
1. Introduction 

It has long been the goal of flood forecasting to 

provide timely and accurate estimates of future 

discharge conditions at specific watershed locations.  

In order to achieve a shift away from the traditional 

flood prediction framework which focuses primarily 

on using point rainfall observations and lumped 

parameter or statistical models to make 

deterministic best-guess predictions of runoff rates 

for only a handful of locations within a river basin, 

a distributed rainfall-runoff model is chosen to 

simulate rainfall-runoff dynamics. Distributed 

rainfall-runoff models have been used in recent 

years for a range of different water quantity and 

quality simulations, though little attention has been 

given to the task of short-term flood forecasting. 

The distributed nature of such models provides the 

potential for simulations of superior accuracy to 

purely data-driven or lumped parameter forecasts, 

and allows flood forecasts to be made at all 

locations within a watershed. 

Information about the uncertainty in forecasts, 

otherwise referred to as predictive uncertainty, can 

be beneficial in a number of ways, especially when 

this uncertainty is described in the form of a 

probabilistic forecast, which gives the probability 

distribution of the variable being forecasted. 

Risk-based decision-making becomes possible 

when probabilistic forecasts rather than 

deterministic one are provided, with the potential 

for social and economic benefits resulting from the 

operation of floodgates and pumps, and other 

mitigation measures, with a view to risk 

minimization. Risk-based flood warning is also 

made possible through probabilistic flood stage 

forecasting, where the probability of exceedance of 

design flood levels can be provided. This has the 

benefit of reminding the user that a given forecast is 

not certain, and alerts the user to the range of flood 

stage heights that could potentially be experienced. 

This would help to remove the confusion during 

flood events that would otherwise likely occur if a 

flood stage prediction were exceeded in a major 

flood event, leading to damage or loss of life as a 

result of misguided faith in what was a ‘best’ but by 

 

Risk-based Flood Evacuation Decision using a Distributed Rainfall-Runoff Model 

Paul James SMITH*, Toshiharu KOJIRI and Katsuyoshi SEKII* 

* Graduate School of Engineering, Kyoto University 

Synopsis 

A probabilistic approach to evacuation decision-making is preferred over the 

traditional approaches based on ‘best guess’ flood predictions as decision can be made based 

on an understanding of the risk involved and the potential outcomes of each decision. As an 

inundation risk level is assigned in real-time to each area within the target watershed, the 

optimal evacuation path can be rapidly identified from a number of alternatives by selecting 

that route which avoids at high risk. Application of the proposed framework with distributed 

runoff model is discussed considering the Nagara River watershed. 

Keywords: probabilistic flood forecast, flood risk, evacuation decision-making, distributed 

runoff 

 

 

 

京都大学防災研究所年報 第 49 号 B 平成 18 年 4 月      

Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 49 B, 2006      

 

 



no means perfect estimate of future conditions. 

2.  Modeling uncertainty in flood forecasts 

Uncertainty in watershed runoff predictions 

results as a consequence of an inability to perfectly 

predict future rainfall conditions, and the 

inadequacy of the mathematical model used to 

approximate a highly complex physical system. The 

uncertainty related to estimates of future rainfall 

conditions are referred to here as precipitation 

uncertainty, and the uncertainty related to the model 

structure, estimated model parameters, and data 

observations, is referred to as hydrologic 

uncertainty. 

Precipitation uncertainty is generally regarded 

as the most influential cause of uncertainty in a 

flood forecast (Moore, 2002). Ensemble or Monte 

Carlo simulation-based forecasts of future 

hydrological conditions may be used to estimate the 

uncertainty in a flood stage forecast due to 

uncertainty in the rainfall forecast input. 

Ensemble forecasts, however, cannot alone 

produce a complete probabilistic forecast, as they 

are only capable of estimating an output distribution 

of model flood stage, incorporating uncertainty in 

the precipitation input, while ignoring the 

hydrologic uncertainty arising from all other 

sources of uncertainty (Krzysztofowicz, 2001). 

Additionally, an ensemble forecast often does not 

take into account the precipitation measurement 

error, assuming that the precipitation forecast is 

made based on perfectly observed climatic 

conditions. 

One attempt at incorporating all known 

uncertainties in a short-term flood stage forecast 

involved a Bayesian forecasting system, which 

determines the probability distribution of a model 

flood stage, under the hypothesis that there is no 

hydrologic uncertainty, quantifies hydrologic 

uncertainty under the hypothesis that there is no 

uncertainty in the precipitation input 

(Krzysztofowicz and Herr, 2001), and integrates 

these uncertainties to produce a probabilistic flood 

stage forecast. 

Attempts to date to produce probabilistic 

forecasts of flood stage have considered rainfall as 

an averaged or point process using a coarse 

temporal resolution of the order of one hour, and 

have used lumped physical models or black box 

models to model the rainfall-runoff process. 

Examples include the precipitation uncertainty 

processor developed by Kelly and Krzysztofowicz 

(2000) for the aforementioned Bayesian forecasting 

system, which used a time series of 6-hour 

watershed average precipitation amounts as input 

for a lumped hydrologic model, and the real-time 

flood forecasting system of Lardet and Obled 

(1994), which uses stochastically generated hourly 

time series of rainfall as a lumped input to a 

rainfall-runoff model. A framework for probabilistic 

forecasting of discharge conditions throughout a 

watershed, considering rainfall at a fine spatial and 

temporal resolution, and using a distributed 

physically-based rainfall-runoff model, is presented 

here. 

The probabilistic short-term forecast of 

watershed flood stage conditions presented in this 

research is based on a rainfall translation model and 

a deterministic rainfall-runoff model. Consideration 

is given to the effects of uncertainty in the rainfall 

forecast, as well as observational and modeling 

uncertainties. These hydrologic and precipitation 

uncertainties are handled as follows: 

- A Monte Carlo simulation of rainfall conditions is 

used to produce an ensemble forecast considering 

precipitation uncertainty. 

- Two independent error correction approaches are 

proposed to reduce the influence of observation and 

model errors, and to provide an estimate of the 

uncertainty in the forecast due to hydrologic 

uncertainty. 

A recursive adaptive updating technique which 

updates the state of the target watershed in real-time 

based on runoff observations. An AI 

technology-based error prediction strategy that 

works to reduce the rainfall-runoff model error at 

locations where runoff observations are available in 

real-time, and uses these corrected model rates to 

predict the runoff at surrounding locations in the 

watershed. 

2.1 Probabilistic flood forecast formulation 

An effective means by which to 

unambiguously convey the degree of certitude in a 

forecast is a predictive probability distribution 



function involving a numerical measure of the 

degree of certitude regarding the occurrence of an 

event. Charts of the probability density function 

(pdf), or the equivalent cumulative distribution 

function (cdf) describing the probability 

)( qQP of flood discharge Q being less than or 

equal to a designated discharge level q, are 

proposed as an appropriate means of describing a 

flood forecast for a given location within a 

watershed for each required forecast lead time. 

Additionally, a convenient method of displaying 

results of a distributed flood forecast, so as to 

provide information at a glance regarding future 

distributed watershed conditions, is to provide a 

color-coded plot of probability of exceedance in 

terms of percentage of design flood level for each 

location across a watershed. 

If an appropriate distribution can be fitted to 

the ensemble forecast results, a single aggregated 

forecast in pdf or cdf form can be provided for each 

watershed point. This is achieved through 

combining the distributions resulting from 

consideration of precipitation uncertainty and 

hydrologic uncertainty 

(1) Precipitation uncertainty 

A translation vector model for analysis of 

rainfall pattern movement is extended to include a 

time series analysis of observed pattern translation 

to allow for stochastic generation of future rainfall 

patterns based on the statistical properties of rainfall 

pattern translation and growth-decay characteristics. 

These generated future rainfall patterns are 

subsequently input into a distributed rainfall-runoff 

model, resulting in a distributed ensemble forecast 

of watershed flood stage based on the range of 

possible precipitation conditions that could be 

experienced. The goal of the Monte Carlo 

simulation is to use a stochastic rainfall generator 

and hydrologic model to generate numerous 

realistic future rainfall-runoff events such that an 

ensemble forecast of flood stage carrying a 

probabilistic meaning can be given. 

(2) Hydrologic uncertainty 

In addition to improving the accuracy of the 

real-time flood stage forecast, the methods proposed 

for assimilation of observed runoff data can be used 

to provide an estimate of the variance of the 

prediction error due to errors in measurement of 

hydrologic inputs and shortcomings associated with 

the model and its parameterization. 

An estimate of the hydrologic uncertainty can 

be made through using the adaptive updating 

algorithm to recursively estimate the forecast error 

variance. A drawback of this approach is that it is 

limited to locations where real-time discharge 

observation data is available. An estimate of the 

hydrologic uncertainty is also required for other 

non-observation point locations. As no observation 

data is available for these locations, the assumption 

is made that the predictive ability of Hydro-BEAM 

at these locations is at least as good as a naïve 

prediction whereby future discharge rates are 

estimated as being the same as the currently 

observed discharge rate. Error distributions can thus 

be determined based on Hydro-BEAM simulated 

hydrographs using observed rainfall, comparing 

n-hour ahead discharge rates with current rates for 

various locations to determine error distributions for 

the naïve prediction. Under the assumption that the 

error distributions are similar for runoff events of 

similar magnitude, these distributions can then be 

used in real time to estimate the degree of 

uncertainty of a runoff rate prediction for a given 

location and prediction lead-time. In this way a 

prediction of a runoff rate can be converted to a 

cumulative distribution function of the range of 

possible runoff rates that may eventuate under the 

given rainfall time series when considering 

hydrologic uncertainty. 

Error distributions resulting from hydrologic 

uncertainty are assumed to be lognormally 

distributed. This assumption is necessary to allow 

the error to be combined with the distribution 

resulting from the Monte Carlo simulation for 

precipitation uncertainty. In order to satisfy this 

assumption, adaptive updating is performed on the 

logarithm of the discharge, rather than the discharge 

itself. This is achieved using a simple preprocessor 

for converting the discharge to the lognormal scale 

prior to updating together with a postprocessor for 

converting the discharge back to a real number scale 

once updating is completed: 

hhQQ log'log'        (1) 

Here h  is the forecast error due to hydrologic 



uncertainty. 

In order to produce a complete probabilistic 

forecast of future runoff conditions it is necessary to 

combine the effects of both precipitation uncertainty 

and hydrologic uncertainty together in the one pdf 

or cdf distribution. The forecast of future discharge 

can be represented in the logarithmic scale as 

hpQQ '''          (2) 

where Qp is a lognormally distributed variable with 

mean p and variance p
2 representing discharge 

modeled under precipitation uncertainty, and 

pp QQ log'  is a normally distributed variable 

with mean mp and variance sp
2. The logarithm of the 

forecast error due to hydrologic uncertainty, h' , is 

normally distributed with mean mh (assumed equal 

to zero) and variance sh
2.

Equation can be expressed as 

hhhppp rsmrsmQ )0('        (3) 

where subscripts p and h relate to precipitation and 

hydrologic uncertainties respectively, and rp and rh

are independent random normal variables defined 

by:  
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The mean m and variance sp
2 of Q’ can be described 

in terms of mp, sp
2 and sh

2 as follows: 

phhppp mrsrsmEm )(        (5) 
22222 )'()'( hp ssQEQEs        (6) 

Defining Q in terms of a single lognormal 

distribution then becomes a simple matter of 

converting 'Q  from the logarithmic scale to the 

real scale. The mean, variance, skewness and 

kurtosis of Q are: 
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3.  Evacuation decision 

One of the most important features of a 

short-term flood forecast is its utility in helping to 

make decisions during times of flood risk. Such 

decisions include those related to the operation of 

hydraulic structures and the inundation of flood 

plains to reduce flood risk, and the evacuation of 

citizens from locations threatened by flood 

inundation. As an example application for the 

probabilistic flood forecast developed in this 

research the development of a decision support 

system for evacuation decision is investigated. 

The problem of evacuation decision is 

essentially that of choosing an action from a variety 

of alternatives each with different consequences 

which depend on the combination of the choice of 

action made and an uncertain future state of nature. 

Since by definition a probabilistic flood forecast can 

provide either an estimate of the probability with 

which a flood will occur or the probability at which 

different water levels may be experienced, and since 

the losses involved with each action-state 

combination can be estimated, the evacuation 

decision can be modeled as an engineering 

decision-making problem. In this way it is possible 

to use a distributed probabilistic flood forecast to 

provide an optimal decision regarding evacuation of 

residents that is based on the probability of flood 

occurrence at their location. This is considered 

superior to a decision based purely on a 

deterministic prediction of water level with no 

information as to the uncertainty involved in the 

prediction or the range of possible water levels that 

could be experienced. 

A number of approaches for estimating damage 

due to inundation are discussed and 

recommendations are given for using the 

probabilistic flood forecast system in making 

evacuation decisions. The following discussion 

considers flooding which results from overtopping 

of embankments only, though flooding due to 

embankment failure may also be an issue requiring 

attention. 

3.1 Decision model 

The decision regarding whether or not to 

evacuate an area involves making a choice as to a 

course of action based on a limited available 

knowledge. The courses of action open to the 

decision maker in a time of flood risk are 

considered to be the action of issuing an evacuation 

order or not issuing an evacuation order for each 

location within a river basin. The knowledge 

available on which this decision can be made 



includes the probabilistic flood forecast issued for 

each location, the costs associated with flooding, 

evacuation costs, and relevant topographical and 

demographical information for the river basin. 

Ultimately, a course of action is desirable for 

each location within an area at risk that leads to zero 

casualties. Although in the interest of saving lives it 

may be necessary to issue evacuation orders even at 

times of low inundation risk, it is important to 

minimize such disruption to communities when 

possible. The approach suggested for this decision 

model is one that aims to minimize loss of life and 

disruptions to communities through identification of 

the evacuation decision and strategy that has the 

maximum expected value under current conditions. 

(1) Estimating potential costs 

The costs considered in the decision model for 

evacuation can be categorized as losses resulting 

from preventable flood damage and losses resulting 

from evacuation.  Preventable flood damage is 

considered to be losses which could have been 

avoided through appropriate evacuation of citizens 

from an affected area, such as death and injury. 

Potential damage to buildings and property should 

not be considered when making an evacuation 

decision as this damage is the same regardless of 

whether an evacuation is ordered or not. Losses 

resulting from evacuation include costs associated 

with coordinating an evacuation and providing 

emergency services, lost profits due to business 

interruption, and costs associated with the 

inconvenience and lost time associated with 

vacating a residential dwelling. A tradeoff, therefore, 

occurs between the number of hours or amount of 

money saved as a result of no evacuation against the 

potential for loss of life that could result from 

flooding. 

Assigning equivalent cost values in terms of 

yen, dollars or other units to each of the above items 

is difficult and can be rather subjective. There are 

many arguments both for and against assigning a 

monetary value to human life, and in the case where 

a value is assigned the figure can vary greatly 

depending on the approach and background 

assumptions used. 

(2) Estimating inundation probability and 

severity

    The probabilistic flood forecast is capable of 

providing a forecast of when and where river banks 

are likely to be overtopped. In order to utilize this 

information for evacuation decision making, it is 

necessary to be able to determine the risk that 

overtopping presents to residents in regions adjacent 

to rivers. The ability to determine this depends on 

the detail to which urban flooding dynamics are 

understood and modeled in each region. In any 

given watershed, depending on the resources 

available and geographic and demographic 

characteristics, a combination of strategies may be 

employed throughout the watershed to estimate 

flood depths resulting from embankment 

overtopping, such as linking the river network 

model with a detailed urban flood model, making 

estimates based on pre-existing flood hazard maps, 

or using a simple tank model strategy. The use of 

the probabilistic flood forecasting strategy with 

each of these scenarios is discussed below. 

The most detailed approach to modeling flood 

depths resulting from embankment overtopping is 

that of employing an urban flood model. Ideally, 

this would allow for dynamic real-time mapping of 

inundation risk across a watershed and give a visual 

guide as to safe locations to evacuate to and the 

lowest risk routes to take. The kinematic wave 

equation is acceptable for modeling 

one-dimensional flow in a relatively steep channel 

network, though a fully-distributed two-dimensional 

urban flood model is more suitable for accurately 

modeling flood dynamics once floodwaters overtop 

embankments and enter urban regions. There exist a 

wide range of urban flood models and strategies that 

could be suitably adapted for use together with 

Hydro-BEAM (Kojiri et al., 1998) for providing a 

probabilistic forecast of spatially-distributed

inundation levels. 

Once a forecast of inundation levels is made 

available, it then becomes necessary to estimate 

how the potential for loss of life should occur. The 

procedure proposed here assigns a severity index to 

each potential inundation level which varies from 

zero inundation through to a specified inundation 

level which would result in the death of the entire 

unevacuated population of the area being 



considered in Fig.1. The combined use of this 

severity curve with a probabilistic forecast of 

inundation levels in Fig.2 can be considered 

equivalent to a measure of the risk to life posed by 

future flood condition

While the use of an urban flood model is 

attractive as it is capable of detailed flood modeling 

and consideration of facilities such as underground 

malls and subway stations which are at the highest 

risk during flood events, the large amount of time 

and considerable difficulty involved with the 

development and calibration of such models often 

makes their use prohibitive. 

For many regions within a watershed, 

especially highly-populated areas close to major 

rivers, flood hazard maps may be available as a 

viable alternative to the development of a detailed 

urban model. Flood hazard maps depict the 

inundation depths that may result from embankment 

overflow or embankment failure during a severe 

flooding event, based on past flooding experience 

and regional topography. Such maps are quite 

subjective in which they rely heavily on the 

assumptions made regarding the flood event and 

overflow/failure scenario, though in the absence of 

an urban flood model they can be used as a rough 

reference from which to assess the potential risk to 

urban locations posed by flood levels in adjacent 

river channels. 

    When using flood hazard maps, the shape of 

the severity curve must be determined individually 

for each location within the target region based on 

the potential for inundation as suggested by the 

hazard map, and the distance of the location from 

the river being considered. In this case the curve is 

given in terms of the river flood rate in the adjacent 

river, and varies from zero for the maximum flood 

discharge rate in the adjacent river that would lead 

to no flood damage (assumed for demonstration 

purposes here to be approximately equal to 100% of 

the design discharge rate for locations adjacent to a 

river) through to a specified discharge rate which 

would result in the death of the entire unevacuated 

population (see Fig.3). 

In many cases neither an online urban flood 

model nor a flood hazard map may be available for 

assessing the risk associated with potential flood 

conditions. A third and much less resource-intensive 

option that is available to the decision maker is to 

estimate urban flood levels that would result from 

predicted flood conditions through the use of a 

simple tank model representation of the regions 

adjacent to rivers. Elevation data is available at 50m 

intervals within Japan, and a tank model based on 

this data can be used to estimate which regions will 
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experience urban flooding and to what degree, 

based on predicted flood levels within a river 

basin’s channel network and the associated 

embankment overflow rate. In this case a curve 

such as depicted in Fig.4 would be used to describe 

the severity associated with each inundation level. 

3.2 Evacuation decision formulation and timing 

of the evacuation 

The evacuation decision problem can be 

formulated as a multi-stage model. At regular time 

steps throughout the duration of a rainfall event a 

distributed probabilistic forecast of discharge is 

generated for each location of interest within the 

watershed for several time steps into the future. For 

a given location, a decision based on the forecasted 

flood conditions at each future time step is required. 

A choice is offered between two actions, AE: order 

evacuation, or EA : do not order evacuation and 

delay decision one time step. In making a decision 

when faced with a potential flood risk there is a 

trade-off between ordering an evacuation too early 

based on a highly-uncertain forecast which risks 

unnecessarily disturbing the public, and leaving the 

evacuation order until a point in time when it is too 

late to evacuate the majority of the public. 

    In choosing between actions AE and EA  the 

decision method must be able to determine the 

optimal timing of the evacuation based on the 

amount of time it takes to evacuate a population. An 

evacuation progress index R( ) is proposed to 

indicate the fraction of a population that would 

remain unevacuated for evacuation orders given at 

various warning lead times. This index can be 

plotted against lead time for each target location as 

a function decreasing from one to zero as given in 

Fig.5. The shape of the function will depend on the 

characteristics and demographics of the location 

being modeled. 

    As both evacuation success and evacuation 

costs are modeled as being dependent on the period 

of time allocated for the evacuation (lead time), the 

decision model is able to optimize the timing of an 

evacuation should one be necessary. 

This can be achieved through considering the 

decision in terms of a multi-stage decision model in 

Fig.6. Although flood-related costs are modeled as a 

continuous function in this research, for the sake of 

this explanation a decision tree for the multi-stage 

model for the discrete (no flood / flood) evacuation 

problem is assumed. In this example the probability 

of flooding at the given lead time being considered 

is denoted Pf and evacuation cost and flood damage 

are labeled C and D respectively. In using this 

multi-stage model, the expected value of action 

,EA  is calculated as being the expected value of 

the optimal choice at the next time step. Once this is 

calculated it can be compared with the expected 

value of ,EA  and a decision can be made. In 

order to calculate the expected values of the actions 

1,EA  and 1,EA , the probability of flooding 

from the point of view of the next step PF* is 

required. Although this probability can not be 

known at the present time step, the optimal estimate 

for this value can be considered equal to the value 

of Pf from the point of view of the current time step. 

In the case where action EA  is chosen, this 

probability will be updated based on the 

newly-available probabilistic flood forecast made at 

the next time step, which is likely to include less 

uncertainty. 
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(2) Objective function formulation 

A function is developed here to calculate the 

expected value of a given action at a given lead time. 

The function estimates the combined flood damage 

(D) and evacuation costs (C) for the location and 

lead time being considered. Flood damage is 

defined for a location as the product of the number 

of people killed by the flood and the value 

attributed to an average human life, :

popnARqSD ),()(         (8) 

where S is the severity index representing the 

fatality rate associated with a flood of magnitude q,

npop is the number of people in the target location 

prior to the evacuation and R(A, ) is the fraction of 

a population expected to remain unevacuated in the 

target location at a time  after action A is taken, 

such that: 

0.1),(),(),( EE ARRAR       (9) 

Evacuation cost is defined as: 

popnARC ),(1       (10) 

where A is action (AE: evacuate; EA : don’t 

evacuate),  is the average estimated cost of 

evacuating an individual and  is the average value 

associated with one human hour that would be lost 

due to the disruption caused by an evacuation 

(assumed to end after  time steps). 

The expected value (EV) of a given action per 

unit of population can therefore be calculated by 

integrating over the range of forecasted discharge 

rates as 

),(1

),()(),(),(

AR

dqARqSqpAEV
     (11) 

where p is the probability distribution function for 

discharge q at lead-time .

    The optimal decision at any given point in time 

during a rainfall event can thus be made by 

choosing the action that maximizes the expected 

value of the outcome with respect to A and . The 

expected value for both evacuate and don’t evacuate 

options is calculated and compared for every lead 

time up to a limit set by the flood forecast horizon. 

If the expected value is optimal for the evacuate 

option for any of these future time steps, an 

evacuation is ordered. 
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(3) Risk aversion 

The decision model is developed above under 

the assumption that monetary costs are a suitable 

measure of value. Furthermore it should be noted 

that outcomes associated with death due to 

inundation, while likely to occur far less often than 

outcomes associated with evacuation false alarms, 

are extremely costly in comparison, especially 

considering that the costs while measured in 

monetary terms are in reality associated with loss of 

lives. The public are far more likely to forgive a 

series of evacuation false alarms than they are to 

forgive a one-off failure to issue an alarm which 

results in death. For these reasons a risk aversion 

strategy may be preferred by the authority 

responsible for issuing floods. In such cases the 

authority may lean towards making decisions to 

order evacuations even when they are the 

less-than-optimal choice in terms of the expected 

value criterion. 

For the case where the risk aversion can be 

assumed to arise from undesirable consequences 

associated with suffering a large one-off cost, a 

utility function (see Fig.7) can be utilized to convert 

the cost of all possible outcomes ranging from the 

worst O* through to the most desirable O* into their 

equivalent utility values as judged by the subjective 

views of the decision maker. The decision making 

process can then be carried out such that the action 

with the maximum expected value of utility is 

chosen as being the optimal solution from the 

viewpoint of the decision maker. The shape of the 

utility function (von Neumann and Morgenstern 

(1947)) is subjective and will vary between decision 

makers depending on their individual requirements.  

4.  Application in the real catchment 

4.1 Flood risk 

An application of the probabilistic flood 

forecasting system is presented here. The 

probabilistic rainfall forecast results for 11 

September 2000, comprising results from 100 

Monte Carlo simulations of rainfall dynamics 

between 11 September 21:00 and 12 September 

3:00 are used for the precipitation input, and the 

distributed adaptive updating algorithm is used for 

assimilating real-time discharge observations and 

updating the middle reach of the Nagara River and 

surrounding areas. The result of the ensemble 

forecast considering precipitation uncertainty based 

on 100 6-hour simulations is given for the location 

of Chusetsu in Fig.8. It can be seen from the 

ensemble that the generated rainfall input does not 

have a major influence on the hydrograph at 

downstream locations within the Nagara River 

watershed for the first 2 hours of the rainfall-runoff 

simulation. The influence on the hydrographs of 

midstream locations such as Mino and Akutami 

appears approximately an hour earlier. Generated

hydrographs can be converted into cumulative 

distribution functions at each time step, thus 

describing the forecast of future discharge 

conditions at each point within a watershed in 

probabilistic terms. The ensemble data is found to 

fit a lognormal distribution function, and example 

cdfs are given for Chusetsu for 1 through 6-hour 

ahead forecasts (see Fig.9). As is expected, these 

figures suggest increasing uncertainty in the 

forecasts with time, with very little uncertainty due 

to the precipitation forecast present for 1 and 

2-hour-ahead forecasts. Hydrologic uncertainty, 

considering observation errors and modeling errors, 

is not considered in these figures. A framework has 

been proposed for the production of a probabilistic 

forecast of future distributed discharge conditions in 

a watershed. Methods for quantifying the two 

sources of forecast uncertainty that affect a flood 

forecast, being precipitation uncertainty and 

hydrologic uncertainty, have been proposed so as to 

provide a complete probabilistic forecast. The 

system provides a forecast for a lead-time of up to 6 

hour of discharge conditions at 1km intervals along 

each major tributary within the midstream region of 

Value ($)

1.0

0.0

O* = 0O*

Fig. 7 Utility function 
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Fig. 9 Probabilistic forecast of discharge considering precipitation uncertainty,  

at 21:00 11 September 2000, Chusetsu 

the Nagara River watershed. A forecast of discharge 

presented in both a distributed and probabilistic 

manner has a considerable benefit over the 

traditional approach of providing best-guess 

predictions for a small number of locations, as it 

allows the range of potential flood conditions to be 

identified for all populated areas in a watershed, 

which is necessary for effective planning of flood 

prevention and evacuation strategies. An approach 

for using such a forecast for providing optimal 

evacuation decisions is explored. Reduction of 

modeling error associated with hydrologic 
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uncertainty was made possible during the ensemble 

forecast using the adaptive updating algorithm. An 

advantage of using the adaptive updating algorithm 

is that it can also be used to provide an estimate of 

hydrologic uncertainty, however this ability is 

limited to locations where real-time discharge 

observations are available. 

4.2 Demonstration of the evacuation decision 

framework 

In order to demonstrate the value of the 

evacuation decision framework, it is used here for a 

hypothetical flood event occurring in the vicinity of 

the city of Mino. Mino is home to 24,100 residents 

in 7533 households (as at 2005). The valley region 

located in the vicinity of the Mino discharge 

observation station at 35°32’58’’ N and 136°54’32’’ 

E is considered. The Nagara River traverses this 

valley region flowing north to south, with 

residences located along each bank. 

The areas within the region that are in risk of 

flood are identified on a flood hazard map provided 

by Mino City Council. Potential flood levels that 

could be experienced due to bank failure or 

overtopping are given, and these are used as the 

basis for determining a set of severity curves for the 

region as described in Table 1, where the values of 

s0 and s1 are used to denote the points between 

which the curves vary from a severity rating of zero 

through one. A severity level of zero indicates that 

conditions produced by the corresponding discharge 

at the adjacent river location carry no risk of taking 

life, and a severity level of one indicates conditions 

with the potential of taking the lives of all 

unevacuated residents remaining in the region. For 

example, areas given the extreme rating are judged 

to be at maximum risk for any discharge level 

exceeding 100% of the design discharge, and for 

this reason s0 = s1 = 100%. Conversely, it is 

recognized that in areas given the moderate ranking, 

that overtopping of river banks, although promoting 

dangerous conditions, will not cause conditions as 

severe as for locations with the extreme rating, 

where flood levels have the potential of exceeding a 

depth of 2.0m. For this reason s1 is set at 200% for 

moderate areas which has the effect of creating a 

mild sloping severity curve. 

Each area is also rated in terms of estimates of 

the time required to evacuate residents from the area 

at risk of flooding as given in Table 2. The curve 

described by r0 and r1 recognizes that evacuation 

time will vary between residents depending on 

factors such as physical ability, access to 

transportation and preparedness. Furthermore, it is 

recognized that there is likely to be a significant 

time lag between when the evacuation decision is 

made and when the warning reaches each resident 

in the area. 

Table 2 Evacuation curve parameters 

Rating Distance to shelter r1 r0

A 0.0 – 1.0km 1 hr 2 hr 

B 1.0 km – 1 hr 2.5 hr 
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Table 1 Severity curve parameters 

Rating Water depth s0 s1

 Extreme 2.0 – 5.0m 100% 100%

 Very high 1.0 – 2.0m 100% 110% 

 High 0.5 – 1.0m 100% 120%

 Moderate 0.0 - 0.5m 100% 200%
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For the example given here the initial cost 

associated with disrupting and evacuating an 

individual is assumed to be 10,000 yen, the average 

value associated with each human hour lost due to 

the evacuation is assumed to be 1000 yen, and the 

value associated with a human life is set at 

50,000,000 yen. Probabilistic flood forecast data for 

1, 2 and 3-hour ahead forecasts made for Mino at 

hourly steps between midday and 15:00 are given in 

Table 3 for a hypothetical event. Although the 

example given considers only three forecast periods, 

the use of a 6-hour ahead forecast would be used in 

the same manner. Probabilistic flood forecast data 

are provided in pdf and cdf formats as demonstrated, 

and for the purpose of this example the forecasted 

cumulative probabilities of discharge not exceeding 

100%, 105% and 110% of the design discharge at 

Mino are tabulated. The design water level at Mino 

is given at 6.60m, corresponding to a discharge of 

approximately 6750 m3/s. This event demonstrates 

a scenario where forecasts made at 12:00, 13:00 and 

14:00 indicate a low yet significant probability that 

river banks will be overtopped. 

Using the severity curves and evacuation 

curves and equations, an evacuation decision can be 

made for each area within the proximity of the river 

cross-section adjacent to the Mino discharge 

observation station. Based on this information, the 

optimal decisions made for each location in the 

region are as follows; 

12:00: Evacuation ordered for locations with 

severity ratings of high or greater located at a 

distance greater than 1km from a shelter. 

13:00: Evacuation ordered for locations with a 

severity rating of moderate at a distance greater 

than 1km from a shelter, and for all remaining 

locations with severity ratings of very high or 

greater. 

14:00: No further evacuation required, residents 

in locations with a severity rating of high and 

lower at a distance less than 1km from a shelter 

remain unevacuated. 

In the decision made at 12:00 for locations at a 

distance less than 1km from a shelter the action of 

Table 3 Probabilistic flood forecast data 

t = 1 t = 2 t = 3 

t = 0 Pq=P(Q q) 13:00 14:00 15:00

12:00 P100 

P105 

P110 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.995 

1.000 

1.000 

Pq=P(Q q) 14:00 15:00 16:00
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Pq=P(Q q) 16:00 17:00 18:00
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1.000 
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delaying evacuation one hour is taken. As the 

decision model assumes a cost for each hour of 

disturbance due to evacuation, this option to delay 

the evacuation decision one hour is optimal based 

on the multi-stage decision model given in Fig.10 

where the estimated value of flood damage D for 

evacuation is unchanged if the evacuation is 

delayed until 13:00 as complete evacuation can be 

achieved in under 2 hours, but evacuation costs C = 

(  + ) are reduced slightly for the one hour delay 

as the time period is reduced from  = 3 hours to  = 

2 hours. This is the correct decision considering that 

all residents from this area can still be evacuated in 

time based on an evacuation order given at 14:00 if 

the new forecast available at that time deems it 

necessary, and delaying the evacuation decision has 

the added advantage that the decision can be made 

based on new information, which may allow a 

false-alarm to be avoided all together. In the 

example given here the 3-hour ahead forecast made 

at 13:00 indicated a 5% probability that overtopping 

of river banks would occur at 16:00, thus in this 

Fig. 10 Conceptual flood risk maps for real-time evacuation path planning 



case it does eventually become optimal to evacuate 

all locations at distances of greater than 1km from a 

shelter. The decision for areas with severity rating 

high at a distance of greater than 1km from a shelter 

is demonstrated below: 

yen
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    At 13:00 the decision model suggests 

evacuation of residents from all remaining locations 

with severity ratings of very high or greater based 

on a 1 in 1000 chance of experiencing flooding at 

15:00. This represents a very high probability that 

the evacuation will be a false alarm, but considering 

that flooding carries very high risk of death for 

these locations, this is not an unreasonable choice of 

action. In this way, the decision model demonstrates 

the ability to be more conservative in its approach 

toward areas that would suffer greatly due to 

flooding, and less conservative in dealing with areas 

were flooding would not be catastrophic.  

4.3 Evacuation path planning using probabilistic 

information 

Once a decision is made to evacuate a given 

location, it is necessary to give clear instructions as 

to where to evacuate to, and how to safely reach the 

evacuation shelter. Traditionally, residents living in 

areas at high risk of flooding have been educated as 

to the dangers of flooding and have been given 

advice as to where the nearest evacuation shelters 

are located should evacuation become necessary. 

While preparedness of this sort is invaluable for 

reducing confusion during flood evacuations, 

probabilistic modeling of urban flooding as 

discussed in the previous section can further 

improve the effectiveness of the evacuation effort 

through real-time flood hazard mapping and 

preparation of optimal evacuation routes based on 

flood risk. 

Once an evacuation order is issued, safe and 

rapid evacuation becomes the focus of the decision 

making. As discussed in the previous section, 

depending on the urban flood modeling strategy 

used for the given region at risk, probabilistic 

forecasts of flood inundation levels across the 

region can be provided together with an estimate of 

the severity that the range of possible inundation 

levels would have for unevacuated residents. The 

risk to a resident remaining in or moving through a 

given location at a given lead-time is defined here 

as the integral of the product of the PDF of 

inundation and the severity curve:  

dqqSqprisk )(),()(        (19) 

In this way, the risk at lead time  for a given 

location can be described as ranging between zero 

for a location that will be completely safe at this 

lead time through to a value of one for a region that 

will experience extreme inundation. A plot of the 

risk across the region being considered can be made 

and an optimal evacuation path can be chosen such 

that evacuees travel between their current locations 

and a designated evacuation shelter by traversing 

locations with the lowest risk rating. When 

choosing between multiple paths, the location at 

highest risk along each path is identified and the 

path for which this value is lowest is chosen. This is 

demonstrated in the conceptual flood risk map 

given in where the optimal route in terms of lowest 

risk to the evacuee is calculated in real time and 

may not necessarily be the shortest route to the 

evacuation shelter. Depending on the time required 

for evacuation, it may be necessary to consult flood 

risk maps generated for multiple lead times when 

choosing an evacuation path. It is currently 

technologically feasible in Japan and many other 

countries to have mobile phone handsets pinpoint 

an individual’s location using GPS satellites and 

communicate this location to a central emergency 

service. Ideally the probabilistic flood forecasting 

system developed in this research could be used as 



discussed in this chapter as the backbone of a flood 

warning and evacuation support service capable of 

supplying mobile phone handsets with a map of 

current and forecasted inundation levels and 

evacuation directions automatically generated and 

updated in real-time based on an individual’s 

location and specific requirements. 

5. Conclusions 

A decision support system for making 

evacuation decisions using probabilistic distributed 

flood forecasts is proposed and demonstrated. The 

system provides timely evacuation orders 

tailor-made to each area within the watershed based 

on potential inundation levels for the area and the 

distance and corresponding evacuation time to the 

nearest available shelter. The risk to each area is 

considered through estimating the probability with 

which inundation levels will occur for each forecast 

lead time, and the severity associated with each of 

these inundation levels. Three strategies are 

discussed for estimating inundation levels in urban 

areas using probabilistic forecasts of discharge 

within adjacent rivers. 

A benefit of the approach presented here is that 

it provides a framework for choosing an acceptable 

level of risk for each area that may be tolerated 

prior to issuing an evacuation order. Informed 

decisions based on the additional information 

offered by probabilistic forecasts become possible 

by considering not only the probability of flooding, 

but also the potential for loss of life based on the 

geography of the region concerned. 

A framework for probabilistic forecasting of 

short-term distributed runoff conditions within a 

watershed has been proposed. The probabilistic 

forecast has been developed by dividing the various 

uncertainties inherent in a flood forecast into 

precipitation uncertainty for modeling of errors 

associated with distributed rainfall forecasts, and 

hydrologic uncertainty for modeling model 

structure, model parameterization and model input 

errors. These uncertainties have been modeled 

through the use of a distributed rainfall-runoff 

model and a Monte Carlo simulation, with the 

resulting forecast presented in the form of a 

cumulative distribution function for each required 

forecast lead-time and location. 

A Monte Carlo simulation is developed based 

on these models which simulates the range of 

possible future rainfall patterns that may develop 

based on recently observed rainfall field dynamics. 

These rainfall pattern time series are input into 

Hydro-BEAM to allow an ensemble of future runoff 

conditions to be simulated considering the effects of 

precipitation uncertainty. 

Although uncertainty in the rainfall forecast is 

largely responsible for error in forecasting runoff, 

especially at long lead-times, other factors such as 

limitations associated with the rainfall-runoff model, 

calibration errors, and errors in radar rainfall 

observation are also responsible for considerable 

errors in runoff modeling. Two methods for using 

real-time discharge observations to reduce this type 

of error resulting from hydrologic uncertainty are 

developed to be compatible with a distributed 

rainfall-runoff model. An example application is 

carried out of the Monte Carlo simulation of 

rainfall-runoff considering precipitation uncertainty 

coupled with the adaptive updating technique for 

reducing modeling error considering hydrologic 

uncertainty.  

An engineering decision making approach is 

discussed which aims to minimize losses due to 

false evacuation alarms and deaths due to floods 

through making evacuation decisions and proposing 

evacuation routes that maximizes the expected 

value of the outcome. 

There is a great need for a flood forecasting 

system such as the one presented here that can 

provide a clear picture of potential future flood risks 

at all locations within a watershed. Such 

information is valuable not only in planning 

evacuations, but also in operating hydraulic 

equipment for flood mitigation during times of 

emergency with the goal of minimizing losses 

across an entire watershed. 
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