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Synopsis 
In general, hydrological models have several (or a lot of) parameters that cannot be 

directly measured, which only are inferred by calibration procedure against a historical 
input-output data record. While the applications of automatic parameter estimation 
techniques have received considerable attention over the last decades, such classical methods 
have received criticism for their lack of rigor in handling with uncertainty in the parameter 
estimates. This work addresses the calibration of the distributed rainfall-runoff model 
KsEdgeFC2D, the quantification of parameter uncertainty and its effect on the prediction of 
streamflow for Kamishiiba catchment (211km2). In this study, to analyze the propagation of 
parameter uncertainty into prediction, we employ the Shuffled Complex Evolution 
Metropolis (SCEM-UA) global optimization algorithm. Moreover, we compare SCEM-UA 
derived optimal parameter values to those estimated using deterministic SCE-UA method 
with three different objective functions to account for the structural stability of KsEdgFC2D 
model and to demonstrate the capability of the SCEM-UA algorithm to efficiently evolve to 
parameter posterior distribution.  

  
Keywords: Automatic parameter estimation, Parameter uncertainty, SCEM-UA 

 
1. Introduction 

 
Rainfall-runoff process in heterogeneous real world 

is commonly simplified and represented by various 
hydrological models (Wagener et al., 2004). These 
models are conversion and simplification of reality, 
thus no matter how spatially sophisticated and accurate 
they may be those models only represent aspects of 
conceptualization or empiricism of modelers (or 
hydrologists). Accordingly, their outputs are as reliable 
as hypothesis, structure of models, and quantity and 
quality of input data, and parameter estimates (Gupta 
et al., 1999; Muletha and Nicklow, 2005). Model 
parameters, in general, are classified into two (Kuczera 
and Franks, 2002). First is physical parameter which is 
physically measurable property of the watershed and 
the other is conceptual parameter that can only be 
inferred by some matching process, often called 
calibration, between the simulated responses and the 

observed ones (Sorooshian and Gupta, 1995). From 
above definition, virtually even so-called 
‘physically-based’ models, be they lumped or 
distributed, would be regarded as being conceptual.  

The conceptual parameter values are adjusted 
between each run of the model, either manually by 
modelers or automatically by some computer-based 
optimization algorithm and the corresponding 
observation until some optimal parameter set has been 
found. Especially, the application of automatic 
parameter optimization algorithms has received 
considerable attention and has improved over the last 
decades (e.g., Sorooshian and Dracup, 1980; Duan et 
al., 1992; Vrugt et al., 2003). Until the early 1990’s, 
the available automated optimization techniques 
practically were not able to find the global optimal 
values in a prescribed objective function because of the 
presence of multiple local optima, parameter 
interaction, and discontinuous and non-convex 
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response surface defined by the selected objective 
function. These insights in the response surface led to 
the development of global optimization algorithm, 
namely Shuffled Complex Evolution (SCE-UA) 
optimization algorithm (Duan et al., 1992; 1993; 1994). 
However, while remarkable progress has been made in 
the development and application of automated 
calibration procedures, such methods have not been 
free from criticism for their insufficiency handling 
with parameter uncertainty (Vrugt et al., 2003; 2005). 

As many hydrologists pointed out in their 
literatures, estimates of hydrologic model parameters 
are generally error-prone because used data (e.g., 
rainfall, streamflow) during calibration contain 
measurement errors and model structural imperfection 
never explicitly represents the system or fits the 
observed data (Schaake, 2003). Manifold studies have 
been conducted to quantify or assess parameter 
uncertainty and its propagation into subsequent 
prediction results. For example, multinormal 
approximations (Kuczera and Mroczkowski, 1998), 
simple uniform random sampling over the feasible 
parameter space (Uhlenbrook et al., 1999), and 
Markov Cahin Monte Carlo (MCMC) methods 
(Kuczera and Parent, 1998; Vrugt et al., 2003) are 
developed to analyze parameter uncertainty. In 
comparison with traditional statistical theory based on 
first-order approximations and multinormal 
distributions, MCMC methods have become 
increasingly popular as one of the general purpose 
approximation methods for complex inference, search 
and optimization problem. Shuffled Complex 
Evolution Metropolis (SCEM-UA) algorithm is an 
effective and efficient evolutionary MCMC sampler 
which has enhanced search capability. This method, 
modification of the SCE-UA algorithm by developed 
by Duan et al., (1992), operates by merging the 
strengths of the Metropolis algorithm, controlled 
random search, competitive evolution, and complex 
shuffling. The stochastic characteristic of Metropolis 
scheme makes it possible to avoid the tendency of the 
SCE-UA algorithm to collapse to the global minimum 
on response surface. This powerful algorithm can 
provide not only optimal parameter set but also its 
underlying posterior distribution within a single 
optimization run (Vrugt et al., 2003). 

In this study, we employ the SCEM-UA method to 
estimate confidence limits for model parameters. 

Especially, the aim of this work is to explore the 
capacity of SCEM-UA to identify the posterior 
parameter distribution for the complex KsEdgeFC2D 
model applied to the Kamishiiba catchment (211㎢), 
and to evaluate the effect of parameter uncertainty on 
hydrograph simulation. Moreover, we compare 
SCEM-UA derived parameter values to those 
estimated using deterministic SCE-UA method with 
three different objective functions, Simple Least 
Square estimation criterion (SLS), Heteroscedastic 
Maximum Likelihood Estimator (HMLE) and 
Modified Index of Agreement (MIA) to account for the 
structural stability of KsEdgFC2D model and to 
demonstrate the capability of the SCEM-UA algorithm 
to efficiently evolve to parameter posterior distribution. 
This paper is organized as follows. In section 2, we 
describe the distributed hydrologic model, 
KsEdgeFC2D. Section 3 presents details on the 
SCEM-UA algorithm used to infer the posterior model 
parameter distributions as compared with SCE-UA. In 
section 4 and 5 the result of case study is illustrated. 
Finally, we summarize methodology and analyzed 
results in section 6. 

 
2. Applied Hydrologic Model 

 
KsEdgeFC2D is a conceptual distributed 

hydrologic model developed by Ichikawa et al. (2001) 
including discharge-stage relationship with 
saturated-unsaturated flow (Tachikawa et al., 2004). 
The model solves the one-dimensional kinematic wave 
equation with the discharge-stage equation using the 
Lax-Wendroff finite difference scheme according to 
the flow direction map (see Figure 1). All 
geomorphologic information is extracted from 250m 
based DEM. 

The model assumes that a permeable soil layer 
covers the hillslope as illustrated in Figure 1(d). The 
soil layer consists of a capillary layer in which 
unsaturated flow occurs and a non-capillary layer 
where saturated flow occurs. According to this 
mechanism, if the depth of water is higher than the soil 
depth, then overland flow occurs. The discharge-stage 
relationship is expressed by equation (2) corresponding 
to water levels (see Figure 1(d)) defined as: 
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Fig. 1 Schematic representation of KsEdgeFC2D (a) 
Modular structure of KsEdgeFC2D (b) Distributed 
grid rainfall data (c) Slope and channel components 
extracted from DEM (d) Model structure for the 
hillslope soil layer and discharge -stage relationship 
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Flow rate of each slope segment are calculated by 

above governing equations combined with the 
continuity equation like equation (1). where, 

c cv k i= ; 

a av k i= ; /c ak k β= ; ni /=α ; i is slope gradient, 
ck  

is saturated hydraulic conductivity of the capillary soil 
layer, 

ak  is hydraulic conductivity of the 
non-capillary soil layer, n is roughness coefficient, 

cd  
is the depth of the capillary soil layer and 

sd  is soil 
depth. Detailed explanations of model structure appear 
in Tachikawa et al., (2004). 
 
3. Methodology 

 
Estimation of the reliability of model output is 

important to hydrologic engineering and water 
resources planning since model output reliability can 
be used to assess model verification and the selection 
of suitable models (Melching et al., 1990). Beven 
(1989) has reviewed the limitations of the current 
generation of distributed, physically-based models of 
watershed hydrology and has suggested that a possible 
way forward requires a realistic estimation of 
prediction uncertainty. Only recently methods for 
realistic assessment of parameter uncertainty have 
began to appear in the literature. These include, as 
stated in the introduction part, the classical use of 

first-order approximations to parameter uncertainty, 
evaluation of likelihood ratios, and parametric 
bootsrapping or MCMC methods. SCEM-UA is one of 
the popular and efficient tools to evaluate parameter 
uncertainty and predictability of hydrological models 
(Feyen et al., 2006).  

In this study, we examine the applicability or 
capability of SCEM-UA to assess hydrologic model 
parameter uncertainty and to search for best-fit 
parameter values through comparing with those 
optimized by deterministic automated global search 
algorithm, SCE-UA. Moreover, the influence of 
objective functions (e.g., SLS, HMLE, MIA) on 
optimal parameter and model performance is 
demonstrated to account for the model structural 
uncertainty (Lee et al., 2007). In the following 
subsections 3.1, 3.2, and 3.3 we describe the SCE-UA 
based on three different objective functions to search 
for global optimal parameter set and the SCEM-UA 
based on MCMC sampler using Metropolis Hasting 
(MH) strategy respectively. 

 
3.1 Shuffled Complex Evolution (SCE-UA)    
Algorithm 

The SCE-UA is used to identify the best fitted 
parameter set, which is a single-objective global 
optimization method designed to handle with high 
-parameter dimensionality encountered in calibration 
of a nonlinear hydrologic simulation models. This 
evolutionary approach method has been performed by 
a number of researchers on a variety of models with 
outstanding positive results and has proved to be an 
efficient, powerful method for the automatic 
optimization. SCE algorithm is basically synthesized 
by following three concepts: (1) combination of a 
simplex procedure with the concepts of controlled 
random search approaches; (2) competitive evolution; 
and (3) complex shuffling. The integration of these 
steps above mentioned makes the SCE method 
effective and flexible.  

 
3.2 Applied Objective Functions for SCE_UA 
Calibration 

The aim of computer-based automatic calibration is 
to find the values of the model parameters that 
minimize or maximize the numerical value of the 
objective functions. In general, the most commonly 
utilized objective functions in hydrological modeling 
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are variations of the Simple Least Squares (SLS) 
function defined as: 

 
2

1
( ( ))

N
obs
t t

t
SLS q q θ

=

= −∑  (3) 

 
where obs

tq is observed stream flow value at time t; 
( )tq θ is model simulated stream flow value at time t 

using parameter set θ ; N is the number of flow values 
available. SLS has a feature that large discharge is 
emphasized due to squared errors while low flows are 
neglected, thus the parameter set fitting around peak 
discharge value is likely to obtain. 

A newly proposed measure is the Modified Index 
of Agreement (MIA) to reduce the influence of the 
squared term during high flows as putting a weight on 
flow values. This objective function is calculated as: 
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where mean
tq is mean value of observed time series.  

Sorooshian and Dracup (1980) proposed a different 
objective function to consider entire behavior of 
hydrograph, the Heteroscedastic Maximum Likelihood 
Estimator (HMLE), which enables to estimate the most 
likely weights through the use of the maximum 
estimation theory. This new measure can eliminate 
some of the subjectivity involved in the selection of 
transformation and / or a weighting scheme by 
handling heteroscedastic error, so that it yields a more 
balanced performance over the entire hydrograph. It is 
calculated as: 
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where ( )obs

t t tq qε θ= − is the model residual at 
time t; tw is the weight assigned to time t, computed 
as 2( 1)

t tw f λ−= ; true
t tf q=  is the expected true flow at 

time t; λ is the transformation parameter which 
stabilizes the variance. 

 
3.3 Shuffled Complex Evolution Metropolis 
(SCEM-UA) Algorithm 

The Markov Chain Monte Carlo sampler, entitled 
in Shuffled Complex Evolution Metropolis algorithm 
is well suited for the practical assessment of parameter 
uncertainty in hydrological models. This sampler 
incorporate effective characteristics of SCE-UA such 
as controlled random search, competitive evolution, 
and complex shuffling with the strengths of the 
Metropolis-Hasting algorithm to evolve a population 
of sampled points to an estimation of the stationary 
posterior distribution of the parameters. Two big 
revisions prevent the convergence to a small attraction 
region, instead, and facilitate convergence to a 
stationary posterior target distribution of parameters. 
The first modification is replacement of the downhill 
simplex method by a Metropolis annealing 
covariance-based offspring approach, thereby avoiding 
a deterministic drift toward a single mode. Second, the 
SCEM-UA does not divide the complex into 
subcomplexes during the generation of the offspring 
and uses a different replacement way, to terminate 
occupations having lower posterior density on the 
parameter space. General steps for SCEM-UA 
implementation are outlined below. 
 
3.3.1 SCEM-UA process 
1. Initialize the process including the selection of the 

population size s and the number of complexes q. 
2. Generate s samples { }1 2, , , sθ θ θL from the 

predefined prior distribution and compute the 
posterior density ( ) ( ) ( ){ }1 2, , , sp y p y p yθ θ θL  
of each point, where y = known observed data. 

3. Sort the points in order of decreasing posterior 
density and store them in array [1: ,1: 1]D s n + , 
where n is the number of parameters. 

4. Initialize the starting points of the parallel 
sequences 1 2, , , qS S SL , such that kS is 

[ ,1: 1]D k n + , where 1,2, ,k q= L . 
5. Partition the s points of D into q 

complexes 1 2, , , qC C CL , each containing m points. 
6. Evolve each sequence. Evolve each of the parallel 

sequences according to the Sequence Evolution 
Metropolis (SEM) algorithm described in 3.3.2. 
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7. Unpack all complexes C back into D and rank the 
points in order of decreasing posterior density. 

8. Check the convergence criteria, Gelman and Rubin 
(GR) statistic. If GR are satisfied, stop; otherwise, 
return to step 5. 

 
3.3.2 SEM algorithm, Key component of the 
SCEM-UA 

This algorithm produces new candidate points in 
each of the parallel sequences, kS  by generating draws 
from an adaptive proposal distribution by using the 
information induced in the m samples of kC . 
1. Compute the mean kμ and covariance structure 

kΣ  of the parameters of kC . Sort the m point in 
complex kC in order of decreasing posterior 
density. 

2. Compute kα , the ratio of the mean posterior 
density of the m points in kC to the mean posterior 
density of the last m generated points in kS . 

3. If kα is smaller than a predefined likelihood ratio, T, 
generate a candidate point, ( 1)tθ + , by using a 
multinormal distribution centered on the last draw, 

( )tθ , of the sequence kS , and covariance structure 
2 k
nc Σ , where, nc is a jumprate. Otherwise, go to 

step 4. 
4. Generate offspring ( 1)tθ + , by using multinormal 

distribution with mean kμ and covariance structure 
2 k
nc Σ . 

5. Compute the posterior density, ( )( 1)tp yθ + , of ( 1)tθ + . 
If ( 1)tθ + is outside the feasible space, 
set ( )( 1)tp yθ + to zero.  

6. Compute the ratio ( ) ( )( 1) ( )/t tr p y p yθ θ+= and 
randomly sample a uniform label Z over interval [0, 
1].  

7. If Z is smaller than or equal to r, accept the new 
candidate point. Otherwise, reject the candidate 
point and then remain at the current position in the 
sequence, it means ( 1) ( )t tθ θ+ = . 

8. Add the point ( 1)tθ + to the sequence kS . 
9. If the candidate point is proper, replace the best 

member of kC  with ( 1)tθ + , and go to 10; otherwise 
replace the worst member of kC  with ( 1)tθ + . 

10. Compute kAR , the ratio of the posterior density of 
the best to the posterior density of the worst 
member of kC . 

11. Repeat the steps 1-10 until predefined number of 

iteration before complexes are shuffled. 
A detailed description and explanation of the 

SCEM-UA method appears in Vrugt et al. (2003). 
 

4. Case Study 
 
The study site is the Kamishiiba catchment, 

upstream area of Kamishiiba dam, which lies within 
Kyushu region in Japan and covers an area of 211km2. 
The topography of this area is hilly with the elevation 
varying from 400m to 1700m. Land use type is forest, 
thereby enabling to regard the drainage as a typical 
Japanese mountainous area. In the model, the 
catchment is based on 250 by 250m grid blocks. 
Observed discharge data converted from water level of 
dam inflow having 10min temporal resolution are 
available for Kamishiiba dam gauging station (Kyushu 
Electric Power Co., Inc). Distributed rainfall (1km by 
1km, see figure 1(b)) is gauged on Eshiroyama radar 
station. Table 1 shows historical short-term events for 
this study. 
  

Table 1 Historical storm events 
objective of 

Event 
Date of 

occurrence 

Rainfall 
duration 

(hr) 

Peak 
discharge 

(m3/s) 

Calibration 

Validation 

1999 / 09 / 22 

1997 / 09 / 15 

96 

84 

590 

1203 

 
Although recent hydrologic models are based on 

physics to a certain extent, some processes are only 
represented in a lumped conceptual way (Feyen et al., 
2006). Consequently, even some parameters of 
physically based model lack physical basis and cannot 
be directly observed from field surveying. In the 
KsEdgeFC2D, there remain five parameters that need 
to be estimated by calibration procedure against 
observed streamflow data. Parameters to be optimized 
and a range of prior distribution are illustrated in Table 
2. 

The SCEM-UA algorithm contains two algorithmic 
parameters as well as the SCE-UA method that need to 
be specified manually by the user: 1) the number of 
complexes and sequences, q; 2) the population size, s, 
which also determine the number of points within each 
complex. Vrugt et al. (2003) recommended the use of 
larger population sizes and larger number of parallel 
sequences to be able to precisely capture the complex 
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shape of the covariance structure. Moreover, the SEM, 
sub-process of SCEM-UA algorithm also has three 
algorithmic parameters to be chosen carefully: 1) the 
number of evolution steps defined as L=m/10; 2) 
predefined likelihood ratio T; 3) predefined jumprate, 

2.4 /nc n= . Essential algorithmic parameters for 
running SCEM-UA are tabulated in Table 3. 

 
Table 2 Calibration parameters of the KsEdgeFC2D 
model with upper and lower bounds of the predefined 
parameter space 

Parameters optimized 
(KsEdgeFC2D) 

Lower 
bound 

Upper 
bound 

n 

ak  

sd (m) 

cd (m) 

/ ( )a ck k betaβ =  

0.1 

0.01 

0 

0.0 

0 

0.5 

0.05 

1.0 

0.6 

20 

 
Table 3 Algorithmic parameter in SCEM-UA method 
Parameter Description 

q 
 
s 
 

L 
 

T 
 

nc  

 

the number of complexes 
q = 10 
the population size 
s = 200 
the number of evolution steps 

/10 ( / ) /10 (200 /10) /10 2L m s q= = = =  

likelihood ratio 
T=106 
jump rate 

2.4 / 2.4 / 5 1.07nc n= = ≈  

 
5. Results 

 
This case study illustrates the efficiency and 

effectiveness of the Shuffled Complex Evolution 
Metropolis algorithm for realistic assessment of 
prediction uncertainty on hydrologic responses 
provided by the complex hydrological modeling like 
distributed modeling. In addition to analysis of 
parameter uncertainty, we compare the optimal 
parameter values estimated using SCEM-UA with the 
ones derived using the original SCE-UA global 
optimization algorithm with different objective 

functions to identify the structural inadequacy of used 
hydrologic model.  

The SCEM-UA algorithm was implemented with a 
population size s=200 and q=10 complexes, 20 points 
in each complex. An important issue in MCMC 
sampling is convergence of the sampler to the 
stationary posterior distribution. Practically, Scale 
Reduction score ( SR ) developed by Gelman and 
Rubin (1992) has been used to be a criterion of 
convergence. If the SR  is less than 1.2, the Markov 
chain is considered to be converged into the target 
posterior distribution; otherwise, the evaluation steps 
are repeated until obtaining a suitable value. Figure 2 
illustrates the calculated SR  against the number of 
MCMC iterations. All parameters become stable after 
approximately 5,000 iterations (i.e., SR <1.2). 

 
Fig. 2 Evaluation of the Gelman and Rubin Scale 
Reduction score for KsEdgeFC2D parameters 

  
Figure 3 presents the marginal posterior probability 

distributions for the KsEdgeFC2D parameters obtained 
using 5,000 sample parameter sets generated after 
convergence of the SCEM-UA algorithm. The 
moments of the posterior parameter distributions and 
the most likely parameter combination are presented in 
Table 4. Here, the first 5,000 simulations of each 
parallel sequence were discarded (i.e., SR >1.2). The 
limit of the X-axis in Figure 3 corresponds to the range 
specified for the estimated parameter uncertainty 
through the stochastic optimization procedure. The 
histograms for the 

ak , 
sd  and β approximate a normal 

distribution centered around the optimal parameter 
values and then the posterior mean value is close to the 
optimal parameter value while other histograms such 
as n and 

cd  are skewed to the upper value of prior 

－ 50 －



range. The encompassed points around the maximum 
value of the prior parameter range presented in Figure 
4 (see the plot for correlation between n andβ ) infers 
that pre-specified prior parameter range for calibration 
is not suitable. Although the initial guess (i.e., prior 
uncertainty range) for model parameters is physically 
reasonable or practically appropriate, unknown huge 
parameter interaction leads to the numerically 
acceptable values, which are too much different from 
hydrologist’s concern. 

Figure 4 describes scatter plots in two dimensions 
of the parameter space of the 5000 parameter sets 
sampled from the posterior distribution after 
convergence to stationary posterior distribution. Due to 
no contribution of the surface roughness coefficient, n 
to subsurface flow simulation, this parameter shows no 
correlation with the other calibration parameters which 
is confirmed by the summarizing correlation 
coefficients presented in Table 4. On the other hand, 
dominant parameters of subsurface flow such as

ak ,
sd , 

β show a positive or negative correlation (see the 
Figure 4 and Table 4). 

Moreover, the optimal parameter set estimated by 
the SCE-UA method is included in Table 4. Gupta et al. 
(1998) introduced a multi objective analysis 
framework to investigate deficiencies in the model 
structure, which are reflected in a structural inability to 
simultaneously reproduce different aspects of the 
system response with a single set of parameters. 
Different parameter combinations are required to fit 
different response modes such as low and high flow 
(Bastidas, 1998). However, in KsEdgeFC2D model 
case, we did not detect a big difference of hydrological 
responses or a distinguished improvement for different 
modes of hydrographs according to objective functions. 
As shown in Table 4, optimal parameter values of not 
only the SCEM-UA but also the SCE-UA algorithm 
are approximately similar regardless of three objective 
functions. It means that the KsEdgeFC2D model has 
stable and appropriate structure to simulate 
rainfall-runoff processes. Also, this result indicates that 
the Pareto solutions estimated by Multi objective 
optimization algorithm for KsEdgeFC2D model might 
have a very small and narrow range. Hydrographs 
reproduced by two algorithms using each optimal 
parameter set are presented in Figure 5. Because the 
residuals between the observed streamflow and the 

simulated ones are assumed to be mutually 
independent, Gaussian distributed, with constant 
variance, all best-fit parameters estimated by 
SCEM-UA are much closer to the calibrated 
parameters using SLS objective function than others 
from HMLE, MIA (See Figure 3). 

Finally, probabilistic predictions of the hydrograph 
were obtained from the ensemble simulation of the 
KsEdgeFC2D model for 5000 parameter combinations 
sampled from the posterior parameter distribution. 
Figures 6 and 7 illustrate how the results of the 
SCEM-UA algorithm can be translated into estimates 
of hydrograph prediction uncertainty. In these figures, 
the black line indicates the observed streamflow data, 
the blue line, the simulated hydrograph using the most 
likely parameter set having the highest posterior 
probability and the grey shaded region, 90% 
hydrograph prediction uncertainty associated with the 
posterior distribution of the parameter estimates. Here, 
parameter uncertainty boundary estimated by the 
posterior distribution is narrow and failed to bracket 
the observations for the most calibration period; 
particularly, the recession part of simulated hydrograph 
is not matched to the observed one. This result may 
come from the imperfect model structure and/or input 
data. Figure 7 shows that the parameter sets evaluated 
from calibration event reproduce the observed 
discharges reasonably well during validation period. 

 
6. Summary 
 

Identifiability process including a selection of 
suitable model and an estimation of proper parameter 
values is difficult due to a range of uncertainties 
involved in a modeling process that are also 
unavoidably propagated into the model output. Even 
with the robust global automatic optimization 
algorithms, classical parameter estimation approaches 
are not able to treat parameter uncertainty and its 
influence on hydrograph simulation. However, the 
SCEM-UA, an automatic Bayesian parameter 
inference algorithm based on Markov Chain Monte 
Carlo methods, has been proven to be very efficient for 
estimation of target posterior parameter distribution. In 
this study, we demonstrated the capability of the SCE 
M-UA algorithm to calibrate the KsEdgeFC2D model 
for the Kamishiiba catchment. Summarized results 
from this study are as follows. 
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Fig. 3 Marginal posterior probability distribution of the KsEdgeFC2D model parameters 
 

Table 4 Shuffled Complex Evolution Metropolis Posterior Mean (Mean), Standard Deviation (STDV) and 
Correlation Coefficients between the generated samples for the KsEdgeFC2D parameters 

Correlation coefficients Optimal parameter values 
Parameter Mean STDV 

n ak  
sd  

cd β  SCEM SCE_SLS SCE_HMLE SCE_MIA

n 0.497 0.052 1 -0.033 -0.13 0.05 -0.06 0.499 0.5 0.5 0.5 

ak  0.037 0.004 - 1 -0.61 0.09 -0.69 0.037 0.038 0.03 0.047 

sd  0.684 0.045 - - 1 0.19 0.87 0.691 0.688 0.682 0.683 

cd  0.589 0.050 - - - 1 0.14 0.599 0.6 0.6 0.6 
β  6.12 1.058 - - -  1 6.082 6.046 5.882 6.642 
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Fig. 4 Scatter plots in two dimensional parameter space of 5000 sampled parameter sets showing the correlation of 
different combinations of parameters (Correlation Coefficients for all combinations are illustrated in Table 4) 

 
 

 
 

Fig. 5 Simulated Hydrographs using two (SCEM-UA, SCE-UA with 3 different objective functions) algorithms 
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Fig. 6 Hydrograph prediction uncertainty associated with the most probable set derived using the SCEM-UA 

algorithm for the calibration period (9/22/1999). 
 
 

 

 

Fig. 7 Hydrograph prediction uncertainty associated with the most probable set of calibration event derived using 
the SCEM-UA algorithm for the validation period (9/15/1997). 
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1) The SCEM-UA algorithm was able to successfully 
explore the feasible parameter space and to converge 
into the target posterior parameter distributions after 
approximate 5000 iterations. 
2) When comparing with the optimal parameter set 
calibrated by the original SCE-UA algorithm, the most 
likely parameters having the highest frequency were 
very similar as those values. 
3) The subjectively selected three different objective 
functions provided approximately constant parameter 
sets and the simulated hydrographs based on those 
optimal parameter sets are quite similar. 
4) Posterior density such as 

ak , 
sd  and β followed to 

a normal distribution while other evaluated parameter 
were excessively skewed to the upper value of prior 
parameter range. 
5) Hydrographs predictions based on the posterior 
parameter distributions demonstrated that 
KsEdgeFC2D model was able to reproduce the 
observed discharges with reasonable accuracy for the 
Kamishiiba catchment. 
6) The parameter uncertainty bounds were narrow and 
did not cover all observations. It means that 
improvement in model structure or input data may 
result in more accurate predictions. 

The analysis of reasons why equifinality happen in 
hydrologic modeling, including the comparison of 
posterior parameter distributions in different 
hydrologic models and its translation to hydrograph 
simulation, is on going. 
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要 旨 

一般的に水文モデルには直接計測することのできないモデルパラメータが含まれ，それらの値は

過去の水文データに適合するように決定される。これまで数十年に渡って，モデルパラメータの自

動推定に関する研究が多数なされてきたが，それらの手法はパラメータ推定に伴う不確かを考慮で

きないという欠点を有する。本研究では，分布型降雨流出モデルKsedgeFC2Dのモデルパラメータ推

定について，パラメータ推定の不確かさとその河川流量予測への影響を，上椎葉流域(211㎢)を対

象に分析する。パラメータの不確かさが予測値にどのように伝達するかを分析するために，

Shuffled Complex Evolution Metropolis アルゴリズム(SCEM-UA)を採用した。SCEM-UAを用いるこ

とにより，効率的にモデルパラメータの事後分布が得られることがわかった。また，SCEM-UAによ

って求められたパラメータの値と3つの異なる目的関数を設定したSCE-UA法によって得た値とを比

較し，SCEM-UAの適用性を検討した。 

 

キーワード: 自動パラメータ推定，パラメータの不確かさ, SCEM-UA 
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