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Synopsis 

We propose a methodology to identify prediction uncertainty through recognizing and quantifying 
the different uncertainty sources in a hydrologic model.  Statistical second moment is used as a 
measure of uncertainty; also an index which originated from Nash coefficient of efficiency named 
Model Structure Indicating Index (MSII) is proposed to quantify model structure uncertainty.  The 
results show that MSII can well reflect the goodness of model structure, while a larger value of MSII 
indicating a poorer structure of hydrologic model.  The index can be used as a tool for implementing 
model quantitative comparison (selection). 
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1. Introduction 
 

Hydrological modeling is the discovery of general 
laws and principles that govern the natural 
phenomenon under observation.  A hydrologic 
model is an integration of mathematical descriptions 
of conceptualized hydrologic processes, which serves 
for a specific purpose.  Consequently, the spatial 
scale, temporal scale, structure, architecture, and 
applicability of a model are restricted a lot by the 
hypothesis of the hydrologic model in most of the 
cases.  As a result, there are numerous hydrologic 
models developed for various aspects, and the 
development of new hydrologic models or 
improvement of previously developed models 
continues in Japan and elsewhere.  With rapid 
advances in computing technology, remote sensing, 
GIS and DBMS, the role of hydrologic models is 
enhanced as a tool in planning, decision making and 
tends to incorporating with other process models such 
like economic, social, political, administrative, and 
judicial models.  Thus, the watershed hydrologic 
models will become a component in a larger 
management strategy.  Furthermore, these models 
will become more global, not only in the sense of 
spatial scale but also in the sense of hydrologic details 
(Singh, 2002).  Therefore, a methodology to assess 

the error, uncertainty and adequacy of adopting 
hydrologic models in specific purpose is needed.  
The present study provides a methodology for model 
comparison and selection through model uncertainty 
recognition and quantification.   

For many years hydrologists have been interested 
in the effects of various uncertainties on the accuracy 
and reliability of the estimation of catchment 
hydrological variables such as peak flow and flood 
volume (Høybye and Rosbjerg, 1999).  Among 
early contributions, some of them focus on the rainfall 
uncertainty and its influence to the runoff (e.g., Storm 
et al., 1989); some of them focus on the sensitivity of 
model structure due to the input error (e.g., Singh and 
Woolhiser, 1976).  Recent researches relating to 
hydrologic model uncertainty most refer to parameter 
uncertainty identification, the procedure of parameter 
calibration, and their impact to simulation result (e.g., 
Freer et al., 1989; Kuczera and Parent, 1998).  
Among them, Generalized Likelihood Uncertainty 
Estimation (GLUE) Methodology (Beven and Binley, 
1992) offers a path of identifying parameter 
uncertainty.  Nevertheless, parameter equifinality 
became the conclusion of GLUE; uncertainty related 
to input data and other factors are excluded.  Even it 
is said that they could also be included in GLUE but 
this has not normally been done (Beven, 2001).   



The performance of hydrologic models is 
profoundly affected by the sources of uncertainty, 
briefly they are: 

(a)  Observed data, 
(b)  Data for model calibration, 
(c)  Parameter space, and 
(d)  Model structure. 
Among those, data uncertainty occupies the most 

and contaminates other sources of uncertainty.  
Underestimating or misunderstanding of these 
uncertainty sources and the interrelation among them 
may cause tremendous misleading on interpreting the 
result of hydrologic models.  However, recognizing 
and quantifying these different sources of uncertainty 
in hydrologic models has received little attention in 
the research literature. 

In this study, a methodology is proposed to 
recognize and quantify the different uncertainty 
sources.  Firstly, Monte Carlo simulation method is 
applied to add bias item in model input data series 
(rainfall), then rainfall realizations, parameter space, 
and model outcomes (outflow discharge) under 
different bias level are acquired.  Secondly, by 
examining the counter relationship between model 
simulation outcomes, calibration outcomes and 
observed watershed response series (discharge), an 
uncertainty structure is recognized.  Finally, 
parameter uncertainty, calibration uncertainty, and 
model structure uncertainty caused by input data 
uncertainty are recognized, separated, and quantified 
through the methodology.   

Statistical second moment is used as a measure 
of uncertainty, also an index which originated from 
Nash coefficient named Model Structure Indicating 
Index (MSII) is proposed to quantify model structure 
uncertainty which can be used as a tool for 
implementing model quantitative comparison 
(selection).  For the demostration of the proposed 
method, several hydrologic models are applied to 
perform model comparison.  They are: Storage 
Function Method (SFM, Kimura, 1961), Topmodel 
(Kirkby and Beven, 1986) and KW-GIUH (Lee and 
Yen, 1996).  Through fixing the value of one 
parameter of SFM, a poorer structure model is 
formed as an extream contradistinction. 

The results show that a larger value of MSII 
indicating a poorer structure of hydrologic model in a 
dynamic manner, that is, incorporating the MSII to 
the input uncertainty. 

 
2. Uncertainty recognition in hydrological 
modeling 
 

In this study, prediction uncertainty which came 
from the four kinds of sources mentioned previously is 
classified into four categories: system uncertainty, 

entire uncertainty, inherent uncertainty, and structure 
uncertainty.  The definition and the procedure to 
recognize them are described below. 

 
2.1 System uncertainty 

Even it is well known that a hydrologic model is an 
approximation of the real phenomena based on the 
hydrologic cycle, still it is needed to stress that there 
always exiting discrepancy between model outcome 
and observed data, no matter how precise the model is 
and how perfect the model calibrated.  That is the 
model predicting limitation underneath the hypothesis 
and architecture of the model, which is defined as the 
system uncertainty in this study.   

The system uncertainty can be recognized by 
evaluating the discrepancy between observed 
watershed response series and the model outcome 
during the process of model parameter calibration.  
This can be clarified by the statement written below: 
 

),~(~ θxfy =                   (1 ) 
 
where y~ and x~ denote outcome and input series of a 
hydrologic model f(・) respectively, and θ  denotes 
a parameter set.  Denoting X and Y are observed 
watershed input and response series data accordingly 
and assuming x~ = X, then θ  can be determined by 
adjusting or tuning the value of parameters to make 
the difference between model outcome y~  and 
observed watershed response data Y in an acceptable 
range according to some objective function.  The 
procedure of adjusting the value of parameter set is 
well known as “model calibration”.  In this study, 
least sum of square error (LSE) method is selected as 
the objective function: 
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where n denotes time step of the simulation time 
series; m denotes the parameter set to be examined.  

The discrepancy between observed watershed 
response and model outcome during the process of 
calibration is supposed to be the minimum value by 
comparison to the possible coming events.  This has 
often been observed that the goodness-of-fit between 
observed data and estimated data during calibration is 
better than what in validation, not to mention in 
implementation.  Under this fact, we can say that the 
uncertainty occurring here denotes the predicting 
limitation of the model.  Since this is the best that a 
model can achieve. 

 
2.2 Entire uncertainty 

The discrepancy of the model outcome to the 
observed data can be shown as below: 
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where ε  denotes system uncertainty mentioned 
above, that is, the predicting limitation of the model 
under perfect calibration.  In agreement with this 
definition, it is clear that the uncertainty came from 
the process of calibration.  But the real uncertainty 
source is supposed to be the data which is used for 
calibration.  

After calibrating the model parameter, the 
calibrated parameter space will reflects its uncertainty 
through the model structure and propagates to the 
model outcome.  This uncertainty can be recognized 
by examining the discrepancy between observed 
watershed response data and model outcome by using 
input data and parameter sets.  Also this is the way of 
most of the researches dealing with parameter 
sensitivity.  This uncertainty is defined as the entire 
uncertainty in this study, since actually this is the 
utmost uncertainty a model could has under existing 
input uncertainty. 

 
2.3 Inherent uncertainty 
Another categorized uncertainty what we called 
“inherent uncertainty” is very difficult to be 
recognized since it always contaminated by the 
uncertainty of model structure and input data.  
Inherent uncertainty is different to what so called 
parameter uncertainty since the propagation effect of  

 
Fig. 1 Schematic diagram of the uncertainty structure 
 
 

 

Fig. 2 Schematic diagram of the uncertainty 
acquisition process  

 
model structure is excluded here intentionally. 
Inherent uncertainty represents the sensitivity of 
parameter space which determined according to the 
input uncertainty and reflects to model outcomes.  
This can be examined by the discrepancy among 
model outcomes derived from different best fit 
parameter sets.  Watershed response data is not used 
here, which indicates the model structure uncertainty 
is eliminated as much as possible. 

 
2.4 Structure uncertainty 
The distance between entire uncertainty and 
inherently uncertainty is structure uncertainty.  Since 
the parameter set used for extracting both of the 
uncertainty is the same.  The different is the data 
used for comparison: observed data and outcome 
during calibration.  The propagation effect plays an 
  
 
important role here, which is why the difference 
between entire uncertainty and inherent uncertainty is 
called structure uncertainty in this study.   

The schematic diagram of uncertainty structure 
proposed here is depicted in Fig.1, which reveals a 
static view of model uncertainty structure, that is, the 
input uncertainty (data uncertainty) is neglected or 
fixed to a certain magnitude.  In order to know the 
behavior of model structure uncertainty under 
different input uncertainty level, a dynamic view of 
model uncertainty structure is introduced by 
increasing the input uncertainty during the processes 
of uncertainty recognition.  The behavior of model 
structure uncertainty under different input uncertainty 
can be examined by observing the discrepancy among 
different model outcomes accordingly.  Fig.2 shows 
the schematic diagram of the uncertainty acquisition 
process.  By increasing the magnitude of the bias 
item (input uncertainty) which located in the center 
of the diagram, the subsequent change of different 
categorized uncertainty can be observed and 
evaluated.  It is expected that within certain level of 
input uncertainty, model with a better structure still 
capable to reflect the true catchment hydrologic 
behavior in certain level. 
 
3. Uncertainty quantification 
 

Several indexes are selected to perform 
uncertainty quantification in this study; the basic form 
of the index is statistical second moment and Nash 
coefficient.  

 
 The categorized prediction uncertainties defined 

in previous section are mathematically described as 
below: 



 
3.1 Index for quantifying system uncertainty 
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where Qo and Qb indicate the observed watershed 
response series and model outcome by using the best 
fit parameter set, n is the time step of the time series. 
SDs quantifies the error variance, the residuals, 
between observed watershed response and the best 
fitted simulated outcomes; while Nashs elucidates the 
performance of the best fitted simulated outcomes.  
SD always larger than 0, while the range of Nash 
coefficient is: 1≤<∞− Nash .   
 
3.2 Index for quantifying entire uncertainty 
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where Qe is the model outcomes acquired by using a 
parameter set within the whole parameter space and 
entire rainfall realizations.  Consequently, SDe 
explains the total prediction error. 
 
3.3 Index for quantifying inherent uncertainty 
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SDi and Nashi explain the inherent uncertainty because 
Qe is calculated with a possible parameter set 
identified by other model outcomes, thus, the 
discrepancy between Qb and Qe indicates the error 
inevitable in a model formulation. 
 
3.4 Index for structure uncertainty 

In order to implement dynamic view of the 
relationship among system uncertainty, structure 
uncertainty and parameter uncertainty caused by input 
data uncertainty, the Nash coefficient is used to 
formulate a Model Structure Indicating Index (MSII) 
and is defined as: 
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The difference between entire and inherent 

uncertainty denotes the structure uncertainty.  This 

is used as the numerator in the equation, while system 
uncertainty is used as a denominator to form a 
criterion to evaluate model structure.  The index 
expresses the total variance unexplained by the 
standard deviation in a dimensionless form.  The 
range of MSII is: ∞<≤ MSII0 . 

 
 

4. Algorithm for uncertainty recognition & 
quantification 

 
Instead of sampling the parameter space directly like 
what GLUE did, the study here generates the 
parameter set space by introducing noise item into 
input data with specified probability distribution.  
Here Normal distribution with mean equals to zero 
and standard deviation from 1.0 to 9.0 (mm/hr) is used 
to acquire model parameter space and outcomes under 
different input uncertainty.  For each iteration, 10000 
model outcomes for each specified input uncertainty 
were derived from the combination of rainfall series 
and parameter set generate output series through the 
model. The system uncertainty and the prediction 
ability were identified and recognized by 
corresponding parameter set.  Detail algorithm for 
uncertainty recognition and quantification is listed in 
Fig.3. 

 
5. Model description and process of observed data 
 

To demonstrate uncertainty identification, Storage 
Function Model (SFM) proposed by Kimura (1975), 
Topmodel (Kirkby and Beven) and KW-GIUH are 
applied at the Yasu River basin (355km2) in this study.  
Below are the brief description of the models. 

 
5.1 Storage Function Model: 

The form of SFM is as: 
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where S = water storage height; r = rainfall intensity; 
q= runoff height; t = time step; and Tl = the lag-time. 

This model is often used for the flood runoff 
calculation in a basin with an area of less than five 
hundred square kilometers in Japan (Takara and  

 
 
For input uncertainty xσ  = 1.0, 2.0,…, 8.0, 9.0 (unit: 
mm/hr) 
1. Use Monte Carlo simulation to sample 100 

rainfall realizations according to a real recorded 
event by adding noise item to it. 

2. Use LSE to determine 100 parameter sets 



regarding to its corresponding rainfall 
realization. 
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3. System uncertainty sε is acquired by examining 
the discrepancy between 100 best fit model 
outcomes during calibration and observed 
watershed response.  Mean value of SDs and 
Nashs for 100 cases are used for uncertainty 
quantification. 
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4. Entire uncertainty eε is acquired by examining 
the discrepancy between observed watershed 
response and 10000 model outcomes.  Mean 
value of SDe and Nashe for 10000 cases are used 
for uncertainty quantification. 
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5. Inherent uncertainty iε is acquired by examining 
the discrepancy between 100 best fit model 
outcome during calibration and the rest 9900 
model outcome.  Mean value of SDi and 
Nashi for 10000 cases are used for uncertainty 
quantification. 
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6. Apply Eq. (10) to acquire MSII of the Model. 

End  
where ξ～ ),0( 2

xN σ , n denotes time step of the 
simulation time series, x  denotes the observed 
input data series. 
Fig. 3 Algorithm for uncertainty recognition and 
quantification 
 
Takasao, 1985).  Parameter p is a constant, 
commonly the value is 0.6, f is the ratio of contribution 
area of the watershed which generates outflow, RSA is 
accumulating saturated rainfall.  Parameter k is 
solved by the equation proposed by Nagai et al. 
(1982). 

A fully functional SFM with parameter Tl, f, and 
RSA is used.  For contradistinction, a 
poorer-structured model with comparison to the 
original SFM by fixing the value of RSA to 0.0 is 
manipulated in this study. 

 
5.2 Topmodel 

Topmodel is a set of programs for rainfall-runoff 
modeling in single or multiple subcatchment in a 
semi-distributed way and using gridded elevation 
data for the catchment area.  It is considered a 
physically based model as its parameters can be, 
theoretically measured in situ (Beven and Kirkby, 

1979, Beven et al., 1984).  In this study, 
TOPMODEL 95.02, written in FORTRAN 77 is 
used. 

Topmodel uses the distribution of the topographic 
index λof hydrological similarity: 
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where ia (unit: m) is the specific contribution area, 
which denotes the area draining though a grid cell per 
unit length of contour.  iβtan denotes the local 
surface slope.  Flow is separated into surface runoff 
generated by rainfall on saturated contributing area 
and subsurface downhill flow.  There are four basic 
assumptions to relate local downslope flow from a 
point to discharge at the catchment outlet (Campling 
et al., 2002): 
 

A1. The dynamics of the saturated zone are 
approximated by successive steady state 
representation. 

A2. The recharge rate r (m/h) entering the water 
table is spatially homogeneous. 

A3. The effective hydraulic gradient of the 
saturated zone is approximated by the local surface 
topographic gradient iβtan . 

A4. The distribution of downslope transmissivity 
To (m2/h) with depth is a function of storage deficit. 

 
From A1 and A2, the recharge rate of the flux 

drains into the water table has the form like:  
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where iq is the flux drains into the water table for 
topographic index class i.  r denotes recharge rate 
the water drains to the water table, and iS is a local 
storage deficit, and m is a model parameter 
controlling the rate of decline of transmissivity with 
increasing storage deficit. 

By arranging Eq.(10), the local storage deficit 

iS can be calculated:  
 

)
tan

ln(
io

i
i T

ra
mS

β
−=                 (11) 

 
The mean catchment storage deficit S can be 

obtained by integrating Eq.(11) over the entire 
catchment area A: 
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where iA is the fractional area of the topographic 
index class i.  Then storage deficit of each 
topographic index i can be expressed like below: 
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where λ is the areal average of the topographic 

index 
βtan

ln a
 of whole catchment. 
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The vertical drainage vq from unsaturated zone 

storage at any point I is calculated by Eq.(15) below: 
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where Suz is the storage in the unsaturated zone, and td 
is a time delay constant.  The total vertical drainage 
then can be calculated by summing up the flux along 
catchment area. 
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Output discharge from saturated zone can 

calculated using a subsurface storage 
deficit-discharge function of the form: 
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where λ−= AeQ0 is the discharge when S is zero. 
At each topographic index class i, unsaturated 

and saturated zone fluxes are simulated.  Initial base 
flow 0Q and the initial root zone storage deficit Sr0 
are specified at the start of simulation.  For the 
following time step, the average storage deficit is 
calculated according to Eq. (18).  By which the 
catchment average storage deficit S is updated by 
subtracting the unsaturated zone recharge and adding 
the baseflow from the previous time step: 
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Topographic index derivation was obtained by 
using DEM algorithm.  Infiltration excess 
mechanism is not included in the study.  
Subcatchment discharge is routed to the catchment 
outlet by using time-area curve which generated from 
dem-based algorithm with constant velocity all over 
the catchment area.   

 
5.3 KW-GIUH 

If one unit rainfall excess fall on the watershed 
instantaneously at time t=0, by assuming that the 
raindrops are independent and isolated from each 
other and ignoring the raindrops fall on the river, then 
the distribution of the number of raindrop appears at 
the outlet to time is the instantaneous unit hydrograph 
of the watershed.   

For a watershed of Ω order which categorized 
under the Horton-Strahler ordering scheme, the path 
of a raindrop drains to the outlet of the watershed will 
follow the sequence from a lower order overland flow 
phase to a stream flow phase then a higher order 
stream finally outlet of the watershed.  If w denotes a 
specified path xoi→xi→xj ・ ・ ・→ →xΩ, the probability 
of a drop of rainfall excess adopting this path can be 
expressed as 
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where OAiP  is the ratio of the ith-order overland flow 

area to the total watershed area.  
ioi xxP is the 

probability that rainwater drains from ith-order 
overland flow to ith-order stream, the value supposed 
to be 1 according to the assumption mentioned above; 

ji xxP is the transitional probability of a raindrop from 

an ith-order stream to a jth-order stream, which is 
equal to the ratio of the number of ith-order stream 
drains to jth-order stream divided by the number of 
ith-order stream.  

Since the raindrops are assumed to behave 
independently and isolated to each other, the storage 
inside the watershed at time t equals to the number of 
raindrops that the travel time T to the outlet larger than 
t.   

Let )(tf
jx  represents the distribution of travel 

time that a raindrop moving in jx phase, and the 

average of )(tf
jx is 

jxT , then the storage can be 

shown as (Feller, 1968): 
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Fig. 4 V-shape subbasin  
 
among it, * denotes convolution integral.  Since the 
raindrops are assumed to behave independently and 
isolated to each other, the storage inside the watershed 
at time t equals to the number of raindrops that the 
travel time T to the outlet larger than t.  For one unit  
of rainfall excess, 0.1)( =tI  when t=0; and 

0)( =tI when 0≠t , then the outflow hydrograph 
u(t) at the outlet of the watershed is the instantaneous 
unit hydrograph of the watershed.  From Eq. (20) we 
can get (Rodriguez-Iturbe and Valdes, 1979; Gupta et 
al., 1980). 
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The following procedure is the determination of the 
distribution function for the travel time. 

KW-GIUH (Lee and Yen, 1997) is a refinement of 
the GIUH method by using kinematic wave 
approximation to calculate the travel time of overland 
flow inside the catchment.   

In KW-GIUH, an ith-order subbasins of the 
watershed conceptually simplified as consisting of 
two identical rectangular overland-flow planes.  Each 
plane contributes a lateral discharge into a channel of 
constant cross section and slope as shown as in Fig.4.  

 
 

Assuming rainfall excess with intensity Lq fall on 
the plane homogeneously, the continuity equation 
and simplified momentum equation can be expressed 
as: 
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where x is the distance along flow direction; oih is the 

ith-order overland flow depth; oiq is ith-order 
overland flow discharge per unit width; m is constant, 

oα  is the parameter which reflects the hydraulic 

characteristics of the overland flow, and Lq is lateral 

inflow rate joining the main stream flow oiq .  

oα can be expressed as: 
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where oiS is the mean slope of the ith-order overland 

flow, and on is an effective roughness coefficient for 
the overland flow plane, which is a parameter of the 
model need to be calibrated.  The flow rate at the end 
of a plane increases with time until it reaches 
equilibrium.  The longest time for a raindrop to travel 
through the ith-order overland plane xoiT , is the time 
for the flow to reach equilibrium in the plane.  Thus, 
the discharge for the ith-order overland subbasin at 
any time xoiTt < is: 
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then travel time xoiT  can be calculated by(Wooding, 
1997): 
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Since the overland flow will concentrate to the 

channel on the center of the V-shape plain eventually, 
for a channel with channel width iB , the lateral 
discharge per unit width when it is equilibrium status 
is ioL BLq

i
/2 , then the travel time of ith-order 

channel flow can be expressed as(Lee and Yen, 
1997): 
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where ciS is the mean slope of the ith-order channel 

flow, and cn is an effective roughness coefficient for 
the channel flow, which is a parameter need to be 
calibrated, 

icoh is the water depth that drains from 
upstream channel to the ith-order channel.  For an Ω 
order watershed, when i=1, 

icoh =0; when 1< I <Ω, 

icoh can be expressed as(Lee and Yen, 1997): 
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among it, Ni is the number of the ith-order channels; 

iA denotes the average area of ith-order subbasin, the 
area is not ith-order subbasin but also its upstream 
area is included.  A = total area of the watershed; 

OAiP is the ratio of the ith-order overland flow area to 
the total watershed area.. 

The mean length of the ith-order V-shape overland 
flow planes is: 
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ciL is the mean channel length of the ith-order 
subbasins.  The channel width is derived by linear 
decreasing from the watershed outlet(Lee and Yen, 
1997): 
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Fig. 5 Uncertainty quantification result of 
TOPMODEL 
 

ΩB is the channel width on the outlet of the 
watershed, which can be acquired by field survey.  
The rest of all the geomorphic factors can be acquired 
manually from topographic map or derived 
automatically through raster elevation data and DEMs 
by some algorithms. 

 
Rainfall data was collected from four rainfall 

gauging stations inside the Yasu River basin 
(355km2); they are Yasu, Minakuchi, Kouka and 
Oogawara.  The average precipitation was obtained 
by using Thiessen polygon method.  
 

 
6. Results 
 
Fig.5 through Fig.8 are the plot of TOPMODEL, 
SFM, parameter-constrained SFM and KW-GIUH.  
It can be seen that the entire uncertainty becoming 
larger while input uncertainty increasing.  Also the 
magnitude of standard deviation of the categorized 
behaves the same.  It is always expected that entire 
uncertainty increases while input uncertainty 
increasing; where the discrepancy between entire and 
inherent uncertainty is in the same tendency.  System 
uncertainty is supposed located in the middle between 
entire and inherent uncertainty.  The range between 
entire and inherent uncertainty indicates the goodness 
of a model structure; that is, the ability of a model 
simulates the behavior of the watershed through 
observed data.  The broader the distance is the worse 
structure the model has. 

The distance between entire uncertainty and 
system uncertainty indicates the divergence between 
calibration outcome and simulation outcome.  Fig.9  
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Fig. 6 Uncertainty quantification result of SFM 
 
 

parameter-constrained SFM
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Fig. 7 Uncertainty quantification result of 
parameter-constrained SFM 
 
shows the MSII of each model.  Except 
parameter-constrained SFM, there is no apparent 
distinction between the four candidate models within 



small input uncertainty.  However, along with the 
increasing of the input uncertainty, KW-GIUH is 
structurally more stable than the TOPMODEL and 
SFM in this study. 

 
 
7. Conclusions 
 
For specific catchment, a methodology for uncertainty 
recognition and quantification is proposed which can 
be used as a tool for hydrologic models quantitative  
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Fig. 8 Uncertainty quantification result of KW-GIUH 
 

   

MSII

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Input uncertainty (mm/hr)

M
S
II

TOPMODEL

SFM

SFM constrained

KW-GIUH

 
Fig. 9 MSII of TOPMODEL, SFM, 

parameter-constrained SFM and KW-GIUH 
 

comparison or evaluation.  Instead of sampling the 
parameter space directly like what GLUE did, the 
study here generates the parameter set space by 
introducing noise item into input data with specified 
probability distribution.  This reflects the truth that 
parameter uncertainty came from uncertainty of data 
to hand and the way the model structure responses it.  
The results show that within increasing input 
uncertainty, the distance between entire and inherent 
uncertainty is also increased.  A smaller magnitude 
of the ratio of inherent uncertainty to entire 
uncertainty indicates the system uncertainty (i.e. the 
prediction limitation) is larger, which means lacking 
of the ability to simulate the true watershed behavior.  
MSII is proposed to evaluate the goodness of model 

structure.  While a good model structure is defined 
as: Within certain level of input uncertainty, the 
model still capable to reflect the true catchment 
behavior.  The results show that a larger value of 
MSII indicates a poorer structure of hydrologic model, 
within increasing input uncertainty the tendency 
becomes more apparently.  The goodness of the 
process of model calibration is also included in the 
index explicitly.   The index can be used as a tool for 
implementing model quantitative comparison 
(selection). 
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要旨 

本研究では，水文予測の不確かさを生み出すもととなる異なる要因を認識し定量化することにより，水

文予測の不確かさを同定する手法を提案する。予測の不確かさを計量する手法として統計的な二次モーメ

ントを利用する。またモデル構造の不確かさを定量化する指標として，Nash 指標を基にしたモデル評価指

標 MSII (Model Structure Indicating Index) を提案する。MSII の値は，モデル構造が不適当なモデルほど大
きな値を示す。この指標は水文モデルを予測の不確かさの観点から定量的に評価するために有効に利用す

ることができる。 
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