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Synopsis 

The successful application of hydrologic models depends on how well the models are 

calibrated. Therefore, the calibration procedure should be performed prudently to improve 

model accuracy and maximize model reliability before making decision of an intended 

purpose using a hydrologic model. Despite frequent utilization of manual calibration 

especially for distributed hydrologic models, much more weakness still remains with 

respect to the absence of generally accepted objective measures and extreme time 

consuming. Automatic calibration can overcome these kinds of shortcomings. A global 

optimization algorithm entitled shuffled complex evolution (SCE) has been proved to be 

efficient and robust to find optimal parameters of hydrologic models. This study examines 

the applicability of global optimization scheme, SCE, for calibrating two hydrologic 

models which have different model structures and indicates variation of optimal 

parameters according to objective functions. We also analyze parameter transferability 

under various flood scale. At last, guideline indexes able to assess model stability are 

introduced to allow modelers to select a more stable and suitable hydrologic model. Above 

all procedures are applied to Kamishiiba catchment (211km2).

Keywords: Automatic calibration, Shuffled complex evolution, Parameter transferability, 

Model stability 

1. Introduction 

The principal reasons why modeling of 

rainfall-runoff process is necessary are a limited 

range of measurement techniques and a temporal and 

spatial constraint of measurement (Beven, 2001). 

Manifold hydrologic models have developed 

mathematically and empirically to describe more 

closely and accurately the response behavior 

(transformation) of watershed from rainfall to runoff. 

These types of models are conversion and 

simplification of reality, thus no matter how 

sophisticated and accurate they may be those models 

only represent aspects of conceptualization or 

empiricism of modelers. Accordingly, their outputs 

are as reliable as hypothesis, structure of models, and 

quantity and quality of input data, and parameter 

estimates (Gupta et al., 1999; Muletha and Nicklow, 

2005).  

In general, one of the useful works to enhance 
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accuracy of model performance is identifying suitable 

values of model parameters so that model simulations 

closely match measured behaviors of a study site. 

The parameter values are adjusted between each 

run of the model, either manually by the modelers or 

by some computer-based optimization algorithm until 

some optimal parameter set has been found. However, 

manual calibration has several shortcomings. It 

requires comprehensive understanding of the 

catchment runoff behavior and the model structure 

and can be extremely time consuming. In addition, 

the termination of calibration process is based on the 

subjective decision of the hydrologists and therefore, 

it is difficult to transfer the expertise to another 

person (Wagener et al, 2004). But, methods of 

automatic calibration can complement these 

weaknesses. Automatic calibration involves the use of 

a search algorithm to determine best-fit parameters, 

and it offers a number of advantages over the manual 

approach with respect to calibration running time, 

extensive search of the existing parameter 

possibilities. There have been many automatic 

calibration studies dealt with lumped-conceptual 

models (Sorooshian and Gupta, 1995; Gupta et al., 
1998) and distributed models (Eckardt and Arnold, 

2001; Muletha and Nicklow, 2005).  

Nevertheless a remarkable development of 

automatic calibration, so far, it is not sufficient to 

interpret parameter tranferability according to a flood 

scale in a single watershed. It is also difficult to 

explain parameter transferability according to areas 

which have same or different geomorphologic 

characteristics for modeling of ungauged basins since 

even nearby catchments can be very different with 

respect to their hydrological behavior.  

Furthermore, modelers frequently are faced with 

of difficulties related to selection of a suitable 

hydrologic model for analysis of rainfall-runoff 

process. That is to say, there are no existing 

benchmark or guideline indexes able to assess the 

suitability and stability of the model structure for 

representing the natural system. Gupta et al. (1998) 

pointed out that a subjective selection of objective 

functions (e.g., SLS, HMLE) for calibration of 

hydrologic model lead to an overemphasis on a 

certain aspect of the response (e.g., peak flows), 

while neglecting the model performance with regard 

to another aspect (e.g., low flows). They suggested 

multi-objective optimization method to find the 

parameter set necessary to fit all aspects of the 

observed output time series and to identify model 

structural insufficiencies. Here, it is questionable that 

hydrologic models, which have totally different 

mechanism to reflect real rainfall-runoff process, lead 

to the same simulation results according to the 

variation of objective functions. If the optimized 

parameter set vary irregularly according to various 

objective functions, we are able to conjecture that 

kinds of model has an unstable model structure. 

Additionally, such approach makes it possible to 

allow modelers to distinguish the suitable model 

among diverse models. 

In this paper, the Shuffled Complex Evolution 

(SCE) optimization method is used to calibrate 

lumped model, Storage Function Model, and 

distributed model, KsEdgeFC2D model using five 

flood events from Kamishiiba catchment located in 

Kyushu area. Especially, we focus on four main 

questions as described in following:  

(1) Assessment of applicability of automatic 

global optimization scheme using two visual 

inspections, goodness-of-fit between the simulated 

and the observed, minimization progress of objective 

function values due to number of function evaluations. 

The outputs from calibrated parameters with SCE 

method are compared to the simulation results 

evaluated (manually calibrated) by Tachikawa et al.
(2004) in their previous literature. 

(2) Variation of optimal parameter according to 

two different objective functions, Simple Least 

Square (SLS), Heteroscedastic Maximum Likelihood 

Estimator (HMLE). The performance of each 

calibration is evaluated by using percent bias 

(PBIAS) and Nash-Sutcliffe (NS) statistics 

commonly used in goodness-of-fit measure.  

(3) Analysis of parameter transferability including 

uncertainty of parameters according to a different 

flood scale through applying calibrated parameters of 



four flood events to the rest flood event. Especially, 

the biggest flood event among flood events occurred 

in the study site is selected for analyzing the 

influence due to model parameters optimized by each 

different flood scale. 

(4) Introduction of guideline indexes to analyze 

the model stability in terms of entire behaviors of 

predicted hydrographs. 

2. Applied Hydrologic models 

To assess the applicability of global optimization 

algorithm, Storage Function model (SFM) proposed 

by Kimura (1975) and KsEdgeFC2D developed by 

Ichikawa et al. (2001) are applied to the Kamishiiba 

catchment. More detailed description of models is 

introduced in following subsections. 

2.1 Storage Function Model (SFM) 

This model is known as a reasonable lumped 

model because of reflection of nonlinear 

characteristics of hydrologic response behavior and 

simplification of computational procedures. SFM is 

also used for the rainfall-runoff simulation in a small 

watershed less than five hundred square kilometers in 

Japan. The form of SFM is expressed as: 
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where, S = water storage; r = rainfall intensity; q =

runoff; t = time step; k = storage coefficient; p = 

coefficient of nonlinearity; f = primary runoff ratio; 

lT = lag time; and SAR = cumulative saturated rainfall. 

2.2 KsEdgeFC2D Model 

KsEdgeFC2D is a physically based distributed 

hydrologic model developed by Ichikawa et al.
(2001) and discharge-stage relationship, which 

represents the hillslope runoff phenomena, including 

unsaturated flow is imbedded by Tachikawa et al.
(2004). The model solves the one-dimensional 

kinematic wave equation with the discharge-stage 

equation using the Lax-Wendroff finite difference 

scheme according to orderly nodes and edges, edge 

connection along flow direction map. All 

geomorphologic information are extracted from a 

250m based DEM. Channel routing is also carried out 

by the kinematic routing scheme as well as 

calculation of slope elements reflecting contributing 

areas.

The model assumes that permeable soil layers 

cover the hillslope as illustrated in Figure 1. The soil 

layers consists of a capillary layer in which 

unsaturated flow occurs and a non-capillary layer in 

which saturated flow occurs. According to this 

mechanism, if the depth of water is higher than the 

soil depth, then overland flow occurs. 

Fig. 1 Model structure for the hillslope soil layer. 

Fig. 2 The discharge-stage relationship. 

The discharge-stage relationship is expressed by 

three equations corresponding to water levels divided 

into three layers (see Figure 2). This relationship is 

defined as: 
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Flow rate of each slope segment are calculated by 



above governing equations combined with the 

continuity equation like equation (4). where, 

ikv mm
; ikv aa

; /am kk ; ni / ; i is slope 

gradient, 
mk  is saturated hydraulic conductivity of 

the capillary soil layer, 
ak  is hydraulic conductivity 

of the non-capillary soil layer, n is roughness 

coefficient, 
md  is the depth of the capillary soil layer 

and
ad  is soil depth. Detailed explanations of model 

structure appear in Tachikawa et al. (2004). 

3. Study site and storm events 

The study site is the Kamishiiba catchment which 

lies within Kyushu region in Japan and covers an area 

of 211km2. Topographic data processing is basically 

performed with 250m DEM (Geographical Survey 

Institute). Figure 3 shows the study area and drainage 

outlet, Kaimsiiba Dam described by ExtractNodeEge, 

one of the geo-processing procedures in Geohymos 

(http://flood.dpri.kyoto-u.jp/product/geohymos/geohy

mos.html). Figure 4 describes geomorphologic 

characteristics of the study site. The maximum 

elevation is 1724m and average slope of catchment is 

around 0.52 and hence, the study area is a steep 

mountainous area. For parameters calibration, and 

analysis of parameter transferability and model 

stability, five past storm events are used in this study. 

Event 1 ~ 4 are gauged on Eshiroyama radar and 

Event 5 is measured by radar AMeDAS. Rainfall data 

have 10-min temporal resolutions. Table 1 shows 

historical storm events for this study. 

Fig. 3 Channel networks and subcatchments 
         of Kamishiiba. 

Fig. 4 Elevation and Slope Density graphs 
          of Kamishiiba catchment. 

Table 1 Historical storm events. 

Storm 
Event 

Date of 
occurrence 

Rainfall 
duration

(hr) 

Accumulated 
rainfall 
(mm) 

Peak
discharge

(m3/s) 

1

2

3

4

5

1997 / 09 / 15 

1999 / 06 / 24 

1999 / 08 / 01 

1999 / 09 / 22 

2005 / 09 / 03 

96

168

168

120

144

495.94

462.56

473.63

339.62

713.93

1192 

210

472

590

1718

In SFM case, a mean areal rainfall data is 

considered as input data and spatially-distributed 

two-dimensional rainfall data is applied for 

simulation of KsEdgeFC2D model. The distributed 

grid rainfall data which each cell has 1km (Event 

1~4) and 2.5km (Event 5) spatial resolutions is shown 

in Figure 5. Colorful solid lines show the rainfall 

contour map.  

Fig. 5 Spatially distributed 2-D rainfall data (2005) 
for simulation of KsEdgeFC2D. 

4. Shuffled Complex Evolution (SCE) Algorithm 

The Shuffled Complexes Evolution (SCE), one of 

the computer-based automatic optimization algorithm 



developed by Duan et al. (1992) is a single-objective 

optimization method designed to handle high 

-parameter dimensionality encountered in calibration 

of a nonlinear hydrologic simulation models. (Duan 

et al, 1992). This evolutionary approach method has 

been performed by a number of researchers on a 

variety of models with outstanding positive results 

(Gupta et al., 1999) and has proved to be an efficient, 

powerful method for the automatic optimization 

(Duan et al, 1992, 1993, 1994; Yu et al, 2001; 

Wagener et al, 2004). 

Basically, this scheme is synthesized by following 

three notions: (1) combination of simplex procedure 

(Nelder and Mead, 1965) with the concepts of 

controlled random search approaches (Price, 1987); 

(2) competitive evolution (Holland, 1975); and (3) 

complex shuffling. The integration of these steps 

above mentioned makes the SCE method effective 

and robust, and also flexible and efficient (Duan et al., 
1994). 

The SCE method is initialized by selecting p and 

m, where p is number of complexes and m is number 

of points in each complex. The population, s, is 

sampled randomly using uniform probability 

distribution in a feasible parameter space and a 

objective function value at each point is computed 

subsequently. Then, the s points are sorted in order of 

increasing criterion value. Sorted s points are divided 

into p complexes, each containing m points. Each 

complex evolves independently according to the 

competitive complex evolution algorithm based on 

the Simplex downhill search scheme (Nelder and 

Mead, 1965). The next step is a shuffling to combine 

the points in the evolved complexes into a new single 

population with sharing information came from 

previous complexes. The evolution and shuffling 

processes repeat until any of termination criteria are 

satisfied.  

Duan et al. (1994) indicated that algorithmic 

parameters, controlling SCE method, must be 

selected very carefully because the effectiveness and 

efficiency of the optimization performance are 

influenced by the choice of these algorithmic 

parameters. The necessary algorithmic parameters are 

explained in Table 2. In this study, all algorithmic 

parameters are introduced with the recommended 

values by Duan et al. (1994). Those proposed values 

marked by * are also described in the same Table and 

n is number of parameters to be optimized in the 

hydrologic model.  

Table 2 Algorithmic parameter in SCE method. 

Parameter Description 

m

p

pmin

q

the number of points in a complex 

*m = 2n + 1 

the number of complexes 

*p = 2 

the minimum number of complexes 

required in the population 

* pmin = p
the number of points in a subcomplex 

*q = n + 1 

the number of consecutive offspring 

generated by each subcomplex 

*  = 1 

the number of evolution steps taken by 

each complex 

*  = m = 2n + 1 

The purpose of automatic calibration is to find 

proper values of the model parameters that minimize 

or maximize the numerical value of the objective 

function. Two objective functions are used in this 

study for investigating results due to selection of 

objective functions. The first is the Simple Least 

Square estimation criterion (SLS), the most 

commonly utilized measure in hydrological modeling 

and the second is the Heteroscedastic Maximum 

Likelihood Estimator (HMLE) suggested by 

Sorooshian and Dracup (1980). 

These estimation criteria are defined as below 

forms. 
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t; obs
tq  is observed stream flow value at time t;

)(tq  is model simulated stream flow value at time t
using parameter set ; and tw  is the weight 

assigned to time t.

5. Parameter estimation and analysis of results 

5.1 Identification of parameters to be optimized 

Sensitivity analysis is conducted before the 

calibration process to identify the most important / 

sensitive parameters, and model components. 

Insensitive parameters can be fixed to suitable values 

to decrease the dimensionality of the calibration 

problem through this process. 

In other words, a previous sensitivity analysis 

shows which parameters should be given priority in 

the optimization. As a result of this step, four process 

parameters of SFM are determined for calibration. 

Five parameters to be optimized are selected in 

KsEdgeFC2D. Physical parameters, representing 

physically measurable properties of watershed such 

as watershed area, channel length, slope gradient and 

so on, are estimated from geo-processing based on 

DEM data. Each parameter set of two hydrologic 

models is optimized using the upper and lower 

parameter bounds indicated in Table 3. 

Table 3 Parameters of two hydrologic models. 

Parameters optimized 
(Storage Function Model)

Lower 
bound

Upper
bound

k

p

f

SAR (mm) 

* lT (hr) 

0.0 

0.0 

0.0 

0.0 

-

50

1.0 

1.0 

300

-

Parameters optimized 
(KsEdgeFC2D) 

Lower 
bound

Upper
bound

n

ak

ma kk /

md (mm) 

ad (mm) 

0.1 

0.01 

2

0.0 

500

0.5 

0.05 

10

490

900

* lT  is regarded as a fixed value, 1hr during calibration procedure

   

   

Fig. 6 Minimization progress of objective function value.



5.2 Methodology 

The five steps for calibration and applicability 

assessment of global optimization algorithm are 

carried out as follows. 

Step 1 : Decision of Initial model parameter set 
      of hydrologic models 

Calibration using SCE can be started as we decide 

initial model parameters within chosen ranges of 

parameters. The initial SFM parameters selected are k
= 36.3, p = 0.6, f = 0.6, SAR = 230. The five model 

parameters in KsEdgeFC2D model are initialized by: 

n = 0.3, 
ak = 0.01, 

ad = 550, 
md = 450,  = 4.0. 

All initial values selected in this study are the 

optimal parameters evaluated by Tachikawa et al.
(2004). The reason we set up these values as initial 

ones is to compare the best parameter set obtained by 

manual and automatic calibration more easily. Entire 

starting points located in vertical axis of Figure 6 

indicate initial objective function values and initial 

parameter values. 

Table 4 Algorithmic parameters of SCE 

       used in this study. 

Algorithmic 
parameters 

Storage Function 
Model 

KsEdgeFC2D Model

n

m

p

pmin

q

4

m = 2n + 1= 9 

p = 2 

pmin = p=2

q = n + 1=5 

 = 1 

 = m = 2n + 1=9

5

m = 2n + 1=11 

p = 2 

pmin = p=2

q = n + 1=6 

 = 1 

 = m = 2n + 1=11

Step 2 : Initialization of SCE algorithmic  
       parameters 

It is essential to select appropriate algorithmic 

parameter values of SCE strategy for improving 

calibration procedure more efficiently and robustly. 

Algorithmic parameters used in this study are 

initialized as shown in Table 4. 

Step 3 : Selection of objective functions 

The performance of a model is typically judged 

using objective functions, usually in combination 

with visual inspection of the calculated hydrograph. A 

wide range of statistical and hydrological objective 

functions is available. However, while so many 

studies have tried to assess the suitability of different 

measures, it still remains a subjective decision of 

modelers to select one or more objective functions 

(Wagener et al., 2004). 

Two different measures, Simple Least Squares 

(SLS) and Heteroscedastic Maximum Likelihood 

Estimation (HMLE) are used for the model 

calibration processess. Figure 6 shows that results of 

iterations gradually approach the minimum objective 

function value of two rainfall-runoff models. These 

charts imply that SCE method successfully results in 

better objective function values than manually 

optimized ones. 

Step 4 : Analysis of optimized parameters 

Optimized model parameters using the SCE 

algorithm are compared to optimal values proposed 

by Tachikawa et al. (2004) for appraising suitability 

and accuracy of manually optimized parameters. The 

same parameter set is applied for rainfall-runoff 

simulation over all storm events in the former 

research. As shown in Table 5 and 6, pre-specified 

parameters are compared with newly evaluated 

parameters using SCE algorithm. In SFM, parameter 

values of SLS are not similar to the corresponding 

values of HMLE. In contrast, calibrated parameter 

values of KsEdgeFC2D have a very small difference 

between SLS and HMLE. Figure 7, 8 describes 

parameter values plotted against number of function 

evaluations. Parameter k of SFM and 
ak of

KsEdgeFC2D converges into approximate single 

value, 45 and 0.013 respectively. However, other 

calibrated parameters are scattered irregularly. 



Table 5 Comparison of optimized parameters (SFM). 

Optimized parameters (SFM) 

k p f RSAStorm Event 

SLS HMLE SLS HMLE SLS HMLE SLS HMLE 

1

2

3

4

5

49.61 

34.18 

49.56 

49.39 

49.16 

49.64 

37.35 

49.38 

49.59 

49.39 

0.52 

1

0.68 

0.55 

0.52 

0.64 

0.97 

0.73 

0.77 

0.63 

0.63 

0.84 

0.66 

0.64 

0.22 

0.57 

0.86 

0.86 

0.5 

0.18 

201

295

5.1 

226

224

119 

299

7.1 

239

193

Manually 
Optimized 

36.3 0.6 0.6 230 

Table 6 Comparison of optimized parameters (KsEdgeFC2D). 

Optimized parameters (KsEdgeFC2D) 
n dm da ka

Storm 
Event

SLS HMLE SLS HMLE SLS HMLE SLS HMLE SLS HMLE

1

2

3

4

5

0.196 

0.135 

0.102 

0.332 

0.1 

0.256 

0.157 

0.103 

0.475 

0.1 

489.995 

10.006 

203.71 

489.992 

191.655 

489.998

10.039 

130.145

489.961

176.937

576.904

899.984

639.218

529.731

500.001

561.785

895.274

713.858

500

500.023

0.017 

0.01 

0.016 

0.011 

0.016 

0.016 

0.01 

0.014 

0.01 

0.011 

3.839 

7.425 

7.091 

4.417 

7.997 

4.054 

7.929 

7.573 

4.213 

7.999 

Manually 
Optimized 

0.25 450 550 0.01 4.0 

Table 7 Model performance of each calibration. 

Storm Event 
1997.9.15 1999.6.24 1999.8.1 1999.9.22 2005.9.3 Method 

SFM KsEdgeFC2D SFM KsEdgeFC2D SFM KsEdgeFC2D SFM KsEdgeFC2D SFM KsEdgeFC2D 

SLS_PBIAS

HMLE_PBIAS 

*Previous_PBIAS 

SLS_NS

HMLE_NS 

*Previous_NS 

4.11 

1.18 

6.80 

0.94 

0.88 

0.93 

-1.16 

-1.55 

-0.73 

0.99 

0.98 

0.98 

3.14 

2.06 

11.78

0.88 

0.88 

0.42 

-4.73 

-4.71 

-10.39

0.90 

0.90 

0.65 

3.68 

5.07 

18.11

0.95 

0.94 

0.69 

3.18 

4.42 

2.05 

0.96 

0.99 

0.94 

0.31 

16.11

2.33 

0.93 

0.68 

0.92 

-2.57 

-2.07 

-0.70 

0.99 

0.97 

0.96 

9.09 

9.27 

8.48 

0.96 

0.91 

0.95 

7.77 

9.31 

16.20 

0.98 

0.97 

0.92 

Step 5 : Assessment of model performance 
      of each calibration     

The success of automatic calibration is measured 

by how much improvement in model performance is 

achieved in this step compared with results from the 

former study using manual calibration. 

The performance of each calibration is evaluated 

by using percent bias (PBIAS) and Nash-Sutcliffe 

(NS) statistics of the residuals, commonly used 

goodness-of-fit measure between the simulated time 

series and the observed time series, defined as: 

%100
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where, meanq  is the average flow rate of observed 

data. 



   

   

   

   

                      (a) SLS          (b) HMLE 

Fig. 7 Parameter value plotted against number of function evaluations by SCE algorithm (SFM). 

As shown in Table 7, the overall model 

performance with parameters calibrated by SCE 

method lead to a better improved simulation results. 

The distributed model, KsEdgeFC2D tends to 

reproduce hydrograph more closely to measured 

streamflow data when compared with SFM. The 

simulation results due to two different objective 

functions bring on similar hydrologic responses, 

except for several cases (Event 1, 4, 5) carried out 

using SFM. The calibrated SFM based on HMLE 

doesn’t emphasize minimization of peak flow error in 

these unusual cases. The reproduced and observed 

hydrographs are displayed in Figure 9. 

6. Analysis of parameter transferability 

  according to flood scale 

Parameter transferability is a one of the issue that 

a number of hydrologist and engineers has studied 

recently. This issue is very important for Predictions 

for Ungauged Basins (PUBs). It is not clear how 

model parameters according to variation of 

geomorphologic characteristics and flood scale affect 

the accuracy and reproducibility of hydrographs. In  



   

   

   

   

                      (a) SLS         (b) HMLE 

Fig. 8 Parameter value plotted against number of function evaluations by SCE algorithm (KsEdgeFC2D). 

this study, we analyze effect of parameter uncertainty 

according to flood scale. The biggest flood event, 

Event 5 among the flood events occurred in the study 

cathment is particularly selected for analyzing the 

affection due to model parameters optimized by each 

different flood scale. The simulated results of 

parameters transferability are displayed in Figure 10. 

If we focus on just peak flow, the interesting finding 

is that the best parameter set of Event 1 results in the 

better prediction results than when we apply another 



                   (a) Event 1         (b) Event 2 

                   (c) Event 3         (d) Event 4

Fig. 9 Comparison of Simulation results according to hydrologic models and objective functions. 

Table 8 The evaluation of model performance according to flood scale : Each calibrated model parameter from 

Event 1~4 are applied to Event 5 for analysis of parameter transferability. 

Model Storage Function Model KsEdgeFC2D 

97/9/15 99/6/24 99/8/1 99/9/22 97/9/15 99/6/24 99/8/1 99/9/22 Applied
parameter 

set SLS 
HM

LE 
SLS 

HM

LE 
SLS 

HM

LE 
SLS 

HM

LE 
SLS 

HM

LE 
SLS 

HM

LE 
SLS 

HM

LE 
SLS 

HM

LE 

RMSE 9.27 10.5 20.8 20.7 12.5 14.3 8.5 17.4 11.3 11.3 21.9 22.2 8.4 11.9 10.1 10.9 

NS 0.93 0.91 0.65 0.65 0.87 0.83 0.94 0.75 0.9 0.9 0.61 0.6 0.94 0.88 0.92 0.9 

PD 103 413 896 891 493 580 180 744 38 0.8 648 658 166 328 119 59 

parameter set calibrated from Event 2, 3, 4. In other 

words, it implies that the unknown parameters can be 

replaced by pre-specified (pre-classified) parameters 

from the various past events for flood prediction. 

Furthermore, it may be the useful information for 

parameter transfer if the calibrated model parameters 

from the similar flood scale successfully reproduce 

more reliable output to the target event in the single 

study watershed. The parameter transferability is 

evaluated by Root Mean Square Error (RMSE) 

estimator and absolute Peak Difference (PD) between 

the computed and the observed. The evaluated results 

using these estimators are shown in Table 8. 

7. Analysis of model stability 

As we pointed out in subchapter 5.2, the 

hydrographs simulated by the distributed model 

overlap closely real ones without regard of objective 

functions while the simulated results of SFM vary 

according to objective functions. In addition, the 

range of fluctuation due to parameter transfer in SFM 



                  (a) SFM              (b) KsEdgeFC2D 

Fig. 10 Analysis of parameter transferability (Event 5). 

   

                   (a) SFM        (b) KsEdgeFC2D 

Fig. 11 Evaluation of model stability using NNS; Dashed lines are Normalized Nash-Sutcliffe coefficient. 

   

                   (a) SFM       (b) KsEdgeFC2D 

Fig. 12 Evaluation of model stability using NPR; Dashed lines are Normalized peak discharge ratio. 

cases is bigger and more irregular than those of 

KsEdgeFC2D cases. These kinds of behaviors of 

model response are intimately associated with model 

stability and hence it is strongly requested to propose 

some guideline indexes able to allow the engineers 

and hydrologists to select a suitable and secure 

hydrologic model in terms of model structure. In this 

study, we evaluate model stability through 

normalization of the prediction uncertainty in terms 

of entire behaviors of predicted hydrographs. Two 

types of indexes, Normalized Nash-Sutcliff 

coefficient (NNS) and Normalized Peak discharge 

ratio (NPR) are suggested for analyzing the model 

stability. NNS and NPR are defined as following 



expressions. 
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where, j is the objective function; M is the hydrologic 

model; accordingly j
M

j
M NPRNNS ,  are the 

normalized Nash-Sutcliffe coefficient and peak 

discharge ratio values under j, M respectively; i is the 

target event for analysis; k  is the calibrated model 

parameters at event k; k is the rest events excluding 

event i; N is the total number of combination. As 

illustrated in Figure 11(a), 12(a), each evaluated 

result of SFM under the different objective functions 

tends to fluctuate irregularly. In other words, there are 

large intervals in the calibrated values based on 

between SLS (red diamond symbols) and HMLE 

(blue cross symbols). Furthermore, Figure 11 reveals 

that the distribution of evaluated NS in KsEdgeFC2D 

has more constant variance. It implies that 

KsEdgeFC2D has more stable model structure than 

SFM and hence KsEdgeFC2D is less influenced by 

objective functions and flood scale. The results of 

NNS and NPR are summarized in Table 9. 

Table 9 Analysis of model stability. 

NPR NNS Hydrologic 
Model SLS HMLE SLS HMLE 

SFM 0.60 0.49 0.63 0.60 

KsEdgeFC2D 0.66 0.64 0.79 0.79 

8. Conclusions 

In this paper, SCE global optimization algorithm 

is successfully applied for calibration of two 

rainfall-runoff models. The simulated hydrographs by 

using automatic calibration are closer to the measured 

ones than hydrographs reproduced by manually 

calibrated parameters. In addition, analysis of 

parameter variation according to objective functions 

and flood scale is performed. As results of these 

works, we can find out that parameter set of the 

conceptual and lumped model is strongly connected 

with objective functions and flood size. In contrast, 

the distributed model structure is very stable 

regardless of objective functions and the variance of 

model performance from different flood scale is 

considerably constant. However, it is hard to explain 

the model stability and parameter transferability 

because while an amount of data from a wide range 

of climatic and geomorphologic conditions should be 

used for studying this issue, a few different types of 

storm events are used in this study. Hence, it is 

absolutely necessary to investigate tendency of those 

two issues under various flood scale and spatial 

conditions. Also more general and acceptable 

methods are requested to prove the stability of 

models used for rainfall-runoff modeling. 
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