
1. Introduction 
 

It has long been the goal of flood forecasting to 
provide timely and accurate estimates of future discharge 
conditions at specific watershed locations. As such, 
topics involving design and calibration of hydrological 
models, real-time filtering of runoff estimates, and 
data-driven techniques for inferring hydrological time 
series patterns have received considerable attention. 
While accurate point-forecasts are ideal for predicting 
reservoir inflow, or for providing warnings to 
communities situated in highly concentrated areas, there 
also exists the as yet unfulfilled need to provide such 
forecasts in a distributed manner. While a number of 
different schemes have been successfully applied in 
recent years for using real-time runoff observation data 
to reduce forecast errors at point locations, a major 
difficulty in developing distributed flood forecasting 
systems is the lack of a real-time filtering or data 
assimilation strategy capable of reducing forecast error at 
all points within a watershed using real-time runoff 
observation data available at only a handful of 

observation stations. 
A scheme is developed here which uses a distributed 

rainfall-runoff model to build a database of runoff data 
for various historical runoff events. Data mining 
techniques are then employed to search through the 
database to establish relationships based on the runoff 
rates between watershed locations. Knowledge of these 
relationships can be used in real-time to infer the future 
runoff rates at all non-observation locations in a 
watershed from the filtered predictions made at locations 
where real-time runoff observations are available. 

Distributed flood forecasts allow location-specific 
decisions to be made for all watershed locations, and 
provide the opportunity for decision making that takes 
into account the future distributed, rather than point, 
watershed conditions. There are a wide range of 
beneficial applications of such a distributed flood 
forecasting system. 

 
2. Distributed Flood Prediction 

Approach 
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Synopsis 
A system capable of providing short-term runoff forecasts for all locations across a target 
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The distributed flood prediction approach proposed 
here involves the following steps: 
[1] Prediction of future discharge rates several hours 
ahead at watershed locations that contain discharge 
observation stations. 
[2] Interpolation and extrapolation of these forecasts 
across the watershed based on an understanding of 
spatial and temporal relationships between the 
hydrographs at each watershed location.  

 
3. Point Prediction 
 

The distributed flood forecasting system proposed 
here is designed to work with a generic point forecasting 
prediction scheme that can make use of real-time runoff 
observations for reducing forecast error. Appropriate 
forecast systems include those based on a combination of 
the state-space Kalman filter with lumped-parameter 
runoff models (Kitanidis and Bras, 1980; Puente and 
Bras, 1987), data-driven models such as Artificial Neural 
Networks (Karunanithi et al., 1994; Lorrai and Sechi, 
1995; Campolo et al., 1990), Genetic Programming (Khu 
et al., 2001; Liong et al., 2002), Support Vector 
Machines (Liong and Sivapragasam, 2002), and 
combinations of both physically-based and data-driven 
strategies (Babovic and Bojkov, 2001; Smith and Kojiri, 
2004). 

 
4. Proposed Interpolation Strategies 
 

Local Linear Modeling (LLM) and Global Linear 
Modeling (GLM) are investigated for their application to 
interpolation and extrapolation of runoff rates along river 
channels. 

Because the interpolation system developed in this 
research must be used to identify hydrological patterns 
for 100s of unique combinations of watershed locations 
under a variety of different hydrological conditions, it is 
essential to use a flexible strategy capable of adjusting 
itself to each different task in real-time. Additionally, in 
consideration of global climate change, it is desirable that 
the system as a whole can grow and adapt to changing 
hydrological conditions. For these reasons, both 
strategies use a database containing numerous 
precipitation-driven rainfall-runoff simulation results 
from a distributed hydrological model calibrated to the 
target watershed of interest. The simulated hourly 
discharge rates at each watershed location (1km spatial 

resolution) stored in this database can then be accessed in 
real-time to recognize spatial and temporal patterns 
between hydrographs at different locations in the 
watershed, thus removing the need for the development 
of numerous pre-defined models. In this way the most 
probable discharge rates at various unguaged locations in 
a watershed can be estimated based on observations or 
predictions of discharge rates at each available discharge 
observation station. The system can be automatically 
updated following each new observed precipitation event 
simply by performing a hydrological simulation and 
adding the results to the database, thus increasing the 
diversity of the knowledge in the database through the 
inclusion of new hydrological phenomena. 
 
4.1 Local linear modeling 
 
(1) Introduction 

Local Linear Modeling is used here to approximate 
the relationship of future runoff states at watershed 
locations without discharge observation stations using 
the filtered predictions (and recent observations) of 
future runoff states at observation station locations. This 
method provides an effective tool for finding an estimate 
or prediction for a query vector x by fitting a parametric 
function in the neighborhood of x. Unlike global models 
such as Artificial Neural Networks which seek to fit a 
single global model to all of the training data, local 
models use only those training samples that are most 
similar to the query vector x to obtain a locally 
parametric model suitable for estimating f(x) in the 
vicinity of x. As linear regression is only used in the 
vicinity of the query, the LLM strategy is capable of 
modeling solution spaces that are globally non-linear. 

A local regression model is used to approximate a 
relationship between the query vector and output vector 
by drawing upon database simulation data and 
embedding it into a suitably-determined state space. This 
state space is searched for the k nearest neighbors closest 
to the query vector. A regression is then performed on 
the neighborhood, from which an estimate of the state of 
the non-observation location can then be made. 

Regressions of polynomial degree zero and one are 
respectively referred to here as Local Averaging Models 
(LAM) and Local Linear Models (LLM). Regressions of 
higher polynomial degree are possible, however only 
those of degree one are considered here. 

Atkeson et al. (1997) give the following linear model, 



which assumes that the constant 1 has been appended to 
all the input vectors x to include a constant term. 

0 1 1β β β ε= + + + +L d dy x x     (1) 

Here βi  are the set of model parameters requiring 
identification, xi are the model inputs, d is the 
dimensionality of the training data and ε  is an error 
term to be minimized. The training examples are 
collected in matrix X and the model parameters are 
collected in matrix β . 

y = βX        (2) 

The model is determined through estimation of the 
parameters βi  using a regression which minimizes 

( )2Tβ −∑ i ii
x y

     
(3) 

through solution of the normal equations 

( )T Tβ =X X X y      (4) 

with the matrix XTX inverted for β : 

( ) 1T Tβ
−

= X X X y      (5)  

 
(2) Nearest neighbors search 

An exhaustive search strategy is used to find the k 
nearest neighbors to the query vector, which requires that 
the Euclidean distance dE between the query vector q and 
each data point x in the database be calculated for every 
query made. 

( ) ( )
( ) ( )

2

E

T

, = −

= − −

∑ j jj
d x q x q

x q x q
   

(6) 

 
Efficient nearest point search algorithms are 

available to speed the nearest neighbor lookup process, 
such as the k-d trees scheme (Bentley, 1980; Moore, 
1991) which creates a data structure for storing the set 
of training points taken from a d-dimensional space, to 
allow for rapid subsequent lookup. In the case of this 
research, the system is designed to be flexible to allow 
for changes in database size, data quality, and 
hydrological and climate change. The query vector has 
a variable form to allow for the unique requirements of 
each location within a watershed and for changes in the 
temporal correlation between discharge rates at 
spatially separated locations. For this reason and as 
database search time is negligible, an efficient search 
algorithm is deemed unnecessary. 

 An option to prevent a given regression from being 
dominated by data points all taken from the same 
simulation is included in the system, whereby the 
maximum fraction of nearest neighbors that may be 
chosen from a given simulation event i is restricted to be 

( )1/ * _ , 1,..., _≤ + =ik a n sim b i n sim   (7) 

where a and b are chosen by the user such that their sum 
is unity (a=0.05, b=0.95 is used in this research) and 
n_sim is the number of simulations stored in the 
database. 
 Furthermore, in recognizing that some observation 
stations will be more important than others in the 
regression stage, the elements of the query vector can be 
weighted during the nearest neighbor search to give 
priority to data elements from observation stations that 
have hydrographs that are highly correlated with the 
query location’s hydrograph. These observation stations 
will often be those that are geographically closest to the 
query location. One approach towards choosing 
appropriate weights involves using the magnitude of the 
correlation vector ( )1 2, , , mφ φ φ=φ L , which is a 
measure of how highly correlated each query vector 
element is to the runoff at the target location. This 
correlation can be estimated from simulated data in the 
database, and assumes a linear relationship. These 
measures of correlation can be used to weight the 
elements of the query vector when searching for nearest 
neighbors: the higher the value of jφ , the more 
influence the corresponding query vector element will 
have in determining suitable nearest neighbors for the 
regression. 
 This modified measure of distance between query 
point and data point is referred to here as the 
Dimensionally Weighted Euclidean Distance (DWED). 
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4.2 Global regression 
 As the number of nearest neighbors approaches n_sim 
the modeling approach moves from a local modeling 
strategy to a global regression strategy. This global 
regression approach can be considered as an extension of 
the local linear regression described above, using all 
available simulation data in searching for a relationship 
between the particular combination of locations under 



investigation. 
 

4.3 Choice of query vector form 
 The proposed interpolation system is designed to 
exploit the correlation that exists between the discharge 
rates at different locations within the same watershed. It 
is therefore desirable to tailor the form of the query 
vector to suit each individual watershed location such 
that it maximizes the use of available correlated data. 
Since observations of discharge rates and filtered 
predictions of future discharge rates are available at 
observation stations, data from these locations form the 
basis of the query vector. 
 
(1) Temporal correlation between elements 
 An estimate of the correlation between the hydrograph 
of the target non-observation point and the hydrographs 
from each observation station is determined. In most 
cases there will exist a given time lag at which the two 
hydrographs being compared have the highest 
correlation. For example a target location’s present 
discharge rate will have a higher correlation with an 
upstream location’s discharge rate from a number of time 
steps prior, compared with its present discharge rate. In 
other words, the influence of an upstream location’s 
discharge takes some time to be felt by downstream 
locations. In the case of using the interpolation system in 
a prediction scenario, the optimal time lag for each 
combination of locations is chosen to be the non-positive 
time lag that shows the largest correlation. In the case 
where the observation station is downstream of the target 
location, the optimal time lag for that observation station 
will nearly always be zero, since positive time lags have 
no relevance in a prediction scenario. 
 The query vector for a given target location thus takes 
the following form: 

 ( )1 2
1 2( ) , , ,+ + += Lt s t s t sm

mt Q Q Qq
   

(9) 

where s1, s2,…, sm refer to the optimal lag of each of the 
m observation stations. 
 
4.4 Additional elements 
 The inclusion of a number of additional query vector 
elements, which refer to other factors related to the 
hydrological dynamics in the watershed, may result in an 
increase in the accuracy of the interpolation method. 
Division of data points in the database into groups related 
to the stage of the hydrograph at the time of observation 

is considered. Here the hydrograph stage is simply 
described by one of the following four descriptors: (low 
flow / rising / peak / falling). A low flow level is set for 
each observation station based on hydrological records, 
with any discharge rate below or equal to that defined as 
‘low flow’. Any discharge rate above this level is then 
grouped based on the following rules: 
z If the second derivative of the discharge rate time 

series is negative: ‘peak’ 
z Else, if the first derivative of the discharge rate time 

series is positive: ‘rising limb’ 
z Else, if the first derivative of the discharge rate time 

series is negative: ‘falling limb’ 
In this way, the inflection points of the hydrograph are 
chosen as the transition points between rising limb, peak, 
and falling limb regions. 

 
5. Application 
 
 This section presents the results of an application to 
test the ability of the local modeling scheme to faithfully 
model the temporal-spatial relationship between 
watershed locations based on the distributed 
rainfall-runoff simulation results. 
 The application is conducted for two typhoon events 
that occurred in the vicinity of the Nagara River 
watershed in Japan’s Chubu region. This watershed is 
relatively steep and is prone to rapid flooding during 
typhoon periods. The vast majority of residences and 
facilities that require protection from flooding are located 
in the south of the watershed. Discharge observation 
stations exist within the watershed at the downstream 
locations of Chusetsu and Akutami, and the mid-stream 
locations of Mino and Shimohorado. 
 A kinematic wave-based distributed rainfall-runoff 
model is prepared for the watershed comprising 1556 
1km2 mesh cells, and two sub-surface layers. The land 
use, surface slope and flow path (Figure 1), and channel 
characteristics are specified for each mesh cell. Model 
calibration and database preparation are performed using 
simulation results from 10 major precipitation events that 
occurred in 2000-2004. 
 Validation of the system is performed using two 
additional independent runoff events that occurred in 
2003. Two scenarios are investigated here. The first 
scenario involves interpolating discharge rates for a 
location (Mino) that has observation stations located in 
both upstream (Shimohorado) and downstream 



(Akutami, Chusetsu) locations. The second scenario 
involves extrapolation of discharge rates to a location 
(Shimohorado) that has no observation stations located 
upstream, and three observation stations located 
downstream (Mino, Akutami, Chusetsu). In each case 
the observed runoff at the target location is only used for 
verification, and as such these locations are assumed to 
be without observation stations. 
 

 
Figure 1 Nagara River watershed flow routing map 

 
 The observed discharge rates at the four locations for 
the two events used in this application are given in 
Figure 2 and Figure 3. 
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Figure 2 Observed discharge, Event 1: 23-28/4/2003 
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Figure 3 Observed discharge, Event 2: 11-13/7/2003 

 
6. Results and Discussion 
 
 Correlations between hydrographs contained in the 
simulation database to determine optimal query vector 
forms suggest that for a scenario unrelated to prediction 
that the discharges at the two target locations are best 
described by functions of the following form, where 
superscripts refer to hourly time lag steps and subscripts 
refer to location names: 
Mino:         Qt

M =f(Qt+2
C, Qt+1

A, Qt-1
S) 

Shimohorado:  Qt
S = f(Qt+3

C, Qt+3
A, Qt+1

M)  (11) 
 Results using local linear modeling with a small 
number of nearest neighbors gave unstable results for 
both Mino and Shimohorado. It was found that stability 
and accuracy of the interpolation and extrapolation 
results improved as the number of nearest neighbors 
approached the number of data points in the database, 
equivalent to the global regression approach. The high 
linear correlation between hydrographs at each location 
also suggests that global regression is a valid approach. 
 Results using global regression for Mino are given in 
Figure 4 and Figure 5, and for Shimohorado in Figure 6 
and Figure 7. Table 1 gives the root mean square (RMS) 
error and mean absolute relative (MAR) error for the 
integration at Mino and the extrapolation at 
Shimohorado for the two events. 
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Figure 4 Interpolation for Mino, April 2003 
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Figure 5 Interpolation for Mino, July 2003 
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Figure 6 Extrapolation for Shimohorado, April 2003 
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Figure 7 Extrapolation for Shimohorado, July 2003 
 

Table 1 Results for Mino and Shimohorado 
 GRa GR / lag GR / division 

 RMSb MARc RMS MAR RMS MAR

Mino      
E1d 101 0.140 89.9 0.128 99.8 0.165 
E2e 23.8 0.0543 21.9 0.053 38.0 0.090 
Shimohorado      
E1 36.9 0.201 24.5 0.243 48.5 0.176 
E2 25.0 0.251 21.8 0.270 26.1 0.210 
a Global regression  
b Root mean square error (m3/s) 
c Mean absolute relative error 
d E1: Event 23-28/4/2003 
e E2: Event 11-13/7/2003  

 Application results indicate that the global regression 
strategy proposed here is capable of estimating 
hydrographs at distributed positions within a watershed 
based on knowledge of the hydrographs at positions 
located at a distance. As would be expected, hydrograph 
shape is estimated accurately, with rising and falling 
limbs, and hydrograph peaks timed well. For the unseen 
events, a mean absolute relative error in magnitude of the 
estimated runoff of the order of 0.05~0.15 was achieved 
for the two cases of interpolation for runoff at Mino, with 
less accurate results for extrapolation to the distant 
location of Shimohorado of the order of 0.20~0.25. 
 The results showed that a slight improvement in 
accuracy was gained for the interpolation at Mino 
through optimization of the query vector to consider the 
time lags at which the target location is optimally 
correlated. Division of the data points in the database to 
reflect their position in a hydrograph (baseflow, rising 
limb, peak, falling limb) to train separate regression 
models for each hydrograph stage showed mixed results 
with an increase in accuracy only for the extrapolation 
case at Shimohorado. These results are inconclusive 
regarding the benefit of employing lag optimization and 
data division. 

 
7. Discussion and Conclusions 
 
 A strategy for interpolation and extrapolation of runoff 
rates across a watershed has been introduced. Results 
indicate that global regression can be used to estimate the 
shape, timing and magnitude of hydrographs separated 
from reference locations where runoff observations or 
predictions are available. Further investigation is 
required to determine the ability of the system to 
accurately extrapolate results to locations greatly 
separated from observation locations. 
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要旨 

本研究では，流域の各地点における実時間洪水予測システムを提案する。流量観測地点における流量予測

を用いて，観測所がない地点での流量を推定する目的で，ローカル線形回帰分析とグローバル線形回帰分析

を用いた空間的流量内挿手法を開発する。従来の地点における流量予測モデルに内挿手法を組み合わせたシ

ステムを採用し，これらの全流域的な実時間洪水予測への適合性について検討する。 
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