査データの提供をいただいた。深くお礼 申し上げます。

参考文献

- 今本博健・大年邦雄(1983):開水路流れに設置された 橋脚周辺の水理特性について(1),京都大学防災研究 所年報,第26号 B-2, pp.489-501.
- 宇民 正(1975):橋脚周辺の流れの機構と洗掘防止法 に関する研究,京都大学学位論文.
- 小川力也(2004):砂州の静水域の環境特性と魚類の生 態,流水・土砂の管理と河川環境の保全・復元に関 する研究,財団法人河川環境管理財団河川整備基金 事業報告書, pp.116-132.
- 鍛冶塩太・綾 史郎・武藤裕則・馬場康之・中西 章・ 出口 恭・藤田一郎・竜門俊次(2006):淀川楠葉復 元ワンド群の水理環境,水工学論文集,第 50 巻, pp.1117-1122.
- 紀平 肇(2002):砂州に生じる一時的水域と魚類の生態,流水・土砂の管理と河川環境の保全・復元に関する研究,財団法人河川環境管理財団河川整備基金 事業報告書,pp.133-141.
- 土木学会編(1985):水理公式集,昭和 60 年版, pp.273-275.
- 中川博次・鈴木幸一 (1974):橋脚による局所洗掘の予 測に関する研究,京都大学防災研究所年報,第17号 B, pp.725-751.
- 矢田敏晃・長田芳和・紀平 肇・近藤高貴(1999):淀 川のワンドの生物たち、わんどの機能と保全・創造 ~豊かな河川環境を目指して~(財団法人河川環境 管理財団大阪研究所編), pp.95-128.
- 矢野祐之(2003):氾濫原に適応したゼゼラ(コイ科) の繁殖生態,大阪教育大学修士論文.

淀川環境委員会編(2002):自然豊かな淀川を目指して.

- Muto, Y. and Aya, S. (2006): Field Measurements and Laboratory Experiments on Flow and Bed Evolution in Embayments, The 6th Japan-Taiwan Joint Seminar on Natural Hazard Mitigation (Paper on CD-ROM).
- Neill, C.R. (1963): Measurements of bridge scour and bed changes in a flooding sand-bed-river, *Proc. ICE*, London, Vol.30, pp.415-436.
- Veiga da Cunha, L. (1970): Discussion to "Local scour around bridge piers" by Shen, H.W., Schneider, V.R. and Karaki, S., *Proc. ASCE*, HY8, pp.1742-1747.

Local Scour and Bed Evolution around Submerged Cylindrical Piers

Yasunori MUTO and Shigeatsu SERIZAWA

Synopsis

Laboratory experiments were conducted on local scour and bed evolution around cylindrical piers. Not only with a traditional non-submerged pier, but some cases with a submerged pier were explored. In addition to the single pier, double piers arranged in the longitudinal direction are also studied. Experiments were carried out in both static and live-bed scouring conditions. The shape of the scouring hole in the submerged conditions is similar to that in the non-submerged condition, thus the maximum scour depth appears in vicinal front of the pier. The maximum scour depth reduces as the height of the pier decreases. A refined equation for estimating the maximum scour depth including the effect of variable pier height is proposed and shows good performance in the range tested here. Backwater in the upstream is not so noteworthy in the submerged cases.

Keywords: cylindrical pier, local scour, bed evolution, backwater, submerged pier, embayment