
1. Introduction 
 

Theoretical approaches for calculating seismic waves 
using the high-frequency approximations provide 
indispensable geophysical tools for investigations of the 
interior of the Earth, especially for information about 
arrival times and ray paths. Ray theory is applicable 
when the wavenumber k of the high-frequency seismic 
wave is large compared with the scale a of the 
heterogeneity in the structure; that is ak > 10 or the 
condition that a is large compared to the Fresnel zone 
(Aki and Richards, 1980). Ray tracing methods aim at 
deterministically finding robust and accurate ray paths 
and Julian and Gubbins (1977) investigated their 
effectiveness by comparing two of the major seismic ray 
tracing methods. One is a shooting method, where the 
initial direction of a ray shot from a source is changed 
until the ray arrives at an observation station. The other is 
a bending method, in which the ray is found by using 
Fermat's principle so that it connects the source and the 
station with the shortest traveltime. Um and Thurber 
(1987) proposed an approximate approach to find the 

path with the shortest traveltime by application of the 
bending method. But using either method it is difficult to 
find the true ray paths in a very complicated velocity 
structure, because the shooting method requires a 
tremendous number of trials and the bending method 
often falls into a local minimum of the traveltimes. To 
overcome these problems, for example, Nishi (2001) 
recently proposed a hybrid calculation scheme for highly 
heterogeneous three-dimensional velocity structures.  

Traveltime seismic tomography using the first arrival 
phase is a widely used method to study the Earth's 
interior. The actual velocity structure usually is not 
completely understood and sometimes characterized by 
mean velocity and statistic functions to represent the 
random heterogeneities. For such the structures, a ray 
theoretical relation between the autocorrelation function 
of traveltimes and that of random media can be presented 
(Műller et al., 1992), however, the exact two-point ray is 
available, for example, by using ray perturbation theory 
(Farra and Madariaga, 1987; Snieder and Sambridge, 
1992) only if we know the exact velocity structure. It is 
difficult to represent comprehensive seismic wave paths, 
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which may be the first arrivals, if we do not know the 
exact heterogeneities but know only statistic functions 
characterizing the heterogeneities. In this study, our 
motivation is to stochastically determine the seismic 
wave paths instead of the exact ray paths in the random 
heterogeneous media. We apply the high-frequency 
approximation and a stochastic approach. A stochastic 
tube is defined as a bundle of stochastic paths, which are 
diffused by random heterogeneities in the neighborhood 
of a reference ray path. A stochastic differential equation 
for the stochastic tube is derived and analytically solved. 
Some numerical examples are shown using our 
stochastic method.  

 
2. Stochastic tube tracing method in a random 

heterogeneous medium 
 

We construct a random heterogeneous medium by 
using a background structure and then applying random 
perturbations (Table 1). Seismic rays are available in the 
background structure for ak > 10 and kL > 10 (Aki and 
Richards, 1980), where a, k and L are the correlation 
distance of the anomalies, the wavenumber and the travel 
distance, respectively. A first arrival seismic wave path 
connecting a source point and an observation station is 
given by a ray path. When the background structure is 
perturbed, the ray path is also perturbed. The exact ray 
would be distinctly determined, however the traveltime 
may not provide the first arrival (Roth et al., 1993). Then 
we consider the probable wave paths, which are random 
paths perturbed around the original ray path, a reference 
ray path. The probable paths are constructed by 
considering the diffusion (or perturbation) about the 
reference ray path, which is associated with perturbations 
to the background structure (Table 1). The paths are not 
always rays. We express the probable paths involving the 
diffusion, as stochastic paths in the vicinity of the 
reference ray path, by use of a stochastic approach, while 
the reference ray path is conventionally determined as a 
ray path in the background structure. 

The stochastic paths are spatially diffused (or 
perturbed) around the reference ray path. We assume that 
the wave type of the stochastic path is identical with that 
of the reference ray. The traveltime of the stochastic path, 
which is calculated along the path, is the same as that of 
the reference ray or shorter. For example, the stochastic 
paths for the reference ray of a first arrival P-wave are 
also the paths of the P-wave, and they arrive at an 
observation station at the same times as the P-wave ray 
or earlier. If the structure does not include random 
heterogeneities, the stochastic paths are identical with the 
reference ray path because there is no diffusion. We refer 
to the bundle of the stochastic paths for the reference ray 
path as a stochastic tube (Table 1), which is obtained by 
deriving and solving a stochastic differential equation in 
the following section. 

 
2.1 The stochastic tube model 

We suppose d stochastic paths in the neighborhood 
of a reference ray path, allowing their loci to overlap, 
where d is the dimension of the stochastic process and 
the total number of samples in the present problem. We 
refer to a bundle of d stochastic paths as a d-dimensional 
stochastic tube for the reference ray. The method of 
obtaining the stochastic tube is called stochastic tube 
tracing. In the neighborhood of the reference ray path, 
the stochastic tube is represented by use of a stochastic 
differential equation. 

To derive the stochastic differential equation, let us 
consider the cross-section of the stochastic tube 
perpendicular to the reference ray path (Fig.1a). A 
position vector along the reference ray path at time t ∈  
[0, T] is given by 

 

∫=
t

ndttvx
0

')'(      (1) 

 
where n is the tangent vector along the reference ray path, 
v(t') substituted for v(x(t')) is the seismic velocity at x(t') 
and T is the traveltime at the receiver station (Fig.1b). 

 

Table 1 Construction of random heterogeneous medium and stochastic path (tube) 

[random heterogeneous medium] = [background] + [random perturbations] 
[stochastic path (tube)) = [reference ray path] + [diffusion] 

i
stcX  = x + iX  
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We also suppose the source is at the origin of the vector, 
x(0) = 0. The cross-section of the stochastic tube, with 
respect to x(t) in N-dimensional real space, indicates 
spatial differences between the reference ray path and the 
stochastic paths, and is supposed to be expressed as a 
d-dimensional stochastic process 

 
X(t) = {X i(t); 1 ≤ i ≤ d} ∈  R d×N,   (2) 

 
where N is either 2 or 3, the i-th component X i(t) is an 
N-dimensional vector measured from x(t) and 

 
x(0) = x(T) = 0     (3) 

 
because the source point of the reference ray path and 
stochastic paths is common and the receiver also is 
common (Fig.1a). X i(t) = 0 means that the i-th stochastic 
path intersects with the reference ray path at time t of the 
reference ray. Then the stochastic tube Xstc(t) for time t of 
the reference ray is 

 
X i

stc(t) = x(t) + X i(t)    (4) 

 
for 1 ≤ i ≤ d (Table 1), where 

 

X stc(t) = {X i
stc(t) ; 1 ≤ i ≤ d} ∈  R d×N,  (5) 

 
X i

stc(0) = x(0) = 0     (6) 
 
and 
 

X i
stc(T) = x(T).     (7) 

 
2.2 Derivation and solution of the stochastic 

differential equation 
In an arbitrary cross-section perpendicular to the 

reference ray path, we formulate the stochastic 
differential equation for Xstc(t) assuming that the 
stochastic tube is closed on both ends, as is indicated in 
equations (6) and (7) and illustrated in Fig.1(a). Equation 
(7) also means that the stochastic distribution of Xstc(t) is 
given by x(T) when time t becomes T, then this stochastic 
process is called positive recurrent in probability theory. 
The stochastic paths in the heterogeneous medium are 
assumed to be represented by a diffusion process. 
Perturbation of the stochastic path would result in the 
construction of a tubular shape around the reference ray 
path. Therefore, the infinitesimal change of Xi

stc(t), which 
is dX i

stc(t), is supposed to be equivalent to the summation 
of three factors: (i) the infinitesimal change dx(t) of the 
reference ray path, (ii) the convergence of the stochastic 
tube so that every stochastic path finally arrives at the 
receiver station and (iii) diffusion during the time interval 
t → t + dt. 

We can analytically represent these three factors. 
From equation (1), (i) dx(t) is rewritten into 

 
v(t) dt,      (8) 

 
where v(t) is the seismic wave velocity vector along n at 
x(t). The term (ii) of the convergence of X i

stc(t) is written 
as 
 

{ }dttXdttv
tT

i
stc
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where we assume any stochastic path linearly converges 
to the reference ray path as time goes to T. This 
assumption is the simplest model for convergence and 
geometrically reasonable. To give the diffusion term (iii), 
we use Brownian motion because it can properly 
represent the perturbed paths in a medium including 
velocity perturbations. During this infinitesimal change, 

 
Fig. 1 (a) Geometry of a stochastic tube. A seismic 
source and a receiver station are represented as S and 
R, respectively. The reference ray path connects S and 
R. X i

stc(t) is the intersection of the i-th stochastic path 
in a cross-section perpendicular to x(t) in the reference 
ray path for time t. A stochastic tube is constructed by 
the bundle of d stochastic paths. (b) Position vector 
x(t) in the ray path. S is both the source point and the 
origin of the vector. n is the tangent vector along the 
ray path. 
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a diffusion coefficient α in Xstc(t) and d'-dimensional 
Brownian motion B(t) express this diffusion term as  
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where d' is the dimension of the stochastic process, the 
Brownian motion, and the coefficient αi(X i

stc(t)) (= αi) is 
the i-th element in 
 

αi = {αi; 1 ≤ i ≤ d} ∈  R d×d’.  (11) 
 

We also define the d'-dimensional Brownian motion 
 

B(t) = {Bk(t); 1 ≤ k ≤ d’} ∈  R d’×N. (12) 
 
The Brownian motion is assumed to move in any 
direction independent of the next time instant. In the 
stochastic process Bk(t), differences {Bk(tj)−Bk(tj-1)}1 ≤ j ≤ n , 
where 0 = t0 < t1 < ··· < tn = T, are independent of each 
other and depend on a Gaussian distribution. 

Hence, putting equations (8)−(10) together, we 
obtain a stochastic differential equation for X i

stc(t); 
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for 1 ≤ i ≤ d and 0 ≤ t < T, or 

 
dXstc(t) = α dB(t) + b dt    (14) 

 
for 0 ≤ t < T, where 
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is called the drift coefficient. Since α and b satisfy the 
Lipschitz condition for 1 ≤ t < T, equation (13) has a 
unique solution for X i

stc(t) by use of Ito's formula (Ikeda 
and Watanabe, 1989; Funaki, 1997), which corresponds 
to a composed function of the differential formula. The 
uniqueness and the Lipschitz condition are discussed in 
Appendix. Since the equation is similar to that of a 
Brownian bridge (e.g. Karatzas and Shreve, 1991), the 
structure of the solution is also expected to resemble that 
of the Brownian bridge. Consequently, we have the 
unique solution to equation (13), 
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for 0 ≤ t < T. Substituting equations (1), (4) and (6) for 
equation (16), we have 
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for 0 ≤ t < T. 

It is noteworthy that the stochastic integral with the 
Brownian motion differs from a Stieltjes integral and is 
evaluated by Ito's stochastic integral (Ikeda and 
Watanabe, 1989). The stochastic process Xstc(t) satisfies 
the condition that a physical state immediately following 
time t depends only on the current state on t and is not 
affected by any states immediately before t. This is 
known as a Markov process. Therefore, this irreversible 
process generates the stochastic paths only from the 
source to the receiver, and does not guarantee the same 
paths from the receiver to the source, as in conventional 
deterministic ray paths. However, if the exact ray 
satisfies the condition for the stochastic path, the 
stochastic tube includes the element which is reciprocal. 
When t ↑ T, we have an expected value (expectation 
value)  
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thus the stochastic tube converges to the receiver station 
(X i

stc(t) → x(t)) and equation (16) for t ↑ T is consistent 
with equation (7). P(X i(t)), the probability of a stochastic 
path included in X i(t), is estimated by the ratio of the 
number of samples included in X i(t), to the total number 
of samples d of the stochastic process X(t) in the arbitrary 
cross-section. When the medium is homogeneous with 
no diffusion (X = 0), equation (4) implies that the 
stochastic tube is identical with the reference ray path 
itself (Xstc = x), therefore indicating that our stochastic 
approach would become deterministic. 

There is no mathematical connection between the 
stochastic path and ray. Equations (9) and (10) that are 
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applicable to any possible wave path, cannot be 
expressed in Hamiltonian perturbation in the ray 
perturbation theory (Farra and Madariaga, 1987). 

 
3. Numerical examples of stochastic tubes 

 
By use of stochastic tube tracing, we show some 

numerical examples that obtain seismic wave paths 
connecting a source point and a receiver station through 
a three-dimensional heterogeneous medium (N = 3). The 
medium consists of a background structure and its 
perturbation, as indicated in Table 1. The background 
structure of the medium has a seismic velocity linearly 
increasing with depth. The perturbation on this 
background structure includes anomalies with a 
correlation distance a and a velocity perturbation of ε, 
which indicate their size and corresponding amplitude, 
respectively. We suppose ε is less than 0.1, because the 
actual perturbation of seismic wave velocities has been at 
most about 10% irrespective of any scale length in the 
Earth (Wu and Aki, 1988). The autocorrelation function 
(ACF) characterizes the isotropic perturbation with a and 
ε. We adopt an exponential ACF, R(x), with a power 
spectral density function given by 
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where F denotes a Fourier transformation and m is the 
wavenumber for the model space x (Frankel and Clayton, 
1986; Sato and Fehler, 1998). R(x) is finally given by an 
inverse Fourier transformation for F(R(x)), which is 
equation (19) multiplied by an initial white noise 
exp(iθ(m)), where θ(m) takes random values in the range 
of 0 to 2π. 

The random heterogeneity determines how the 
stochastic tube diffuses, and the diffusion coefficient 
should be analytically governed by the random 
heterogeneity. However, the condition for the stochastic 
tube that the traveltime should be equal to or no longer 
than that of the reference ray makes the analytical 
determination difficult. The coefficient is numerically 
obtained through our calculations. In this 
three-dimensional random heterogeneous medium, we 
attempt d-dimensional stochastic tube tracing for a first 
arrival P-wave. The total number of samples in the 
stochastic process is d = 1,000, which is statistically 
sufficient.  

 
3.1 Simple examples 

Figure 2 shows the stochastic tube projected onto the 
XZ-plane and the XY-plane, where the medium has 
random heterogeneity with a = 0.5 km and ε = 0.01 and 
the background velocity is 0.25Z + 1 km/s. The 
stochastic tube becomes gradually wider with the 
extension of the path length measured from the source, 
while the tube begins to converge to the reference ray as 
it approaches the receiver station. The width for 
downgoing tube near the source seems to be larger than 
that for upgoing tube near the receiver station. This is 
consistent with the property of geometrical spreading. 
The probability in any region indicates the ratio of the 
number of stochastic paths in the region to the total 
number of samples d. High probabilities are expected in 
the neighborhood of the reference ray path. 

Figure 3 shows cross sections of each stochastic tube 
at the turning point of the reference ray path for different 

 
Fig. 2 Stochastic tube for a reference ray of the first 
arrival P-wave projected onto the XZ-plane and the 
XY-plane. X and Y are horizontal coordinates and Z is 
the vertical, which form a left-hand system. The 
probability indicates the ratio of stochastic paths 
through each 0.05 × 0.05 km2 square in the projected 
planes, to the total number of samples (d = 1,000). 
The light region indicates high probability and the 
gray low probability. S and R are the source point (5, 
0, 5) and receiver station (45, 0, 0), respectively. The 
background velocity is 0.25Z + 1 km/s and its 
perturbation is characterized by the exponential ACF 
with a = 0.5 km and ε = 0.01. The solid line in the 
stochastic tube is the reference ray path. 
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Fig. 4 Diffusion coefficients of stochastic tubes for 
each media of a and ε indicated in Fig.3. L is the 
travel distance of the reference ray. The diffusion 
along the vertical component (or q-axis) is always 
larger than lateral component (or p-axis). The bars 
show differences of the diffusion between the major 
axis and the minor axis of the elliptical shape in the 
cross-section. 

a (= 0.5, 1.0 and 2.0 km) and ε (= 0.005, 0.01 and 0.02), 
and the corresponding diffusion coefficients are indicated 
in Fig.4. The tubular width becomes large with 
decreasing a and increasing ε. Narrow tubes for small ε 
affirm the guess that, if the medium has no perturbations 
and the seismic wave is not affected by the 
heterogeneities, the diffusion term along the reference 
ray path would be zero and our stochastic method would 
be identical with the deterministic one, as well as the 
analytical form in equation (4) for X i(t) → 0. The 
cross-sections are elliptical shapes having major axes in 
the vertical direction, because the background structure 
contains a vertical velocity increase and its 
three-dimensional isotropic perturbation results in 

stronger diffusion across the vertical component than 
across the horizontal component. The highest probability 
area in Fig.3 is similar to the reference path that is at the 
origin of the illustrated coordinates. In the case of a 
highly diffused tube of a = 0.5 and ε = 0.02, there exist 
some local regions with high probabilities. All 
expectation values, shown by stars in the cross-sections, 
seem to have a slight bias toward the +q- and 
−p-directions from the origin. We use the exponential 
ACF (19) to construct the heterogeneities by changing a 
and ε, while the initial complex white noise exp(iθ(m)) 
for m is identical for the different cases. This identical 
white noise controls a similar tendency towards either 
slow or fast velocities of the spatial heterogeneities, then 
the diffusion patterns tend to be similar. 

The random heterogeneous medium is constructed 
with statistical parameters a and ε and arbitrary white 
noise. We are then able to give infinitely probable 
structures characterized by the ACF. Even though the 
different deterministic structures are chosen by a 
common ACF but different initial white noise, the 
properties of the stochastic tubes show little differences 
in the present cases. 
 
3.2 Triplication of a reference ray 

We consider another case where the background 
structure is not as simple and has sudden but smooth 

 

 
 
Fig. 3 Cross-sections of the stochastic tubes for each 
structure. The background structure, the source point 
and the receiver station are the same as in Fig.2. 
Anomalies are calculated for perturbations of a = 0.5, 
1.0 and 2.0 km and ε = 0.005, 0.01 and 0.02. The 
cross-section planes are perpendicular to the reference 
ray path at the turning point. p- and q-axes include 
transverse and vertical components from the receiver 
point of view, respectively. In these cases, unit vectors 
p/|p| and q/|q| are (0, 1, 0) and (0, 0, -1), respectively. 
The origin is identical with the reference ray path. The 
probability for an arbitrary point is estimated by the 
ratio of the number of stochastic paths included in the 
arbitrary point centered circle of 0.1 km radius, to the 
total number of samples (d = 1,000). Stars show the 
expectation values in each cross-section. The 
grayscale of probability is identical with that in Fig.2. 
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increases of velocity beneath a certain depth (Fig.5). At 
certain epicentral distances three distinct traveltimes exist, 
so there are three ray paths, a triplication. We choose an 
observation station corresponding to the crossing point of 
the branches of traveltime curve, so the first two arrivals 
have the same traveltime followed by the third arrival. 
The three multiple ray paths are indicated in the left 
portion of Fig.5 with solid lines. By perturbing this 
background with an exponential ACF of a = 1.0 km and 
ε = 0.01, we construct a new random heterogeneous 
medium. The total number of samples in the stochastic 
process is d = 3,000. The stochastic tubes for the first 
arrival of the P-waves in this structure are shown in Fig.5. 
Two major stochastic tubes with widths of ~2 km are 
seen at depths of about 10.5 km and 12.5 km around the 
turning points. These calculated major stochastic tubes 
mean the existence of two probable roots. These tubes 
seem not to be completely separated, but connected by a 
low probability region, for example at depths of 
11.5−12.0 km of the cross section around the turning 
point. The upper and the lower major stochastic tubes 
have higher probabilities and are wider than the middle 
bridge connecting them. These two stochastic tubes are 
constructed around the ray paths having the earlier 
traveltime, while the middle bridge is around the late 
arrival ray path. 
 
4. Discussion 

 
We will firstly discuss the variable widths of the 

stochastic tubes depending on the properties of 
heterogeneities, secondly the dimension of stochastic 
process d for calculation and expectation values, and 

thirdly the application of the stochastic tube tracing to 
traveltime tomography. 

As shown in Figs 3 and 4, the stochastic tube 
becomes wider by decreasing the anomaly size a and 
increasing its amplitude ε for the same 
source-observatory set. The stochastic paths are the same 
type as the reference ray, and in the present cases they 
are the paths of the first arrival P-wave. When ε becomes 
large, there is a strong tendency for traveltimes of 
diffused paths to be either much faster or slower, than the 
case of small ε. This means that it is possible that paths 
with faster traveltimes become first arrival paths, even 
with a negligible increase of path length. When a 
becomes small, the medium includes many small 
anomalies and there are many choices for the diffused 
paths to pass through positively perturbed anomalies 
(fast regions) and avoid passing negatively perturbed 
regions. The travel distance of the largely diffused path 
can be reduced by efficient path selection keeping the 
large diffusion, then the traveltime becomes short for the 
stochastic path. In the both cases of small a and large ε, 
the stochastic paths are able to choose highly perturbed 
(diffused) paths and the stochastic tube has a wide 
tubular shape. Witte et al. (1996) stated that the diffracted 
waves have earlier traveltimes, compared to the exact 
rays, as a decreases and ε increases. Then, the wide 
stochastic tube may not only show the possibility of large 
perturbations from the reference ray but also represent 
the paths of diffracted waves. On the other hand, small ε 
means smoother media, producing very narrow 
stochastic tubes. The infinitesimally narrow stochastic 
tube in such media is identical with the reference ray, as 
mentioned before, which is then consistent with the ray 

 
Fig. 5 Stochastic tube for the reference ray in the case of a triplication. The left figure is the tube projected onto 
the XZ-plane, where solid curves are multiple ray paths of the triplication. The middle figure is the magnified 
tube crossing the YZ-plane, which is also illustrated with a vertical broken line in the left figure. Small filled 
circles indicate the cross sections of the multiple reference ray paths. In the right portion, the background 
velocity structure is shown with a solid line, indicating that the velocity suddenly but smoothly increases 
beneath a certain depth. The perturbation is characterized by the exponential ACF with a = 1.0 km and ε = 
0.01. The total number of samples is d = 3,000. The grayscale of probability is identical with that in Fig.2. 
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method designed for smooth media. In the case of very 
large a, for example L/a << 10, the anomalies should be 
considered in the background. 

Numerical examples clearly show the actual 
stochastic tubes in heterogeneous structures 
characterized by an AFC with static parameters, a and ε. 
To obtain the probability of a stochastic tube in detail, 
many samples in the stochastic process are required, 
which may be numerically intensive. We choose d = 
1,000 for simple cases in the present study (Figs 2 and 3), 
but we confirm that cases of more than d = 100 are 
statistically adequate to illustrate the probability for 
simple stochastic tracing and no significant difference is 
found among these cases. Even when multiple paths 
exist in the background structure, the present method 
effectively represents the probability of the stochastic 
tube in the vicinity of each multiple path (Fig.5). The 
second case with the more complicated structure, 
however, preferably requires a higher dimension of the 
stochastic process, such as d >> 100. 

In the case of a triplication, the late arrival ray path is 
clearly separate from the paths of the first arrival, when 
we consider only the background structure. However, as 
indicated in Fig.5, when the background structure is 
perturbed, we can find a low probability existence of the 
first arrival stochastic paths even around the late arrival 
ray path, in addition to the expected high probabilities 
around the first arrival ray paths. The results indicate that 
in a randomly perturbed structure there might exist first 
arrival multiple paths that cannot be predicted in the 
background structure and are shown by the stochastic 
method. Such multiple paths could be often expected 
beneath heterogeneous structure, hence we probably 
should consider stochastic paths in detecting large 
background structures, such as velocity boundaries, 
when the properties of the corresponding anomalies, a 
and ε, are small and large, respectively. 

Calculation of expectation values of the stochastic 
tube provides useful information, and the probable 
corresponding seismic wave path would be uniquely 
decided even in random heterogeneous media. The 
expected regions almost correspond to the reference ray 
paths because the ensemble of heterogeneities in random 
media is statistically zero, indicating that ray paths 
obtained in the background structure are generally valid 
for the expected path detection. When the tube occupies 
a large region or the reference ray involves a triplication 
in the background structure, however, the expectation 

cannot always identify a highly expected path (e.g. Fig.5). 
Hence, the expectation values should be used to pinpoint 
narrow tubes, in which some high probability regions do 
not locally exist. 

The width of the tube indicates the area of influence, 
through which the seismic wave paths, of the same type 
as the reference ray, should be affected in traveltime 
calculation. The area is expressed by the probabilities of 
the stochastic tube and then a stochastic density function 
of the stochastic tube indicates how the area affects the 
traveltimes of the seismic paths. This function provides a 
convenient way to apply stochastic tube tracing to linear 
traveltime tomography where the random heterogeneities 
are already characterized. The observation equation is 
given by 

 
i
jpath

i
j xdsT ∫ Δ=Δ  ,    (20) 

 
where ΔT i

j is a residual between an observed traveltime 
and a traveltime of the j-th source-observatory set for the 
i-th stochastic path x i

j (1 ≤ i ≤ d) and Δs is a slowness 
perturbation. We discretize equation (20) to get 
 

ΔT i
j = G i

jΔs,     (21) 
 
where G indicates the discretization of the corresponding 
Fréchet kernel operator. If we consider only the j-th 
reference ray, the observation equation is 
 

ΔTj = Gj Δs.     (22) 
 
If variation of |ΔT i

j| for i is significantly smaller than |ΔTj| 
and we suppose that ΔT i

j is almost constant for all i, from 
equation (21) we have 
 

∑
=

Δ=Δ
d

i

i
jj sG

d
T

1

1 .     (23) 

 
Equation (23) is an observation equation of the stochastic 
tube for the j-th reference ray. Then for application of the 
stochastic tube for traveltime tomography, the operator 
(1/d)∑G i

j for Gj would be applied to the conventional 
observation equation (22) that uses only the reference ray. 
This application would make traveltime tomography 
possible, even if the structure includes small random 
heterogeneities characterized by an ACF with the 
statistic parameters. In actual cases, if the background 
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velocity structure and the statistic properties of dominant 
heterogeneities are known, then we can calculate the 
kernel of the stochastic tube by using the estimated 
diffusion coefficient in advance (e.g. Fig.4). 

 
5. Conclusions 

 
For high frequency P-wave propagation, we 

proposed a stochastic tube tracing method, which could 
stochastically obtain the seismic wave paths passing 
through a three-dimensional random heterogeneous 
medium. The medium was constructed by a background 
structure and random perturbations. The ray obtained in 
the background structure was treated as a reference ray, 
and then seismic wave paths, of the same type as the 
reference ray, were modified by perturbations (diffusion) 
about the reference ray path in the medium. We 
suggested a stochastic approach to obtain such diffused 
paths as stochastic paths by using Brownian motion. The 
stochastic paths are determined by the traveltimes 
calculated along the paths having equal to or smaller than 
that of the reference ray path. The bundle of such 
stochastic paths was the stochastic tube, which was 
obtained by deriving and solving a stochastic differential 
equation. The stochastic tube represents the probable 
locations of the seismic wave paths of the same type as 
the reference ray in the random heterogeneous medium, 
where the heterogeneities are statistically characterized. 
We showed some numerical examples of the stochastic 
tubes for the first arrival P-wave in random 
heterogeneous media. As expected, high probabilities 
were observed around the reference ray path. The tubular 
width became large with decreasing anomaly size a and 
increasing velocity perturbation ε of the heterogeneities. 
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Appendix 

 
In the stochastic tube formulation, the stochastic 

differential equation (13) gives the unique solution (16), 
because the diffusion coefficient α and the drift 
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coefficient b are assumed to satisfy the Lipschitz 
condition 

 
||α(x,t)−α(y,t)|| + ||b(x,t)−b(y,t)|| ≤ K||x−y||     (A.1) 

 
for 0 ≤ t < T, arbitrary points x and y in the cross-section 
of the reference ray path, and a finite real number K. α 
=α(x,t) and b = b(x,t) are the vector and the time 
signatures. It is physically reasonable that the diffusion 

coefficient always be finite, inducing the first term on the 
left-hand side to also be finite. The second term on the 
left-hand side is simply replaced with ||x−y||/(T−t) from 
equation (15), because the first and the second terms in 
parenthesis on the right-hand side in equation (15) take 
on common values, irrespective of any x and y in a 
cross-section at time t of the reference ray. These two 
terms satisfy equation (A.1), which guarantees the 
uniqueness of the present solution.  

 
 

 

 

確率的手法によるランダム不均質媒質中の地震波伝播経路の推定 

 

 

宮澤理稔 

 

要 旨 

 三次元ランダム不均質構造において二点を結ぶ地震波伝播経路を求める手法を，方程式を導出し解析的に解いて数

値計算例を示すことで提案する。媒質が統計的関数によって特徴付けられるランダム不均質性を有する時，決定論的

に地震波伝播経路を求めることが出来ないため，確率的に基準波線の周囲に確率的チューブを定義する。確率的チュ

ーブは震源と観測点を結び，基準波線と同じ波の伝播経路から成り，伝播経路として可能性のある多重経路を表現す

る。確率的チューブを表現するために，確率微分方程式を導出し解析的に解く。こうして求められた確率的チューブ

は地震波伝播経路の確率密度関数を示す。三次元ランダム不均質媒質中における初動Ｐ波に対する確率的チューブの

例を，確率演算を伴う数値計算により求めて示す。 

 
キーワード: 確率的チューブ，ランダム不均質，波線追跡，走時トモグラフィ，ブラウン運動 
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