丹波山地における微小地震のメカニズム解決定と応力場の推定

小笠原知彦・片尾 浩・飯尾能久

要 旨
大阪府北部から京都府中部にかけての丹波山地では、1995 年の兵庫県南部地震前後で微小地震活動の変化があったことが報告されている。本研究では、丹波山地における微小地震のメカニズム解を P 波初動の押し引きを用いて決定した。この結果から、丹波山地全域で、深さ 10km 以内で横ずれ型のメカニズム解の割合が増加したことが分かった。さらに応力テンソルインパーソンションを用いることにより、丹波山地における詳細な応力場の推定を行ったところ、95%信頼範囲が広くなっており、押し引きで求めた P 軸の方向とも整合的な結果が得られた。この地域に局所的な応力場の乱れがあるものと推測される。特に兵庫県南部地震震源域に隣接する丹波山地南西部において、その変化が顕著であった。これらの結果は、兵庫県南部地震の断層運動から計算される理論的な応力変化と調和的である。

キーワード：丹波山地、微小地震活動、メカニズム解、応力場、兵庫県南部地震

1. はじめに
微小地震の活動の変化は大地震の発生などによる応力場の変化により引き起こされると考えられている。したがって、微小地震活動よりわけメカニズム解を詳細に見っていくことは、応力場に関する情報を得ることであり、地震発生予測にもつながる重要なテーマであるといえる。
大阪府北部から京都府中部にかけての丹波山地の微小地震活動は定常的で非常に活発である。もっとも活動的な地域でも 40km 四方および、日本列島の外の定常活動域や群発域に比べて大きな面積を占める。丹波山地は近畿三角帯の西縁に位置し、新潟神戸県." 集中帯の一翼を担う場所である。したがって、近畿地方や広域のテクトニクスを論じる上でも重要であると考えられる。
丹波山地周辺は、京都大学防災研究所阿武山観測所系の微小地震観測網が設けられているが、メカニズム解の決定はルーチン作業としては行われていない。
本研究では、まず P 波初動の押し引きを基に 1992 年から 1998 年までの約 900 側の微小地震のメカニズム解を新たに決定し、1991 年以前の既存のデータセットと統合することで、兵庫県南部地震前後の丹波山地における地震活動と応力場について比較した。次に、応力テンソルインパーソンジョン法により丹波山地の詳細な応力場の推定を行い、さらに兵庫県南部地震の断層すべりによる応力変化と同地震前後の応力軸の変化との比較をおこなった。

2. データ
1995 年以降のデータについては、京都大学防災研究所地震予知研究センターの微小地震観測システム SATARN（大見ほか、1999）により収録された波形データ
3. P波初動によるメカニズム解の決定

メカニズム解の決定には Maeda (1992) の方法を用いることとした。この方法は複数の観測点における P 波初動の押し引きを入力し、最も多くの観測点で押し引きを満足するメカニズム解を探し出す方法である。

1988-1994年（兵庫県南部地震前）

1992年から1994年の3年間に兵庫県南部地震観測網で観測されたイベントのうち、M2.0以上のイベント約230個については、旧システムの波形データをwinフォーマットに変換したのちにP波初動を読み取り、このP波初動の押し引きデータを基に、Maeda（1992）の方法をもってメカニズム解を決定した。最も良いscore値を持つ解が複数ある場合は、その複数の解の軸のazimuthが±15°程度に収まるものをもっていることから、その結果計25個を精度のよいものとして、以後の解析にもちいることとした。

兵庫県南部地震前の応力軸やメカニズム解の変化をなるべく同数のイベントで比較するために、飯尾によりまとめられたデータセットのうち、1988年から1991年までのデータを加えた。この約1100個のうち、P軸のazimuthが±15°程度に収まる529個を選んだ。1992年から1994年の81個と、飯尾による529個のイベントを合わせた610個を「兵庫県南部地震前」のデータとして、その後の解析にもちいる。

Fig. 1 Distribution of P-axis azimuth for the 610 events during 1988-1994

Fig. 2 Distribution of P-axis azimuth for the 515 events during 1995-1998
これらのメカニズム解のP軸方位を各々の震央位置にプロットしたものをFig. 1に示す。

1995–1998年（兵庫県南部地震後）
1995年から1998年の4年間にSATURNシステムの地震観測網で観測されたイベントのうち、M2.5以上のイベント約800個について、前節のようにMaeda（1992）の方法を用いメカニズム解を決定した。「兵庫県南部地震前」のデータと同様にP軸のazimuthが±15°程度を含んでいる515個を精度のよいものとし、「兵庫県南部地震後」のデータとして、その後の解析にもちいた。

これらのメカニズム解のP軸方位分布をFig. 2に示す。

P軸方位分布は、兵庫県南部地震の前後の期間を通じて、ほぼ東西方向の圧縮という点で変わりはないが、同地震後の方が方位のバラつきが大きくなっている。

3.1 断層型
断層のタイプ分けはKatao et al.（1997）に従い、P軸の傾きが60°以上立つものを正断層型、T軸の傾きが60°以上立つものを逆断層型、Null軸の傾きが45°以上立つものを横ずれ断層型、それ以外のものを中間型と定義している。Fig. 3に兵庫県南部地震前のメカニズム解のタイプ別のヒストグラムを示す。

Fig. 3 Histogram on the fault type Gray for 1988–1994 and Black for 1995–1998.

1988–1994年（兵庫県南部地震前）
解析した全610イベントの内訳は、正断層型318イベント、逆断層型186イベント、横ずれ断層型281イベント、中間型140イベントである。断層タイプは横ずれ型が半数近くを占める。ついて、逆断層型が3割、中間型が2割である。京都府亀岡市付近に震源の多くが集中しているが、この地域を含む丹波山地全域において、断層型と震源分布には相関はあまりなく、逆断層、横ずれ断層、中間型が混在しているのが特徴である。正断層型のメカニズム解を持つ微小地震もごく少数ながら見つかっている。

1995–1998年（兵庫県南部地震後）
解析した全515イベントの内訳は正断層型17イベント、逆断層型107イベント、横ずれ断層型276イベント、中間型125イベントである。1995年から1998年までの、丹波山地の微小地震のメカニズムは、515イベントのうち半数以上を占めている横ずれ断層型の微小地震が全域にわたって発生しているのが特徴である。続いて逆断層解および中間型がそれぞれ約2割を占め、この3種の断層型が全体の98%である。兵庫県南部地震前と比べ、逆断層型の地震が大きく減り、代わりに横ずれ断層の卓越性が増していることが分かる。

3.2 震源の深さによる比較
兵庫県南部地震前後のメカニズムの変化を深さ0–10kmと、10–30kmに分けてみたのが、Table 1である。兵庫県南部地震前の深さ0–10kmの横ずれ型のメカニズムはそれぞれ38.9%および47.7%であるのに対し、

Table 1 Number of earthquakes classified by the depth and the fault type for the periods before/after the Hyogoken Nanbu earthquake.
告しているが、兵庫県南部地震以後においてもこのような特徴は変化はなかったといえる。しかし、Fig.3の丹波山地全体のメカニズムの変化から、兵庫県南部地震後に逆断層型の地震が大きく減り（30%→20%）、かつ横ずれ断層が増加している（46%→53%）。その一方、兵庫県南部地震前後で深さごとの断層型の割合はほとんど変化がない。つまり、このようなメカニズム解の変化は、活動の主要な深さが変化したことで起こったわけではない。何らかの理由で0-10kmにおいて横ずれ型のメカニズムが多く発生したことが原因であると結論づけられる。

4. 応力テンソルインバージョン

単一の微小地震のメカニズム解のP軸およびT軸は必ずしも地域応力場の主応力軸とは一致しない。そこで応力テンソルインバージョン法をもって、丹波山地における応力方向の空間分布を多数のメカニズム解より定量化に推定する。

本研究では Horiuchi et al. (1995) により開発されたインバージョン法をもちいた。P波、S波の押し引きから直接、その押し引きを最もよく説明する応力パラメーターをグリッドサーチにより求める方法である。さらに推定された最適な応力解から、応力状態を厳密に議論するために、Gephart and Forsyth (1984) に従って95%信頼区間を推定した。

丹波山地における微小地震活動が最も活発である地域は約40km四方および、この地域全体に全く同の応力場が作用しているとは考えられない。したがって、解析領域をいくつかの小領域に分け、小領域ごとにインバージョンを行う方法をとった。インバージョンを行った領域のうち、兵庫県南部地震前後で特に変化があった領域についてFig.4、5に示す。Region1では、兵庫県南部地震後に同地震前に比べ、σ1軸が東西からやや北東-南西向きに変化し、σ3のplungeが変化していることが大きな違いである。兵庫県南部地震直前の1994年後半には猪名川町付近の群発地震など地震活動の変化が見られ、同地震直後にも震源の浅い活発な活動が観測されている。また兵庫県南部地震余震域に最も近く、全解析領域で最も応力軸に変化があった地域の一つである。この結果は、P波、S波の押し引きで決めたメカニズム解から推定される応力軸の変化にも一致する。

Region2では、σ3軸に大きな変化は見られないが、兵庫県南部地震前には垂直であったσ3軸同地震後にはplungeに大きなパラツキをもって分布していることが
が分かる。さらにRegion3では、本震後における応力軸の信頼範囲の大きさの変化が最も大きかったのが特徴である。しかし、\(\sigma_1 \)のazimuth、\(\sigma_2 \)のplungeに関してはほとんど変化はなかった。

5. 兵庫県南部地震による応力変化との比較

兵庫県南部地震が起こったことによる周辺地域の応力の変化と、メカニズム解および応力テンソルインバージョンにより推定された応力軸の変化について比較するために、MICAP-G（内藤・吉川、1999）を用いて丹波山地における\(\Delta \text{CFF} \)を計算した。本研究で用いた兵庫県南部地震の断層モデルは Hashimoto et al. (1995) による断層モデルを用いた。この断層モデルは国土地理院によるGPS連続観測から得られた観測局の変位、GPS測量から得られた一、二等三角点間の辺長変化、水準測量による水準点の上下変動をデータとして、余震分布と活断層分布を参考に6つのセグメントからなる断層モデルを仮定し、最小二乗法を用いて各セグメントのすべり変位を推定している。

\(\Delta \text{CFF} \)を計算する断層のモデルは、
(1) 東西圧縮が主であるため、走向が北から時計回りに45°（strike=45°）、dip=90°、rake=180°の右横ずれ断層および、走向が北から時計回りに135°（strike=135°）の左横ずれ断層

Fig. 6 \(\Delta \text{CFF} \) for the fault of strike=45°, dip=90°, rake=180°. Depth=8km.

Fig. 7 \(\Delta \text{CFF} \) for the fault of strike=45°, dip=90°, rake=180°. Depth=15km.

Fig. 8 \(\Delta \text{CFF} \) for the fault of strike=135°, dip=90°, rake=180°. Depth=8km.

Fig. 9 \(\Delta \text{CFF} \) for the fault of strike=135°, dip=90°, rake=180°. Depth=15km.

Fig. 10 \(\Delta \text{CFF} \) for the fault of strike=15°, dip=90°, rake=180°. Depth=3km.

Fig. 11 \(\Delta \text{CFF} \) for the fault of strike=115°, dip=90°, rake=180°. Depth=3km.
6. 考察

本研究では、丹波山地における 1992 年以降のメカニズム解を網羅的に求め、さらに、それ以前のデータを加え、比較したことで、兵庫県南部地震後のメカニズム解、応力軸の変化について解析することができた。

Katao et al. (1997) では、兵庫県南部地震後の丹波山地におけるメカニズム解は、ほぼ東西圧縮で、横ずれおよび逆断層が卓越しており、兵庫県南部地震後の広域応力場に大きな変化はなかったことを報告している。本研究の結果では、P 軸方位のパラメータ値が大きく変わったものの、丹波山地全域について平均の方向に大きな変化は見られなかった。また、fio (1996) では、T 軸の plunging の角度は震源が深くなるほど、小さくなることを示したが、本研究でもこれと同様の結果が、兵庫県南部地震前後で確認できた。

また、応力テンソルインバージョンを行うことによって、個々の地震の P 軸の方位では分かりにくかった、より狭い領域での応力場についての議論が可能となった。その結果、兵庫県南部地震震源断層に最も近い丹波山地南部において、東西から東北-西南方向への、顕著な主応力軸（\(\sigma_1 \)）の変化があったことが確認された。この地域では \(\sigma_1 \) だけでなく \(\sigma_3 \) の変化も見られた。

丹波山地全域では、\(\sigma_1 \) の方向に大きな変化はなかったが、推定された応力軸の信頼範囲が広がり、10km 以浅における横ずれ断層の増加も起こった。

そして兵庫県南部地震前には丹波山地中央部には存在しなかった正断層型のイベントが、地震後に亀岡市付近で数秒から発生している。

Katao et al. (1997) では、兵庫県南部地震の余震の中で特異なメカニズムをもつ余震が発生し、いくつかのイベントでは P 軸が本震断層に垂直であることを指摘している。過去の研究でも 1989 年に起きたカリフォルニアの Loma Prieta 地震において同様な活動が観測されている (Michael et al, 1990 ; Oppenheimar, 1990)。このような大地震前後のメカニズム解の変化は、すべり分布や応力分布の不均質による局所的な応力場の乱れに起因している可能性がある。

これらの研究は主に大地震の震源域内の研究結果
謝辞

本研究は、京都大学防災研究所地震予知研究センターの微小地震観測システム(SATARN)により収録された阿武山観測所系・鳥取観測所系・北陸観測所系観測網の地震波形データを用いました。さらにSATARNに収録された東京大学地震研究所和歌山観測所、名古屋大学、気象庁の観測点のデータも使用しています。これらの観測網に関わっておられるすべての方に感謝いたします。

本研究の整理にあたっては文部科学省による「京都大学21世紀COEプログラム：活地球圈の変動解明」の補助を受けた計算機を用いました。

また、大学防災研究所地震予知研究センターの行竹洋平氏には研究を進める上で数多くのアドバイスをいただきました。

参考文献

飯尾能久・片尾浩・浅田和彦・中川満・竹内晴子・渡辺晃（1992）：光ディスプレイを用いた地震波形収録処理システムについて，京都大学防災研究所年報，35，B-1，371-378。

卜部章・東田進也（1992）：win-微小地震観測網波形観測支援のためのワークステーション・プログラム(強化版)，地震学会講演予稿集，No.1.C22-P18。

大貫博士・渡辺邦彦・平野憲雄・中川満・竹内文朗・片尾浩・竹内晴子・浅田和彦・小泉誠・伊藤徹・和田博夫・滑谷拓郎・中尾健郎・松村一男・許斐直・近藤和男・渡辺晃（1999）：微小地震観測網SATARNシステムの現状と概要，京都大学防災研究所年報，42，B-1，45-60。

片尾浩（1995）：遠隔地の微小地震活動の活発化，地震予知学会年報，54，7-2。

内藤宏人・吉川健夫（1999）：地殻変動解析支援プログラムMICAPとの開発，地震，2，52，101-103。

Determination of Focal Mechanisms of Microearthquakes and Estimation of the Stress Field in the Tanba Region

Tomohiko OGASAWARA, Hiroshi KATAO and Yoshihisa IIO

Synopsis
We determined newly focal mechanisms of about 900 microearthquakes in the Tanba region, adjacent area of the 1995 Hyogo-ken Nanbu earthquake, using up/down sense of P-wave onset, and also analyzed regional stress field using the stress tensor inversion method. Average feature of focal mechanisms and the stress field was not changed by the Hyogo earthquake. But, southwestern areas in the Tanba region near the rupture of the Hyogo earthquake show the changes on P-axis azimuth and the stress field. These results are well consistent with the theoretical stress pattern caused by the Hyogo earthquake.

Keywords: Tanba Plateau, micro-earthquake, focal mechanism, stress field, 1995 Hyogo-ken Nanbu earthquake