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Optimal Maintenance of Infrastructures under Natural Disaster Risk
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Synopsis
This study proposes a framework for dynamic evaluation and management of infrastructures
facing natural disaster risk, especially, earthquakes. In this framework, the optimal maintenance
problem is formulated as a stochastic impulse control problem, of which optimality condition is
represented as a variational inequality problem (VIP). Our analyses reveal that the VIP reduces
to a standard-form linear complementarity problem (LCP). This enables us to develfieme
algorithm exploiting the recent advances in the theory of complementarity problem.

Keywords : non-steady-state Poisson jump; Dynamic Stochastic Control; Linear Complemen-
tarity Problem

problem, there are few studies which deal with natural
1 Introduction disaster risk regarding several important facts in such
a large-scale infrastructure management. Specifically,

Recent earthquake disasters have repeatediy) several natural disasters, in particular earthquakes,
demonstrated the seismic vulnerability of grand-scalehave non-steady-state behavior; b) there are financial
infrastructures, especially road, bridge and so on.constraints on maintenance cost whereby preventive
While much attention has been paid on the preventivemaintenance takes a certain amount of time. De-
maintenance of these infrastructures, there are fewspite of their importance, these features have been
studies which deal with natural disaster risk. neglected for either simplicity or computability in the

In the field of operations research, there are past literature.
enormous numbers of studies which dealt with opti- The purpose of this article is to propose a pro-
mal maintenance problems of a deteriorating systentotype of quantitative method for preventive mainte-
(see Wang[6]). Stadje and Zuckerman [5] arguesnance problem of a infrastructure facing natural disas-
an optimal problem with endgenous repair degree.ter risk. The most significant aspects of our method are
In the field of civil engineering, Rioja[4] discussed both in a continuous time-space framework, and re-
a problem of maintenance versus new investmentgarding above two features of the infrastructure man-
in public infrastructures. Kobayashi and Ueda[3] agement explicitly.
formulated the optimal maintenance problem as a This paper is organized as follows. In Section
stochastic impulse control problem. They further 2, we formulate the optimal maintenance problem as
analyse the problem by using the Markov decision stochastic control problem in a continuous time-state
process technique. framework, where the optimality condition is repre-

Althogh these studies have developed quitesented as a Variational Inequality Problem (VIP). Sec-
convenient methodology for the optimal maintenancetion 3 sketches a numerical method for the problem



exploiting the recent advances in the theory of com-maintenance flow

plementarity problem. For this reason, we show the B

optimality condition reduces to a Linear Complemen- C(t. x(1) = AX(). ®)
tarity Problem (LCP) via certain variable transforma- whereA is a given constant. The last element is the
tion teChnlqueS. This numerical method is applled IN terminal payd—' earned On|y at the expire date of the

Section 5. Section 6 concludes. contractT. We denote the terminal paffdoy a given
functionF(T) = F(P(T)).
2 The Model Suppose that there is a financial constraint on the

_ __ _ _ _ maintenance cost. Specifically, we assume that the in-
Consider one facility (e.g. one bridge in private stantaneous maintenance cost has an upper @mit
road) managed by one administrator who intends toTherefore, the maintenance strategy at each moment

maximize the revenue during a certain periodT[D  x(t) should satisfy the following constraint.
One can imagine the administrator holds a mainte-

nance project as a PHfivate Finance Initiativg 0<x(t)<k=C/A Vte[0,T]. (4)

contract of which mature i$. The administrator decides the maintenance strat-

i egy{x(t)}tT:O in order to maximize his own revenue
2.1 Formulation from the facility during the contract period,[0]. This

We denote the state of the facility as an aggre- ot maximization problem is formulated as the fol-
gate one-dimensional variable. This variable called thelowing stochastic control problem

functional level, of which value at timiis denoted as
P(t). We assume that the functional level follows a  [p]  max J(0, P, x(-)), s.t. (4)
stochastic dterential equation, XM,

wherep is a given constant which represents the dis-

dP(t) = x(t) dt — u(t, P) dt count rate of the cash flow stream, afidt, P) is de-
+ o (t, P)dW(t) — n(t, P)dq(t), (1) fined as follows:

PO=Fo @ garx)=
whereyu, o, 7 are given functions oft(P), and the ini- T (st
tial value Py is a given constant. The dynamics (1) E[I € {n(s, P(s) - C(s, x(s))) dt
consists of four terms. The first term represents the
enhancement of the functional level by the repair of + e—f(T—t)F(p(T))‘p(t) - p}_ (5)
the facility. We denote the increment of the functional

level by x(t) called the maintenance flow. per unit gq (5) represents the net present value of the cash flow

time. The second termudt, states that the expected stream during t{ T] under the maintenance strategy
depreciation. The third termr dW(t) adds a stochas- X9,

tic element of the depreciation in whichAdt) is the

increment of a standardized Wiener-proc@&$) and 22 Optimality Condition represented as a VIP
the codficiento(-) denoted the instantaneous standard We define the value function of the probld,

deviation of the functional level perturbation. The last ynder a situation in which the functional leve(t) = P

term, n(t, P) dq(t) represents the discontinuous down- s observed at timg as follows:

ward jump caused by the disaster, say an earthquake.

While dq(t) is the increment of a non-stead-state Pois-  V(t,P) = max J(t, P, x(-)), s.t. (4)

son process whose intensity at timis denoted by a LoD

given functionA(t), the codficients(-) represents the V(t,P) € [0, T) xR,, (6)

fragility of the functional level against the disaster.
Suppose that the revenues from the facility

consist of three elements. The first one is the instan- V(T,P)=F(P), VPeR,. @)

taneous revenue from the facility, of which value at

time t is represented as a given functiat, P(t))

*1. The second element is the maintenance cos

which assumed the following linear function of the

where the terminal condition is

Applying the DP Dynamic Programmingprinciple,
we obtain the following HJB Hamilton-Jacobi-
Bellman equation

V(t,P) = max n(t, P) — C(t, x(t))

*1 We can suppose the administrator intends to maximize the Z()
social benefit from the facility. In that case, the instantaneous +e?MEV(t, P) + dV(t, P)|P(t) = P],
revenue should be redefined as the 'instantaneous benefit’, s.t (4) (8)
correspondingly. s



That is, the value functiol (t, P) describes the maxi-
mum expected present value of revenues given the cur3.1  Discretization

rent functional level isP. Using the Ito lemma, the Let us consider a discrete grid in the time-
HJB equation (8) reduces to state space with incrementst and AP, and let
LI = f(iAt, jJAP) denote an arbitrary function at the
max a(t, P) — C(t, x(t)) + X(t)Ve(t, P) + LV(t,P) = 0, grid points, where the indicels € {0,1,---,1} and
(9) j € {1,---,J) characterize the location of the point

where £ is a diferential operator defined as follows: ~ With respect to state and time, respectively. In this
setting, thgVIP(t)] is reformulated as follows:
LV(t,P) = . o
5 s 1 P VIPT  min{-z' - L'V' - M'V"*,
—_—— — p— 2 —_—
{ u(t, P)ap + 20’ (t, P)(')PZ (o + /l(t))} V(t, P)

at -a'+CLl- L}V - MV =0, (15)
+ AVt P —n(t, P)]. (10) _ . , , , ,

where V! = (Vi1 ... v 7 = (71 ... 7Y

Because there are no adjustment cost or costs asare given J-dimensional vectors, arl are J-

sociated with changing the level of maintenance, thedimensional vectors with every elements, 10

problem([P] has a 'bang-bang’ solution: the instanta- respectively.L', M', L}, M} are Jx J matrix obtained

neous maintenance level will be by approximating of the dlierential operatorg, £; in
_ a certain finite dference scheme. (See Appendix A).
X(t, P) = {9 _'f Ve(t.P) < A. (11) Correspondingly, the terminal condition (7) reduces to
k if Vp(t,P) > A
VI =F, (16)
Substituting the above optimal strategy into the HIB
equation (9), we obtain the following twoftérential ~ whereF = {F%,--- | FJ}.
equation. Note that thgVIP'] can be treated as an indepen-

dent problem when the next period’s value function
At P)+ LVLP) =0, (X(tP)=0) (12) Vvitlis known. Therefore, we can solve thdP'] in a _
— i — successive manner as follows: First, the value function
n(tLP)-C+LiV(LP) =0, (X(tLP)=K), (13) 4t the expire daw' is known as the terminal condi-
tion (16); Then the unknown variab\é* at the -1th

where —9 period can be obtained as the solution of ' 1],
Li=L+ ka_p' (14) in whichV' is a known variable. Repeating this proce-
_ dure successively, we can obtain whole unknown vari-
Since one of the two strategies 0 bmust be  aples{Vi|i=0,1,---,1 — 1}.

optimal, either (12) or (13) holds as equality. Hence,
V(t) = {V(t, P)IVP € R, } is the solution to the follow- 3.2 Reduction to A Standard Form LCP

ing VIP (Variational Inequality Problemheld at time The optimal maintenance problepdIP'] is not
t. easy to handle because of its non-standard form.
[VIP(t)] Consequently, we show that tH¢IP'] can reduces

to a standardized form LCR.ihear Complementar-

min.{—n(t, P)=LV(t, P), —n(t, P)+C-L1V(t, P)} =0, ity Problen) via a certain function transformation,

YPeR,. whereby an fiicient algorithm for calculating the
problem[P] as shown in the Section 3.3.
where the terminal condition is Eq.(7). First, let us consider the following new unknown
variable.
3 Numerical Methods Xi= g LVIi-MIVI*L, 201, 1-1 (17)

Since the optimal maintenance probl@diP(t)] |t | i is nonsingular, we can denote thé as the fol-
has no analytical solution, we argue a numerical lowing linear transformation oX'.

method in this section. First we reformulate the
problem[VIP(t)] in a discrete framework. We then Vi= _(Li)‘l Xi—g (18)
show the reformulated VIP reduces to a standard ’
form LCP (Linear Complementarity Problemvia where
. . . . . N=1r - L
certain variable transformation techniques, whereby g = —(L') [,,l + MIVI+l] (19)
we develop anféicient algorithm exploiting the recent
advances in the theory of complementarity problem. is a known variable at thigh period.



Substituting the variable transformations (17), Algorithm 1 Fukushima Procedure
(18) into [VIP'], we obtain the following standard . procedure Fukusuma LCP(i, Vi*Y)

form LCP. 2. XWerd > initial feasible solution
[LCP] X -G (X)=0, X >0, G(X) >0, & n=1
_ _ 4 repeat
whereG'() is a linear function ofX' defined as fol- 5: d":= H'(X") > descent direction
lows: L 6: Find @ such that
iy — o0 (1Y L i . oy (xI() o) :
G'(X) = +Ly (L") X' -, (20) 7: grg&.}d) (X +ad™) s line search
and 8: XI+D) = X1 4 o d® > iteration
hi=a -Cl-Lig - MV (21) 9: ni=n+1
10:  until X'™ converges to the solution
is a known variable at thigh period. 11:  return X\™,
12: end procedure
3.3 Algorithm

The key of the above sections are twofold: the Algorithm 2 Main Algorithm
[VIP'] reduces to standard form LCP; tfilP'] can

. | _ - .
be solved in a successive manner. Thus, ficient ;: ;/rT'i |~ 1toi = 0 st l;termlnal condition
algorithm the maintenance problgwiP'] can be de- ort=1-110 - step-_ do

3 Compute X' by using the FukusaiMa

noted as follows: (a) Comput€ as the solution of the
[LCP'], regardingv'*! as a constant; (b) Obtal via
the variable transformation (18); (c) Repeat these two
steps by turns.
While there are a large variety of numerical al-
gorithms for the standard form LCP such [a€P'],
we adopt themerit function approactthat appeared 4 Example
with the recent advances in the theory of operations
research. Generally, this merit function approach is We finally apply our method to a simple exam-
quite dfective and does not require strict conditions pje and show several numerical results. The purpose
for convergence compared to the traditional methods,of this section is to show an illustrative example of
for instance, diagonalization method, Lemke method, o1 framework and to confirm the algorithm solves the
projection method, and so on (See Ferris and Pang[1])problem. For this reason, we adopt several restriction
This approach reduces tfieCP'] to an convex o the model in this section. Remember these assump-
problem with one-dimensional objective function tjon do notaffect the essence of our method.
@'(X") called themerit function The merit function is First, let us assume that the dynamics of the func-

a continuousk’ — R, mapping whose value satisfies {jona| level as the following geometric form:
that®'(X') = 0 whenX' is the solution of thgLCP']

and®'(X') > 0 whenX' is not the solution. In this dP(t)
study, we introduce th&ukushima merit functidg] Pt) pdt+ o WL +n dg(t). (24)
defined as follows:

LCP(, V'*1) procedure.
ObtainV' by substitutingX' into Eq. (18)
5: end for

We further suppose a steady-state Poisson process for
@'(X') = -G'(X") - H'(X") - %Hi(xi) ~H(X), (22) the c;atastrophic event whose intensity is denatesl
At)*=.1
where In the rest of this section, we show the value func-
H(X) = [X‘ - G‘(X‘)L - X, (23)  tion and the optimal strategy under the following pa-
rameters:
and [Z]. is an operator of projection on the positive

real spaceR), of which kth element is defined as T=50, ©=002 o=00L p=01 (25)
max {Zk, O}. 1 B

An efficient algorithm for [LCP'] using A= 5 17 05 C=05  A=10,
Fukushima merit function (22) can be described
as the following procedure[2], which requir&g*! and the linear instantaneous revenue
previously obtained.

In summary, whole of the numerical method for n(t,P) = 0.1P - 0.6. (26)
the optimal maintenance probleff] is described as

follows: *2 Note the intensity is a reciprocal number of the recurrence
interval of the catastrophic events.



the three case of the catastrophic intensity, &, 755
4.1 Value Function and 2(= 0). The last case represents a situation of
Fig.1 displays the value function at each point no disaster risk exists. Fig. 3 shows that as the catas-

in the time-state space. While the two horizontal

20
value function

suspend

20

full maintenance
s s s s s s s s s
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Fig. 1 Value Function Fig. 3 Optimal Maintenance Strategy

15 T >

full maintenance suspend

trophic intensity increases (i.e. the reccurence interval
decreases), the threshold shifts upward (i.e. the admin-
istrator intends to 'fully maintain’ frequently).

5 Conclusion

value function

This study proposed a prototype framework for
guantitative analysis on an optimal maintenance prob-
lem of a certain infrastructure faces catastrophic risk.

P*0) In this framework, we have shown that the finite dif-

o . B " o > " ference method is still convenient to deal with non-
state steady-state Poisson processes. Further we have re-

Fig.2 Value Function at= 0 vealed not only a 'bang-bang’ strategy is optimal un-

der a linear maintenance cost, but also the optimality

condition can be formulated as a variational inequal-
axes represents time and the state variable (i.e. th@y problem (VIP). We finally have shown the VIP re-
functional level), the vertical axes represents the valueqyces a linear complementarity problem by using cer-
function. This figure shows that the value function is tajn variable transformation techniques. This make us
increasing respect to the functional level at arbitrary enaple to develop arfiicient algorithm exploiting the

moment. _ . S recent advances in the complementarity problem the-
Fig.2 shows a slice of Fig.1 at the initial time gy,

t = 0. In this figure, the horizontal axis represents
the functional level and the vertical one denotes the
value function, respectively. This figure shows that the

value function consists of two functions connected at Aknowledgement
the levelP*(0), at where the optimal strategy switches ] ]
from ’full maintenance’ to 'suspend’. In other words, This study was suppoted by the Japanese Min-

if the functional level is belovP* (0), the administrator IStry of Education, Culture, Sports, Science and Tech-
maintain the facility as much as possible. Contrarily, N°logy 21st Century Center of Excellence (COE) Pro-
the administrator does nothing but wait for a moment 9ram, awarded to the Disaster Prevention Research In-

in the case of the functional level exceeri0). stitute, Kyoto University (Grant No. 14219301). The
fist author would like to thank Dr. Akamatsu (Tohoku
4.2 Maintenance-Suspend Threshold University) for his technical comments. The authors

The switching threshold at every momepit(t) also thank the secretaries and students of Integrated
is displayed in Fig.3, of which horizontal axis repre- Ma_nag_ement for Dlgaster Risk research division for
sents time and the vertical axis is the functional level. their kindly help which have kept the authors away
In this figure, three thresholds are shown respectivelyfom wearying chores.
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and M' is a trigonal matrix, of which diagonal ele-
mentsh"/ is replaced byd"l. For instance, when we
adopt the Crank-Nicholson scheme (i,é = 1/2),
these elements agél = K/APHCIUAPY i - 1 _
(O’i’j/AP)2 —(r +/li) o= —/Ji’j/AP+(Ui’j/AP)2 anddi =
w , respectively. In thls apprOX|mat|orID'
|s a Iower trlangular matrix, of whichj(k) element is
defined as follows:

Appendix A The Finite Difference Method if k < n(

Shik = 1 ) ck+1
1o other\lee

(28)
We approximate the partial derivatives in the

[VIP(t)] as follows , ) )
Correspondingly,L1V(t, P) is approximated as

AV(t,P) VLI Vi follows:
av?tt P) vi+1Ait+1 \;i+1j 1 v' 1y LIV, P) ~ LV + MV 4 2DV, (29)
P 2AP +A-p) AP where L}, M| are tridiagonal matrices as same as

L', M' but their elementsa’i,c" are replaced by
ij — (cktuhl)/AP+(o1/AP)? ij — (k=))/AP+(cI/AP)?
el = 7 andf = 7

under the Crank-Nicholson scheme.
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