
 

1. Introduction 
 
One of the most important and applied techniques for 

the optimization of reservoirs is surely dynamic 
programming (DP), which was developed by Richard 
Bellman (1959). Applications of dynamic programming 
to water resources systems can be found in many works, 
such as Yakowitz (1982) and Esogbue (1989). DP 
presents various advantages over other methods to 
handle water resources management and optimization 
problems and it can be associated with other 
programming methods, such as stochastic techniques 
resulting in the so called stochastic DP (SDP). Some 
applications of SDP for water resources management is 
found in Torabi et al. (1973) and Kelman et al. (1990), 
where river discharge is treated as the stochastic variable. 
Moreover, DP may also be used for the optimization of 
multistage fuzzy control systems, called fuzzy DP 
(Fontane et al. 1997, Kojiri et al. 1993 and Hori et al. 
1997), in which decision and state variables as well as 

constraints, can be set as fuzzy membership functions. 
The basic characteristics of water resources and reservoir 
operation that lead to the use of DP are: stage-wise 
structure and non-linearity of the system. 

DP can be divided into two different approaches as 
continuous or discrete, with the latter the most 
commonly used for computational convenience. 
However, for reservoir operation, the rough 
discretization of state variables, such as storage levels in 
the case of reservoir optimization, may reduce the 
efficiency of the optimization model. Another important 
characteristic of DP is the direction in which the 
calculation is carried out, defined as forward-moving and 
backward-moving. For deterministic DP (DDP), 
calculation in either direction can be easily implemented. 
However, the application of forward-moving calculation 
for SDP models is not straightforward and may be 
extremely complex to model (Chaves et al, 2003). The 
direction in which the calculation is executed becomes 
extremely important when DP based optimization 
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models have to be combined or embedded with other 
models, such as rainfall-runoff and water quality 
simulation models (Chaves, 2002 and Chaves et a.l, 
2003), which require a time-wise calculation as actual 
values depend on previous ones. Moreover, the most 
important drawback of using DP is certainly the curse of 
dimensionality, caused by the large number of state and 
decision variables. 

To overcome these problems related to SDP, a new 
optimization method is proposed here to handle the 
discretization of state variables through fuzzy theory and 
the limitations of the direction of calculation through a 
neuro-fuzzy system. The new proposed method is also 
able to handle the stochastic characteristics of variables, 
such as river discharge, in a forward-moving calculation 
direction. Moreover, the problem resulting from the 
increase in the number of state variables is easily 
overcome, as new state variables can simply be 
introduced as new neuron units. The proposed method is 
named stochastic fuzzy neural network (SFNN). For 
validation of the proposed method, a real storage 
reservoir optimization problem considering the stochastic 
characteristics of inflow discharge information is 
presented. Then, results using the SFNN are compared to 
the ones obtained by other dynamic programming 
formulations. 

 
2. Methodology  

 
There are few applications of ANN models for 

optimization problems, whereas the ANNs are usually 
applied as simulation or prediction models. It was only 
recently that some attempts to solve the storage reservoir 
optimization using ANN have appeared. Raman and 
Chandramouli (1996) and Chandramouli and Raman 
(2001) proposed the use of ANN to generate operating 
rules based on the optimal results from a deterministic 
DP model, for the case of a single and multiple reservoir 
system, respectively. In a similar way, Cancellier et al. 
(2002) developed a model to derive the operating rules 
for an irrigation supply reservoir. In an attempt to 
consider the stochastic characteristics of inflow, 
Ponnambalam et al. (2003) trained an adaptive 
neuro-fuzzy inference system (ANFIS; Jang, 1993) 
based on the optimal results obtained by a stochastic 
optimization model. Chang et al. (2001) combines 
genetic algorithm (GA) and ANFIS, in which GA is 
applied to search the optimal reservoir operating 

histogram, which is used as the training pattern of the 
ANFIS model, intended to estimate the optimal water 
release with current storage level and inflow conditions 
as input information. 

There are some important characteristics of the 
proposed method, which differ from other applications of 
neuro-fuzzy systems for reservoir operation. First, most 
of the ANN based models has the ANN trained based on 
already-optimized results from other models to derived 
operating rules. However, for the proposed SFNN model, 
the optimization is carried out directly considering the 
objective functions. The second and most important 
point is that the SFNN is trained directly under stochastic 
input conditions, presenting a probability of occurrence 
depending on the known previous value, defined as 
conditional probability. The most common approach to 
define the conditional probability is the Markov chain 
technique (Howard, 1960) which considers one previous 
stage of the conditional probability. The Markov chain is 
applicable for continuous processes or, for computational 
convenience, discrete processes. Some applications of 
optimization problems using the Markov chain technique 
can be found in Butcher (1971) and Yakowitz (1982). 
The inflow into the reservoir can be considered as a 
Markov chain process, where the system state, within a 
certain stage, is considered to be dependent on the state 
of the previous stage and the known probabilities.  

Depending on the available data and the number of 
assumed intervals to pursue the calculation of the 
Markov chain or one previous stage conditional 
probability (CP), the resulting probabilistic curves may 
present unrealistic characteristics due to incomplete data 
set. The use of such results in stochastic models may 
greatly affect its efficiency. To reduce the uncertainties 
of the discretization process when calculating the 
conditional probabilities, due to incomplete data set and 
rough assumption of crisp discrete intervals, the 
introduction of conditional probability of a fuzzy event is 
proposed for the calculation of the conditional 
probabilities of the representative inflow discharges 
between two consecutive months.  

 
3. Conditional Probability of an event 

 
For the (nonfuzzy) conditional probability of a fuzzy 

event, the difference is that instead of crisp discrete 
intervals, the domain is divided into fuzzy linguistic 
variables as can be seen in the lower part of Fig 1, where 



 
L, M and H stand for low, medium and high, V and X for 
very and extreme, respectively, with the center values of 
each linguistic variable described in the axis of the 
bottom part of Fig 1.  
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Fig 1. Discretization of discharge: discrete (upper) and 

fuzzy (lower) intervals 
 
The percentage scale in Fig 1 represents the chosen 

limits for the discrete intervals and center values of 
linguistic variables, corresponding to the monthly inflow 
(unconditioned) cumulative probabilities. This increases 
the efficiency of the stochastic optimization model as 
already carried out by Chaves (2002), reducing to a 
certain extent null-probability values, as a result of many 
discretized interval or small time-series data.  

Conditional probability is traditionally defined as the 
probability of an event A under the condition that an 
event B occurs. This probability is denoted by P(A/B) 
and defined as shown in equation ( 1 ). 
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for P(B) > 0 and where P(AB) is the intersection of 
events A and B, and P(B) is the probability of event B. 
As stated by Kaufman (1975) and Kacprzyk (1997), the 
above concept is valid for both cases of nonfuzzy and 
fuzzy events. 

For the case of the conditional probability of inflow 
discharge, we are interested to find the probability of 
inflow t when inflow t-1 occurs, which would 
correspond to events A and B, respectively. The P(AB) 
can be calculated based on the observed time series data. 
For the case of discrete intervals, the frequency of 
occurrence F can be found through equation ( 2 ) as 
shown below: 
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Where cn is a counter operator for which the term +1 
accounts for each occurrence between consecutive events 
(intervals) Ak and Bj, whereas k and j are indices 
representing the intervals [1,2,…7] in the upper part of 
Fig 1. Note that the summation of all F(Ak/Bj) is equal to 
the total number of pairs of observations N. 
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Finally, as the probability P(Bj) of the inflow event Bj 
corresponding to interval j can easily be found by 
dividing the frequency of inflows contained within 
interval j by the total number of observations N. Then, it 
is possible to obtain the final one-previous-stage or 
Markov chain conditional probability using equation 
( 4 ): 
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For the case using the fuzzy method, the discharge 
values are fuzzified using the membership functions as 
shown in the lower part of Fig 1. Then, also based on the 
observed data, frequency of conditioned occurrence of a 
fuzzy event, hereafter denoted by Fµ(Ak/Bj) can be 
analogously calculated for each linguistic variable using 
equation ( 5 ):  
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Where A and B are now fuzzy consecutive events, for 
example inflows of January and February; µA,k and µB,j 
are the fuzzy membership function of these events for the 
linguistic value k and j, respectively, k and j: 
[XL,VL…XH], for each pair n of observed data (for 
example, for every year). The membership function here 
represents the degree to which an observed value 
corresponds to a certain class or linguistic variable. For 
example, if both consecutive values are equal 1, this 
would indicate that the observed values are equal to the 
representative inflows and equation ( 5 ) would yield the 
same results of frequency for the nonfuzzy method, 
equation ( 2 ). Values different than 1, could be roughly 
said to represent a certain degree of “frequency” for two 
consecutive observed values. Note that the summation of 
all Fµ(Ak/Bj) for k and j, is equal to total number of pair 
of observations N, analogous to the nonfuzzy counterpart 



 
method. Hence, the Pµ (AB) of the fuzzy events can be 
then calculated using equation ( 6 ): 
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The (nonfuzzy) probability of a fuzzy event A is 
denoted by Pµ (A) and is defined as in equation ( 7 ), as 
described by Kaufman (1975) and Kacprzyk (1997), 
based on the classic definition of Zadeh (1968), which is 
by far the most popular and widely used. 
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Where x is the actual value of the variable in question 
for occurrence n. Hence, for our case of inflow 
discharge: 
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Where p(It-1,n) is the probability of a certain inflow 
It-1 and µB,j(It-1,n) is the value of the fuzzy membership 
function for the inflow corresponding to observation n 
for event (linguistic variable) j. That is to say, Pµ (Bj) is 
the probability of a fuzzy event B to occur. Note that the 
summation of p(It-1,n) is equal to 1 and (in our case) for 
each pair of observation n, the probability of a certain 
observed inflow presents the same value 1/N. Finally the 
conditional probability of a fuzzy event Ak, Pµ(Ak/Bj), is 
calculated according to equation ( 9 ). 
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The summation of Pµ(Ak/Bj) in respect to j is also 
equal to 1 (one). Note that the summation is equal to 1 
only if the linguistic variables are arranged in a way such 
as illustrated in Fig 1, where the minimum values of 
membership functions for each class coincide with the 
center values of adjacent classes. In any other case, for 
example using a different membership function, the 
probability of each month has to be compensated by the 
total summation for all classes. 

It is important to mention that the proposed method 
to define the Markov chain conditional probabilities is 
not dealing with the vagueness and uncertainties related 
to the probabilities themselves, but only the uncertainties 
originating from the discretization process and the 
fuzziness of discharge observations. For more 
sophisticated analyses to handle such probabilistic 
problems, the readers are referred to other methods such 
as possibility theory, Dempster-Shafer theory of 

evidence and fuzzy measures.  
 

4. Stochastic Fuzzy Neural Network 
(SFNN) 

 
Fig 2 shows the flowchart of the overall calculation 

procedures for the SFNN optimization model where 
inflow values are considered as stochastic variables 
based on conditional probabilities. According to Fig 2, 
first the SFNN model is initiated with a set of parameters, 
which can be randomly created. 
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Calculation of Expected Cond. Prob. Pexp[It,k/It-1] based on Fuzzified It-1

 
Fig 2. Flowchart of the calculation for SFNN 

 
The SFNN can be applied to both types of 

conditional probabilities presented in the previous 
section. The values found through the traditional 
conditional probability, which uses the crisp intervals, 
can be directly used for the SFNN optimization model or 
they may be interpolated according to the actual previous 
inflow and the representative inflows. As for the CP of 
fuzzy events, the fuzzy representative inflows may be 
used. However, in doing so, the optimization model may 
result in optimum fuzzy values of release and 
end-of-period storage that are too difficult for users to 
understand and too vague for their practical consideration. 
The propagation of the fuzziness associated with these 
values, when applied to the optimization model, would 
tend to generate greater vagueness, resulting in less 
efficient operation rules. Therefore, a method that could 
be considered analogous to interpolation is proposed, in 
which only the center values are considered and 
according to the actual previous inflow, the conditional 
probability values is changed. 

 As the previous inflow value is known, based on the 
already calculated conditional probabilities of a fuzzy 
event, the new expected value can be obtained for each 
of the representative stochastic inflow It,k, which is also 



 
defined as the center value of the fuzzy event k. The 
expected conditional probability for the SFNN model is 
calculated based on equation ( 10 ). The center values of 
the fuzzy membership function for the fuzzification of 
the previous inflow are the same as the ones used for the 
calculation of the conditional probabilities themselves, 
having the center and limit values defined as the 
(unconditioned) probability for each month as shown in 
the lower part of Fig 1.  
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Where Pµ is the conditional probability of a fuzzy 
event, µ is the membership function or fuzzy grade value 
of previous inflow It-1 and A and B two consecutive fuzzy 
events. An example of the calculation of the expected 
probabilities is shown below in Fig 3, where values in 
the center table represent the conditional probabilities, 
calculated as in the previous section, between two 
consecutive fuzzy events, i.e. previous and actual inflows. 
The stochastic fuzzy neural network (SFNN) is then 
trained considering the representative inflow values It,k 

and the respective expected conditional probabilities 
Pexp(It,k/It-1). 
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Fig 3. Example for the calculation of the expected 

probability Pexp 
 
Usually for the training of neuro-fuzzy models, the 

target vector is previously defined and usually accounts 
for observed values. However, in the case of 
optimization using the ANN based models; the training 
is proposed to be based directly on the maximization of 
the recursive function F itself. The following formulation 
are proposed for the recursive equations ( 11 ) and ( 12 ), 
considering two different types of fuzzy decision:  
Weighted average type 
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Where α is the weight, here we consider all the 
weights to be the same and equal to 1/T. Nevertheless, 
different weights may be incorporated to increase the 
importance of a particular period in time or as a discount 
factor, where T is the total number of stages (time-steps). 
The summation of α is equal to 1, which guarantees the 
final value of the recursive function ( 11 ) to be between 
[0, 1]. This does not affect the final optimum storage or 
release sequence, but instead facilitates the comparison 
of the final results with other decision types, such as the 
minimization type ( 12 ). Eexp is the expected value of the 
evaluation function, as shown in equation ( 13 ), which 
depends on the expected probability. 
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where the Pexp is the expected conditional probability 
presented in equation ( 10 ), k represents the index of 
conditional probabilities, referring to the representative 
stochastic inflows It,k. Ek is defined according to the kind 
of aggregation operator to be used, such as shown in 
equations ( 14 ), ( 15 ) and ( 16 ), for three aggregation 
operators: weighted-average, product and minimization, 
respectively.  
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Where β is the weight, here assume the same for all 
objectives but which could vary depending on the 
importance of each objective. N is the total number of 
fuzzy objectives and index n represents each fuzzy 
objective. All of them are represented by a fuzzy 
objective membership functions En. The fuzzy objective 
membership functions used here are shown later in Fig 7. 
The calculation of the expected value Eexp is used in the 
calculation of the recursive function shown in equation 
( 11 ) and ( 12 ). Optimization results using the above 
fuzzy decisions and aggregation operators are shown 



 
later. 

Having a set of parameters for the neuro-fuzzy 
system, it is possible to obtain the end-of-period storage 
level St+1, as we know St and It-1 values. For each 
stochastic inflow value It,k, we can obtain a release value 
Rt,k based on the reservoir mass balance equation ( 17 ), 
which neglects other losses such as evaporation and 
infiltration that also could be considered.  

ktttkt ISSR ,1, +−= −  ( 17 ) 

This operation is carried out for the whole training 
period T. If the parameters of the neuro-fuzzy system are 
considered to be optimal, giving the maximum or quasi 
maximum value for the recursive function then the 
training process can be concluded. After validation the 
model can be finally applied as the network is now 
representing the reservoir stochastic optimal operation 
rules. 

It is important to note that in the case of SDP models 
all alternatives are tested for a period of one year, or the 
time representing one cycle of the stochastic variable, 
here being the monthly inflow discharges. The results of 
a SDP model are presented as guidecurves that can be 
used to obtain the end-of-period storage when the actual 
month, previous inflow and initial storage values are 
provided. On the other hand, the SFNN model is training 
using directly observed data, considering the conditional 
probability between stages and also the long-term 
characteristics of river discharge. In the case that 
observations are scarce or considered to be incomplete, 
the SFNN model can be trained with artificially 
generated random or synthetic time series data. On the 
other hand, only pure random values can be used, 
however the long-term characteristics of inflow are no 
longer considered, which could decrease part of the 
SFNN model efficiency. It is important to keep in mind 
that the computational effort increases with an increase 
in the data set size. Nevertheless, for longer training data, 
more efficient operation rules may be expected. The 
optimal results found by SFNN are no longer presented 
as guidecurves, but instead as a fuzzy neural network 
model, stochastically trained, which has the 
end-of-period storage represented by its output neuron, 
and initial storage and previous inflow represented 
through its input neurons. 

 
 
 

5. Fuzzy Neural Network Model 
 
Artificial neural network (ANN) models have been 

widely used in various fields, such as aerospace, finance, 
robotics, environmental assessment and hydrology, for 
different purposes such as classification, pattern 
identification, simulation and prediction (Hagan et al., 
1995). The combination of ANNs with other techniques, 
such as fuzzy theory, has been proposed by some authors. 
The use of fuzzy theory with the ANN aims to combine 
the ability of fuzzy sets to represent knowledge that is 
understandable to human beings with the learning 
capability of ANNs (Jin, 2003). Therefore, a neuro-fuzzy 
system is a fuzzy system that can learn from data as well 
as from experts’ experience. Application of fuzzy theory 
with ANNs may change the model from being a 
“black-box” into a “gray-box” type. As described by Jin 
(2003), there have been some attempts to develop 
neuro-fuzzy models and the most well known example is 
the adaptive-network-based fuzzy inference system 
(ANFIS) proposed by Jang and Sun (1993, 1995). The 
ANFIS model has been successfully applied to many 
problems, including storage reservoir operation and it 
can serve as a basis for the construction of fuzzy if-then 
rules. However, this method can face great 
computational effort, as the increase in the number of 
parameters is proportional to its number of linguistic 
variables and input nodes.  

 
5.1 Network Architecture  

Based on the above explanation, a simpler 
neuro-fuzzy network is proposed, whereas the basic 
architecture of the model is briefly presented as follows. 
The training process is carried out by a genetic algorithm 
(GA) model, where the objective function is the as the 
one used for the reservoir operation, such as the ones 
shown later in Fig 7. The developed neuro-fuzzy system 
architecture is shown in Fig 4. 
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Fig 4. Architecture of the proposed neuro-fuzzy 

inference system 
 
Previous inflow (t-1) and initial storage are 



 
represented by two input nodes, whereas the output node 
gives the variation of the end-of-period storage value, 
which is the consequence of the operating rules. Each 
month has its own network, which proved to 
significantly increase the optimization efficiency. Hence, 
the operation rules represented by the neuro-fuzzy 
system are analogous to the operation guide-curves 
derived by the SDP models, where by three types of 
information is required (actual month, previous inflow 
and initial storage). 

 
5.2 Fuzzification of Inflows and Storage  

Considering a crisp input value xi, such as previous 
inflow and initial storage, the fuzzification function is 
carried out as shown in Fig 5. The parameters Xk are 
defined as the modal value of the fuzzy membership 
function of each linguistic variable k. For the case of 
previous inflow (t-1), the parameters Xk, where 
k[1,2,…7], are defined based on the cumulative 
probability function for each month, accounting for the 
same values as the ones used for the calculation of the 
conditional probability of a fuzzy event, as shown in Fig 
1. For the case of initial storage, the parameters Xk are 
optimized during the training process. The extreme 
values X1 and X7 are set equal to the minimum and 
maximum expected values, i.e. constrain values use for 
the reservoir operation here assumed equal to 600 hm3 
and 3250 hm3, respectively. Seven linguistic values are 
used as they proved to be enough for modeling the 
system. Moreover, this number has also been used 
widely in other applications of fuzzy inference. The 
resulted membership values are represented by the 
symbol µi,k, which is represented graphically in Fig 5. 

X5

1
VL L M H VH

X2 X3 X4 xX1
xi

X6

XL XH

X7

Fig 5. Membership function for the fuzzification of 
input variables xi 

 
The resulted membership values µx,k for each 

linguistic variable k, found after the fuzzification of the 
crisp input value x, are then combined. There are various 
methods used within fuzzy inference theory, such as 
product, minimization and maximization. However, after 
trying these different methods, the weighted sum is 

found to be the most appropriate as robustness of the 
whole system increases. Probably, this is due to the use 
of triangular functions that present only two membership 
values other than zero, which in a product type 
aggregation could null all the membership values. The 
resulted fuzzy number µy,k after the combination through 
the transfer function of previous units i is presented in 
equation ( 18 ). 
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Where N is the total number of previous units and Wij 
is the weight between neurons xi and yj, W is also 
optimized during training. The resulting fuzzy inference 
is represented by µj,k. 

Knowing the fuzzy value µi.k, it is possible to obtain a 
crisp value yj, which in our case represent the variation of 
final (end-of-period) storage, through many available 
defuzzification methods. The most common 
defuzzification methods are the center of gravity, center 
of sums and center of areas (Jin, 2003). A method based 
on the center of gravity and described in Jin (2003) is 
adopted here, in equation ( 19 ). 
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Where Yk is the kernel or the modal value and is 
identified during training; g [0,∞) is a power parameter 
responsible for “firing the rule”, which can be properly 
adjusted to obtain a more efficient performance for the 
defuzzification method. This parameter is also optimized 
during the training period. After calculating the variation 
of storage (dS = yi) and knowing the initial storage (Sinitial), 
the final storage (Sfinal) can then be calculated by equation 
( 19 ): 

dSSS initialfinal +=  ( 20 ) 

 
6. Case Study  
 

Barra Bonita reservoir is located in the middle Tietê 
River basin, in the São Paulo State of Brazil, (22o29’ S 
and 48o34’ W) with maximum surface water at an 
altitude of 453 m. The location of the reservoir is shown 



 
in Fig 6.The reservoir has a water surface area of 
approximately 340 km2, total volume of 3.6 km3 and 
length of 50 km. Maximum and average depth are 
around 25 and 10 meters, respectively. Average water 
fluctuation of the reservoir is approximately 5 meters. 
Hydropower energy is the primary water use of the 
reservoir. Other uses include navigation, recreation, 
water supply and fishery production. The Reservoir is the 
first of a series of six reservoirs, around 300 km 
downstream from Brazil’s biggest city, Sao Paulo. It can 
be classified as a subtropical/tropical reservoir with an 
intermediate retention time of around one to two months. 
Air temperature normally varies only by 15oC between 
winter and summer. The wet season occurs between 
September and March. Annual cumulative precipitation 
is around 1400 mm, with maximum wind velocity of 5 to 
7 m/s during winter. The average annual flushing rate is 
414 m3/s. 

 

 
Fig 6. Location of Barra Bonita reservoir 

 
6.1 Operation Objectives 

The proposed methodology is applied in the 
development of a simple storage reservoir optimization 
model considering fuzzy objectives related to water 
quantity characteristics of the system. These functions 
are defined here as flow stabilization µstab(Rt) or STAB, as 
a function of operated release, and hydropower 
generation (in KW) µpow(Rt, St) or POW, as a function 
(indirectly) of operated release and storage level. Both 
objectives are represented by fuzzy membership 
functions, defined between 0 and 1, representing the low 
and high satisfaction of operation, respectively. The 
fuzzy membership functions represent the degree of 
satisfaction or conformity in attaining the operation 
objectives. Due to a lack of realistic information about 
the reservoir operation, the two objectives considered 
here for optimization have been hypothetically 

formulated and their fuzzy membership functions are 
shown in Fig 7. 
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Fig 7. Fuzzy objective membership functions for the 

reservoir operation 
 
The release values of 350 and 400 m3/s are assumed 

to represent maximum satisfaction in the flow 
stabilization membership function, which is intended to 
stabilize the release around the historical average inflow 
for the reservoir. It is very important, particularly in the 
case of Brazil, to consider power generation in the 
optimization. The membership function is based on the 
produced and demanded energy. Due to a lack of data 
regarding the energy production, an average for all 
months is used to represent energy demand. It may be 
improved with realistic data and generation targets for 
the specific reservoir. Another way to improve the power 
generation analysis is by using statistical analysis to 
predict demand. However, for the purpose of this study, a 
value of 100MW is assumed as the monthly average 
demand for all months. The generated energy (KW) is 
calculated based on the release R (m3/s) and water head 
H (m) by equation ( 21 ), where H is a function of the 
average of initial- and end-of-period storage values of 
stage t. 

tt HREnergyGenerated ⋅⋅= 319.8  ( 21 ) 

 
7. Validation of the SFNN Model  

 
To test the proposed methodology, the Barra Bonita 

reservoir is optimized through five different optimization 
schemes, including the Stochastic and deterministic FNN 
method and three SDP formulations, all for monthly 
time-steps. The total time series is divided into two data 
sets, where 22 years of observations are used to identify 
the conditional probabilities for all models and to train 
the SFNN model, whereas 11 years is used to validate 
the proposed methodology in a practical reservoir 
optimization. All the optimization schemes use the same 
fuzzy objective membership functions presented in Fig 7, 
which are combined using the product aggregation 



 
method and the weighted-average type of decision, for 
the same length of optimization horizon. The first 
scheme is a simple deterministic DP model where the 
inflow in stage t is considered to be known. Therefore, 
the DDP is expected to give the maximum satisfaction 
for the operation objectives. The recursive equation for 
the DDP is presented in equation ( 22 ).  

{ })((.)max)( 11
1

+++=
+

ttt
S

tt SFESF
t

 ( 22 ) 

Where F is the recursive equation, E is the evaluation 
function and S, R and I represent storage, release and 
inflow, respectively, for time step t.    

To exemplify the importance of storage discretization 
within the DP optimization, some levels of storage 
discretization were tested for the optimization of the 
Barra Bonita reservoir applying the deterministic 
formulation, considering the whole inflow data set (33 
years). The final results of the recursive equation for the 
whole optimization horizon (referred to as average in the 
legend of Fig 8), the minimum values among all Et 
values and its standard deviation are presented in Fig 8.  
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Fig 8. Relation between storage discretization and DP 

optimization results 
 
Then, stochastic characteristics of inflow are 

considered by applying two SDP models. The first one is 
based on discrete conditional probability and the second 
uses the proposed fuzzy formulation. This is to confirm 
the efficiency of the proposed conditional probability of 
a fuzzy event. The recursive equations for the two 
stochastic optimization schemes using SDP are presented 
in equations ( 23 ) and ( 24 ), respectively.  
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Where P is the conditional probability for the discrete 
inflow intervals k, It,k is the stochastic inflow which refer 

to the cumulative probability values and Et(.) is the 
evaluation function.  
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Where Pµ is the fuzzy conditional probability which 
has been already defined in equation ( 9 ). The state 
transition function has been presented in equation ( 17 ). 
Note that this is the inverted form of the mass balance 
equation (Labadie, 1993). This form is chosen for its 
coding simplicity. The optimization is subjected to the 
constraint of minimum and maximum acceptable values 
of storage and release. Moreover, FT = 0, where T is the 
last chronological time, and therefore, for the backward 
calculation, the first stage used for calculation. 

Since the transition probabilities repeat every 12 
months, the undiscounted stochastic DP calculations are 
repeated via successive approximations to confirm and 
guarantee that the optimum guidecurves of end-of-period 
storage for each month are converging to stationary 
values. As a result, optimal guidecurves may be applied 
to each year over the entire operational horizon for any 
sequence of inflow. As referred by Labadie (1993), if 
this procedure converges, then the solution must be 
optimum. Finally, the reservoir is optimized through the 
SFNN proposed method, also considering the conditional 
probability of a fuzzy event. The SFNN recursive 
equation has already been shown in equation ( 11 ). Note 
that both recursive equations for the SDP models are 
presented as backward-moving while the SFNN can be 
formulated for the forward-moving.  

 
8. Results 

 
Fig 9 shows the results of cumulative conditional 

probability curves for the month of February carried out 
for the monthly inflow discharge of the Barra Bonita 
reservoir using the CP for discrete intervals of inflow, 
whereas Fig 10 shows the results after using the 
conditional probability of fuzzy inflow.  

It can be seen that the results of the fuzzy based 
method (Fig 10) are much smoother than the ones from 
the formulation based on discrete intervals. Therefore, 
they are much more in keeping with what is expected of 
realistic conditional probability curves. Moreover, results 
after optimization using a SDP model showed to be more 
efficient than the ones using the traditional method, as 
can be seen in Fig 11. 
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Fig 9. Cumulative CP assuming discrete intervals 
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Fig 10. Cumulative CP assuming fuzzy linguistic 

variables 
 
Fig 11 shows a comparison of evaluation function 

results after the five different optimization schemes using 
the weighted-average aggregation operator for the 
objective functions, equation ( 14 ): a deterministic DP 
(DDP) model (maximum expected value, for which 
inflows are considered to be known), a deterministic 
FNN model (maximum expected value, for which 
inflows are also considered to be known), SDP model 
using both method (discrete and fuzzy interval) for the 
calculation of conditional probabilities and the proposed 
SFNN model (considering the CP of a fuzzy event).  
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Fig 11. Results after five optimization schemes 

(weighted-average aggregation) 
 

It can be seen that the SFNN model presents a mean 
value slightly superior to the ones found with the SDP 
models, showing the increase in the efficiency of 
optimization when the SFNN model is compared to the 
other two SDP formulations (as values near to 1 mean 
higher satisfaction and consequently more efficient 
operation rules). Moreover, the minimum value of the 
evaluation function of the SFNN is greater, and its 
standard deviation is lower than the SDP models, also 
confirming the efficiency of the proposed method. 
Within the two SDP models, it is possible to conclude 
that the use of CP of fuzzy inflow improved the 
operation performance, as the “average” value was 
higher (closer to 1) when using the SDP based on the CP 
pf fuzzy event. The DDP and FNN formulations are only 
intended to show what would be the maximum expected 
results that could be obtained if future inflows were 
known exactly. The determinist optimization using the 
same FNN architecture also showed excellent results 
compared to its counterpart DDP.  

The final storage and release sequences after the 
SFNN optimization are shown in. It can be seen that the 
proposed SFNN operation model is flexible enough due 
to discretization of storage levels based on fuzzy 
inference, which can calculate any storage level 
independent of limitations originating from the 
discretization process, usually observed in SDP models. 
Also in Fig 12, the training and validation periods used 
for all schemes are shown, which correspond to 264 and 
132 months, respectively.  

Fig 13 shows the behavior of the objective function 
throughout the generations of the GA optimization 
model. As expected, there is a great increase within the 
first generations and slower improvements in the optimal 
values towards the last ones.  

Besides the previous formulation, another one was 
carried out for the same optimization schemes as for the 
previous case, but now the product aggregation operator, 
equation ( 15 ), was considered. This second test was 
necessary to guarantee that the proposed model is robust 
enough, independently of the operator being used. In this 
case as well, the SFNN model showed to be superior to 
the SDP schemes as can be seen in Fig 14.  

 
 



 

 
Fig 12. Results of operation using the SFNN model 
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Fig 13. Results of objective function versus GA 

generations 
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Fig 14. Results from five different optimization schemes 

(product aggregation) 
 
Within the two deterministic schemes, where inflows 

are assumed to be known even for the future (validation 
period), the FNN formulation also showed more efficient 
results for the final recursive function (“average” in Fig 
14). The standard deviation (“st. deviation”) and 
minimum value (“min”) are calculated based on the 
whole validation horizon (132 months) as done before in 
Fig 11. 

Finally, we investigate how the proposed model 
responds to different recursive functions. The 
optimization is carried out using six different SFNN 
formulations depending on the combination of two 
decision types (minimization and weighted-average) and 

three aggregation operators (minimization, 
weighted-average and product). The operation results for 
the training and validation periods are condensed as 
cumulative probability function, as shown in Fig 15 and 
Fig 16, to create a better visualization of the final results 
after finding the stochastically trained optimized 
operation rules. 
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Fig 15. Objective function results after six SFNN 

formulations – training 
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Fig 16. Objective function results after six SFNN 

formulations - validation 
 
It can be seen that when using the minimization 

operator, the overall results were moderately decreased. 
For our case study, the stochastic training of the 
neuro-fuzzy system using such operators seems to be less 
robust, because, even though the minimum value could 
be maximized for the training period, in the validation 
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period the operation policy represented by the SFNN was 
not able to return the maximum of the minimum among 
the other results. That is to say, for the validation period, 
the resulted minimum value was not the minimum when 
using the minimization operator, which was not really 
expected, as this operator was supposed to maximize the 
minimum values. This problem may also occur with 
other stochastic optimization techniques as well, such as 
SDP. Fig 17 shows a comparison of the minimum results 
found after training and validation for the six SFNN 
formulations. When looking at Fig 17, the results should 
be compared within the same aggregation operator for 
the two periods, training and validation. 
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Fig 17. Minimum value of objective function for six 

SFNN formulations 
 
Basically, it may be said that the decision on which 

aggregation method and fuzzy type of decision to use 
depends significantly on the judgment of operators. Even 
though in our problem the minimization decision type 
did not show great robustness, in other problems with 
other operation purposes and different shapes for the 
fuzzy objective membership functions, the minimization 
can also finds its use. This decision type demonstrated an 
inability to reflect any correlation among intermediate 
evaluation values within the optimization (training) 
period, as it always chose the smallest among different 
evaluation values, which in some operation problems 
may be insufficient for properly achieving efficient 
operation rules. This may be aggravated when a greater 
number of objectives and longer training periods are used. 
The reason is simple, a water resources system such as 
reservoir operation like many other systems, is designed 
to present the least risk of failure as possible. However, 
systems presenting risk “zero” of failure may be 
physically and economically impossible to achieve. 
Therefore, if one objective in a certain time of the 
operation horizon, cannot be satisfied at all (membership 

function value equals zero) the whole system is assumed 
to fail. That is why the minimization type is frequently 
called the pessimistic decision. It is recommended that 
when using the SFNN for deriving operation rules for 
practical use, various types of objective functions, 
aggregation operators and decision types should be tested.  
Nevertheless, it could be said that as harder objectives 
are difficultly satisfied during the training period, then 
the calculated operation rules would be less efficient. 

 
9. Conclusions 
 

First, the conditional probability of a fuzzy event 
proved to increase the efficiency of the stochastic DP. 
This was possible as a result of the use of more realistic 
conditional probability curves, found through the fuzzy 
methodology presented here. This was verified after a 
comparison of the results from the two SDP optimization 
schemes. The CP considering stochastic representative 
inflows as fuzzy events is believed to reduce some of the 
uncertainties related to the incomplete data set and the 
crisp discretization process when calculating the 
conditional probability of discharge values. 

The results from the proposed SFNN model showed 
improvements in optimization efficiency, which could be 
obtained as a result of the introduction of fuzzy inference 
to deal with storage discretization. Moreover, the SFNN 
model has the ability to consider, not only the conditional 
probability but also, the long-term characteristic of 
inflow, as the model is trained with actual inflow 
observation data. This is different from the SDP model 
which tries all combinations related to the discretized 
storage levels for a twelve-month period only, ignoring 
the long-term characteristics of inflow. Moreover, the 
SFNN also addresses the uncertainties of the conditional 
probability as the model is prepared to calculate a new 
expected conditional probability for each time stage t, 
through a kind of interpolation (based on the 
membership functions) of the CP curves. 

Different from the SDP, the forward-moving 
calculation scheme for the SFNN model was 
successfully carried out, making the combination of the 
latter with other models straightforward, such as runoff 
and water quality models. The possible combination with 
other models may increase the efficiency of optimization 
models and may expand its applications for optimization 
of more complex systems, which for instance may 
involve more state variables, such as the one presented in 



 
the next chapter. 

Even though further research is necessary, having the 
whole simulation being possible at once after the 
parameters of the neuro-fuzzy system are defined, the 
application of SFNN seems to present great potential to 
overcome the problem related to the curse of 
dimensionality, commonly faced by SDP models, in the 
case of many state and decision variables. For example, 
in the case of multi-reservoir systems, new state variables 
could simply be added as new neuron units. 

The results, using different fuzzy decision and 
aggregation operators, indicated that the SFNN is 
flexible enough to optimize different types of recursive 
functions, demonstrating great potential for its 
application to a variety of other kinds of stochastic 
optimization problems. As could happen to other 
techniques as well, the minimization decision type may 
present less robust results when optimization is carried 
out for systems with a greater number of operation goals 
and longer optimization horizon. Moreover, the shape of 
the fuzzy objective function may also influence the 
performance of the model when using the minimization 
and product decision types.  

After proving the efficiency of the proposed model 
for the stochastic optimization of the proposed problem, 
considering only quantity objectives for the reservoir 
operation, in the next chapter, a more complex problem, 
considering water quality objectives is considered. 
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要旨 

本研究では，確率的ニューラルネットワーク（ＳＦＮＮ）と名付けたシステム最適化方法を新たに提案す

る．それは，推計学的に習練されたニューロ・ファジーシステムであり，準最適解を生み出せる方法として

定義されている。この方法は，必要性のある後退スキームをはじめとしてＳＤＰモデルに関する諸問題を克

服するために考案している。本提案方法の検証を目的として，確率変数を流入量として，実ケースの貯水池

最適化と操作を用いて考察した。同一の最適化問題について本提案手法と他のＤＰアプローチとで結果を比

較したところ，ＳＦＮＮは最適化の結果に改善が見られた。さらに，確率的流入量を見出す際には，流入量

の離散化における不確実性を扱うためにファジー事象の条件付確率の利用を提案した。この貯水池操作の多

目的最適化においては，他の目的と容易に比較できるようにファジー論理を扱った。 

 
キーワード: 確率的最適化，ファジーニューラルネットワーク，ファジー事象の条件付確率，貯水池操作



 

 


