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Synopsis

This study introduces a new approach (based on the Continuous Wavelet Transform
Modulus Maxima method) to describe qualitatively and quantitatively the complex

temporal patterns of seismicity, their multifractal and clustering properties in particular.

Firstly, we analyse the temporal characteristics of intermediate depth seismic activity in the

Vrancea region, Romania. The second case studied is the shallow, crustal seismicity, which

occurred in a relatively large region surrounding the epicentre of the 1995 Kobe

earthquake. In both cases we have declustered the earthquake catalogue before analysis.

The results obtained in the case of the Vrancea region show that for a relatively large range

of scales, the process is nearly monofractal and random (does not display correlations). For

the second case, two scaling regions can be readily noticed. At small scales the series

display multifractal behaviour, while at larger scales we observe monofractal scaling. The

Hölder exponent for the monofractal region is around 0.8, which would indicate the

presence of long-range dependence (LRD). This result might be the consequence of the

complex oscillatory or power law trends of the analysed time series. In order to clarify the

interpretation of the above results, we consider two “artificial” earthquake sequences.

Firstly, we generate a “low productivity” earthquake catalogue, by using the ETAS model.

The results, as expected, show no significant LRD for this simulated process. We also

generate an event sequence by considering a cellular fault embedded in a 3-D elastic half-

space. The series display clear quasi-periodic behaviour, as revealed by simple statistical

tests. The result of the wavelet-based multifractal analysis shows several distinct scaling

domains. We speculate that each scaling range corresponds to a different periodic trend of

the time series.

Keywords: Real and synthetic earthquake sequences, (Multi)Fractals, Wavelet analysis,

Long-range dependence, Earthquake prediction

1. Introduction

The notion of scaling is defined loosely as the

absence of characteristic scales of a time series. Its

main consequence is that the whole and its parts

cannot be statistically distinguished from each other.

The absence of such scales requires new signal

processing tools for analysis and modelling. The

exact self-similar, scale-invariant processes, like for

example the fractional Brownian motion, are

mathematically well defined and well documented. In

actual real world data, however, the scaling holds

only within a finite range and will typically be

approximate. Therefore, other “scaling models” are

more appropriate to describe their complexity. Long-

range dependence (LRD) or long memory is a model

for scaling observed within the limit of the largest

scales. Research on LRD (or long-range correlation)

characteristics of “real” time series is the subject of

active research in fields ranging from genetics to

network traffic modelling. Another broad class of

signals corresponds to “fractal processes”, which are

usually related to scaling in the limit of small scales.

Such time series are described by a (local) scaling

exponent, which is related to the degree of regularity



of a signal. If the scaling exponent varies with

position (time), we refer to the corresponding process

as multifractal. The fractal concept is, however,

usually used in a broader sense and refers to any

process that shows some sort of self-similarity.

(Multi)fractal structures have been found in

various contexts, as for example in the study of

turbulence or of stock market exchange rates. The

concepts of “fractal analysis” have also been applied

to describe the spatial and temporal distribution of

earthquakes (e.g. Smalley et al., 1987; Turcotte, 1989

and Kagan and Jackson, 1991). Geilikman et al.

(1990), Hirabayashi et al. (1992) and Goltz (1997)

have all employed a multifractal approach to

characterize the earthquake spatial, temporal or

energy distribution. Their results suggest that

seismicity is an inhomogeneous fractal process.

Kagan and Jackson (1991), by analysing statistically

several instrumental earthquake catalogues,

concluded that besides the short-term clustering,

characteristic for aftershock sequences, there is a

long-term earthquake clustering in the residual

(declustered) catalogues.

Wavelet analysis is a powerful technique, well

suited to understanding deeply the complex features

of real world processes: different “kinds” of

Fig. 1 Records of inter-event times, i.e. earthquake intervals, in the case of a) Vrancea (Romania)

earthquakes; b) the shallow seismicity in the Hyogo region.

Fig. 1 Inter-event time series in the case of c) ETAS model simulation and d) EBZ_A

simulation. For case d) only 7000 earthquake intervals were represented to show clearly

the temporal pattern.



(multi)fractality, LRD, non-stationarity, oscillatory

behaviour and trends. The purpose of this study is to

apply wavelet analysis to reveal the multifractal and

LRD characteristics of the occurrence times of

earthquakes. More precisely, we apply the wavelet

transform modulus maxima (WTMM) method that has

been proposed as a generalization of the multifractal

formalism from singular measures to fractal

distributions, including functions (Arneodo et al.,

1991, Muzy et al., 1994 and Arneodo et al., 1995). By

using wavelet analysis, we reveal the clear fractal

characteristics of the analysed time series and

successfully describe the main features of our

earthquake sequences. The study focuses on the

interpretation and explanation of the various temporal

fractal patterns found in earthquake time series and

thus, we hope, will be useful for future related

studies. To the best of our knowledge, this is the first

systematic study of the multifractal and LRD

properties of earthquake time series by using a

wavelet approach. Ouillon and Sornette (1996) have

developed a wavelet-based approach to perform

Fig. 2 “Tau spectrum” for the Generalised Devil Staircase. P1, p2, p3 and

p4 are the parameters used to obtain the time series. q takes 61 equally

spaced values, between -7 and 10. The scaling range fitted to compute this

spectrum extends between 22 and 29. The theoretical spectrum (continuous

line) and the computed one (small crosses) are in very good agreement.

Fig. 3 Theoretical (continuous line) and obtained (crosses) D(h) multifractal spectrum

in the case of the Multinomial Cantor Measure. One can notice the clear multifractal

signature of the simulated time series, as well as the good agreement between the

theoretical and computed spectrum.



multifractal analysis, and applied it in a related field:

the study of earthquake fault patterns.

In the next chapter we introduce the WTMM

method and explain the relation between

multifractality and wavelets. The data to be analysed

are introduced in chapter 3 and consist of four

earthquake time series. Two of them are real

earthquake sequences, while the other two are

simulations. Firstly, we generate a sequence of events

by using the ETAS model (Ogata, 1985, 1988). The

second “artificial” time series is obtained by using a

realistic earthquake model: an inhomogeneous

cellular fault embedded in a three-dimensional elastic

solid (Ben-Zion and Rice, 1993, Ben-Zion, 1996).

2. The Continuous Wavelet Transform (CWT) and

wavelet-based multifractal analysis

The wavelet transform is a convolution product of the

data sequence (a function f(x), where x, referred to in

this study as “position”, is usually a time or space

variable) with the scaled and translated version of the

mother wavelet, (x). The scaling and translation are

performed by two parameters; the scale parameter s

stretches (or compresses) the mother wavelet to the

required resolution, while the translation parameter b

shifts the analysing wavelet to the desired location:

where s, b are real, s > 0 for the continuous version

(CWT) and * is the complex conjugate of . The

wavelet transform acts as a microscope: it reveals

more and more details while going towards smaller

scales, i.e. towards smaller s values.

The mother wavelet ( (x)) is generally chosen to

be well localised in space (or time) and frequency.

Usually, (x) is only required to be of zero mean, but

for the particular purpose of multifractal analysis (x)
is also required to be orthogonal to some low order

polynomials, up to the degree n:

 Thus, while filtering out the trends, the wavelet

transform can reveal the local characteristics of a

signal, and more precisely its singularities. (The

Hölder exponent can be understood as a global

indicator of the local differentiability of a function.)

By preserving both scale and location (time, space)

information, the CWT is an excellent tool for

mapping the changing properties of non-stationary

signals. A class of commonly used real-valued

analysing wavelets, which satisfies the above

condition (2), is given by the successive derivatives

of the Gaussian function:

for which n = N. In this study, the analysing wavelet

is the second derivative of the Gaussian. The

computation of the CWT was carried out in the

frequency domain, by using the Fast Fourier
Transform. The time series were padded with zeros

up to the next power of two to reduce the edge

distortions introduced by the Fourier transform,

which assumes the data is infinite and cyclic

(Torrence and Compo, 1998).

 It can be shown that the wavelet transform can

reveal the local characteristics of f at a point xo. More

precisely, we have the following power law relation:
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Fig. 4 a) CWT coefficients plot in the case of the Vrancea (Romania) time series, zoomed view.

Scale and position are on the vertical and horizontal axis, respectively. The coefficients, taking

values between MIN and MAX, are plotted by using 64 levels of grey. The plot was obtained by

using the “Wavelet toolbox” of Matlab software. b) WTMM skeleton plot. The vertical axis is

logarithmic, with small scales at the top.



where h is the Hölder exponent (or singularity

strength). The symbol “(n)”, which appears in the

above formula, shows that the wavelet used ( (x)) is
orthogonal to polynomials up to degree n (including

n). The scaling parameter (the so-called Hurst
exponent) estimated when analysing time series by

using “monofractal” techniques is a global measure

of self-similarity in a time series, while the

singularity strength h can be considered a local

version (i.e. it describes “local similarities”) of the

Hurst exponent. In the case of monofractal signals,

which are characterised by the same singularity

strength everywhere (h(x) = ct), the Hurst exponent

equals h. Depending on the value of h, the input

series could be long-range correlated (h > 0.5),

uncorrelated (h = 0.5) or anti-correlated (h < 0.5).

The continuous wavelet transform described in

Eq. (1) is an extremely redundant representation, too

costly for most practical applications. To characterise

the singular behaviour of functions, it is sufficient to

consider the values and position of the Wavelet

Transform Modulus Maxima (WTMM) (Mallat and

Hwang, 1992). The wavelet modulus maxima is a

point (s0, x0) on the scale-position plane, (s,x), where

|Wf(s0, x)| is locally maximum for x in the

neighbourhood of x0. These maxima are located along

curves in the plane (s,x). The WTMM representation

has been used for defining the partition function-

based multifractal formalism (Muzy et al., 1994,

Arneodo et al., 1995).

Let {un(s)}, where n is an integer, be the position

of all local maxima at a fixed scale s. By summing up

the q’s power of all these WTMM, we obtain the

partition function Z:

By varying q in Eq. (5), it is possible to

characterise selectively the fluctuations of a time

series: positive q’s accentuate the “strong”

inhomogeneities of the signal, while negative q’s

accentuate the “smoothest” ones. In this work, we

have employed a slightly different formula to

compute the partition function Z by using the

“supremum method”, which prevents divergences

from appearing in the calculation of Z(q,a), for q < 0

(e.g. Arneodo et al., 1995).

Often scaling behaviour is observed for Z(q,s) and

the spectrum (q), which describes how Z scales with

s can be defined:

If the (q) exponents define a straight line, the

analysed signal is a monofractal; otherwise the fractal

properties of the signal are inhomogeneous, i.e. they

change with location, and the time series is a

multifractal. By using the Legendre transformation

we can obtain the multifractal spectrum D(h) from

(q). D(h) is a generalisation of the f( ) singularity
spectrum (defined in the previous chapter) from

measures to functions and captures how “frequently”

a value h is found.

For the computations made in this work, we

acknowledge the use of the Matlab software package

(http://www.mathworks.com), Matlab’s Wavelet
Toolbox and the free software programs: Wavelab

(Stanford University – http://www-

stat.stanford.edu/~wavelab) (Buckheit and Donoho,

1995), Fraclab, A Fractal Analysis Software (INRIA

- http://fractales.inria.fr/) and other Matlab routines

(http://paos.colorado.edu/research/wavelets/;

Torrence and Compo, 1998). We also developed
(5)

(6)

Fig. 5 Double-logarithmic plot of the partition functions, for q between 4 to -2 (up to down, constant

increment), in the case of Vrancea time series. The vertical lines indicate the limits of the scaling

region. Outside this area there are “edge effects” due to the limited length of the time series.
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some routines, in Matlab, which are going to be made

available on the web (http://www.rcep.dpri.kyoto-

u.ac.jp/~benescu/).

3. Data

We have applied the wavelet-based approach to

the analysis of four sets of earthquake data; two of

them are real and the other two are simulations. The

data consists of inter-event times between successive

earthquakes above a threshold magnitude. Our choice

was made by considering that the earthquake

occurrence time is one of the most reliable and

accurate parameters that define a seismic event. Also,

our choice was based on the relevance of earthquake

recurrence times for earthquake hazard and

prediction. The results of the multifractal analysis (
(q), D(h)) correspond, however, to the integrated

inter-event times. In this way, we made our results

directly comparable with those obtained by Enescu et

al. (2003), who use the Detrended Fluctuation

Method (DFA) to analyse the seismicity of the

Vrancea (Romania) region. The method (DFA)

requires integrating the data in advance. Nonetheless,

the integration just adds a constant value (one) to the

obtained h, the results being otherwise identical

(Arneodo et al., 1995). The four sets of data are

explained briefly below.

The Vrancea (Romania) region seismic activity

As a first application, we considered the

intermediate depth seismicity (60-200 km depth) of

the Vrancea region, Romania, between 1974-2002

(Fig. 1a). We have used an updated version of the

Trifu and Radulian (1991) catalogue. The magnitude

of completeness of the catalogue slightly increases

with depth, being on average around 2.6 (Trifu and

Radulian, 1991). Therefore, we have selected for

analysis earthquakes with M  2.6, and the resulting

catalogue has 4,254 events. A detailed description of

the catalogue and its main statistical features can be

found in Trifu et al. (1990), Trifu and Radulian

(1991) and Enescu et al. (2003).

The seismic activity before the 1995 Kobe earthquake

The second case studied is represented by the

crustal seismic activity which occurred in the

northern Hyogo area, Japan, from 1976 to January 17,

1995, the date of the Kobe earthquake (Mw = 6.9), in

a broad area surrounding the epicentre of the big

event (Fig. 1b). We have used the high quality

earthquake catalogue of the Disaster Prevention

Research Institute, Kyoto University, which for the

area and period under investigation, is complete in

earthquakes of magnitude M  MC = 1.5. The data set

(6,583 events) was thoroughly tested statistically by

Enescu and Ito (2001) and, in his Ph.D. thesis, by

Enescu (2004). Therefore we refer to these studies for

further details.

ETAS model simulation

The ETAS (Epidemic-Type Aftershock sequence)

model (Ogata, 1985, 1988) is a point process model

representing the activity of earthquakes of magnitude

Mc and larger occurring in a certain region during a

certain interval of time. We have simulated such a

process by using the following parameters: Mc = 1.5,

b = 1.0,  = 0.1, K = 0.04. c= 0.01,  = 0.4 and p =

1.2 (Fig. 1c). The first parameter represents the

magnitude of completeness for the simulated data.

Fig. 6 D(h) spectrum of the integrated inter-event times, in the case of Vrancea (Romania) integrated

earthquake intervals. The spectrum is quasi-monofractal, centered on 0.56. This value, slightly larger

than 0.5, is an indication of quasi-randomness. The inset shows the (q) spectrum, which is very close

to a straight line (an indication of monofractality).



The b-value is the slope of the frequency-magnitude

distribution of earthquakes. The following five

parameters represent the characteristics of

earthquakes in the simulated time series. Among

them, the last two parameters,  and p, are the most
important in describing the temporal pattern of

seismicity. Thus, the p value describes the decay rate

of aftershock activity, and the  value measures the

efficiency of an earthquake with a certain magnitude

to generate offspring, or aftershocks, in a wide sense.

For the physical interpretation of the other parameters

and more details, we refer to Ogata (1992). In this

study we have chosen a small  value to simulate a

sequence of 7,000 events, with “low productivity” of

aftershocks.

Simulation of seismicity by using a 2-D
heterogeneous fault embedded in a 3-D elastic half

space

The model we use (Ben-Zion, 1996) generates

seismicity along a fault segment that is 70 km long

and 17.5 km deep. The fault is divided into square

cells with dimensions of 550 m. The boundary

conditions and model parameters are compatible with

the observations along the central San Andreas Fault.

Eneva and Ben-Zion (1997) applied several pattern

recognition techniques to examine four realisations of

the model, with the same creep properties, but

different brittle properties. The simulated catalogue

of this study is identical to the case (A), described by

Eneva and Ben-Zion (1997), and is the result of a

fault model containing a Parkfield-type asperity of

size 25 km X 5 km. From now on we will refer to this

simulation as EBZ_A (25,880 events in total; Fig.

1d).

We decided to decluster both “real” earthquake

catalogues before analysis (i.e. to eliminate the

aftershock sequences from the catalogues) for two

main reasons:

a) We are more interested in searching for LRD

in the catalogue and therefore the elimination of

shorter-range dependent seismicity (i.e. aftershocks)

is considered appropriate, since it may influence the

results on LRD.

b) The magnitude of completeness might be

sub-evaluated immediately after the occurrence of

some larger events, during the periods and in the

regions under study. However, in the case of the

intermediate-depth Vrancea earthquakes, the number

of aftershocks is small even after major earthquakes,

such as those that occurred in 1977 (Mw = 7.4), 1986

(Mw = 7.1) and 1990 (Mw = 6.9). For the crustal,

shallow events in the Hyogo area, there are no major

earthquakes during the period of investigation.

The declustering was done by using Reasenberg’s

(1985) algorithm in the case of the shallow events in

the northern Kinki region (Enescu and Ito, 2001,

Enescu, 2004). For the Vrancea (Romania)

earthquakes a simplified declustering procedure was

adopted, taking advantage of the scarcity of

aftershocks for these intermediate-depth events

(Enescu et al., 2003).

4 Results and discussion

Figure 1 shows the series of inter-event times

between consecutive earthquakes for all four cases

studied. The graphs look rather similar, with no clear

distinctive characteristics. Only for the EBZ_A

simulation (Fig. 1d), some kind of regular and quasi-

periodic behaviour can be observed.

Fig. 7 Partition functions for q between 7 to -4 (from up to down, constant increment), for the

case of the “Kobe time series”. One can notice a clear crossover of scaling between Region 1

and Region 2. There is no reliable scaling in Region 3, due to the limited length of the data set.



Fig. 2 displays the “tau spectrum, ( (q)”,

obtained by using the WTMM method, in the case of a

“classic” example of a recursive fractal function: the

Generalized Devil’s Staircase, associated with the

Multinomial Cantor Measure. The measure is

constructed by dividing recursively the unit interval

[0, 1] in four sub-intervals of the same lengths and

distributing the “measure” or “mass”  among them,

with the weights p1, p2, p3 and p4 (p1+p2+p3+p4 =

1) (Peitgen et al., 1992, Appendix B). One can notice

the very good agreement between the theoretical and

the computed spectrum, for q values between –7 and

10. The spectrum is curved, which indicates the

multifractal nature of the time series. By using the

Legendre transform, we obtain the spectrum D(h),
represented in Fig. 3, which clearly confirms the non-

uniqueness of the Hölder exponent h, and thus the

multifractality of the process.

Figure 4a shows the CWT representation in the

case of the Vrancea region earthquake intervals. A

zoomed view is displayed in order to observe better

the clear self-similar (fractal) pattern. From an

intuitive point of view, the wavelet transform consists

of calculating a “resemblance index” between the

signal and the wavelet, in this case the second

derivative of the Gaussian. If a signal is similar to

itself at different scales, then the “resemblance index”

or wavelet coefficients also will be similar at different

scales. In the coefficients plot (Fig. 4a), which shows

scale on the vertical axes, this self-similarity

generates a characteristic pattern. We believe that this

is a very good demonstration of how well the wavelet

transform can reveal the fractal pattern of the seismic

activity at different times and scales. Figure 4b

displays the maxima lines of the CWT (i.e. the

WTMM tree) in the case of the Vrancea time series.

One can notice the branching structure of the WTMM
skeleton, in the (position, scale) coordinates, which

enlightens the hierarchical structure of time series

singularities.

 Figure 5 represents in a logarithmic plot the

partition functions Z (q,s) versus scale (s), obtained

from the WTMM skeleton representation (Fig. 4b).

One can notice the existence of a well-defined,

relatively broad scaling region, as it is indicated in the

figure. This scaling domain corresponds

approximately to time periods from days to several

years.

Figure 6 shows the D(h) plot in the case of the

Vrancea (Romania) integrated inter-event times. The

spectrum is narrow (i.e. the Hurst exponent (h) takes

values in a very limited range). The  spectrum,

represented in the inset of the figure, can be well

fitted by a straight line. These observations suggest

that our time series is the result of a monofractal (or

near-monofractal) process. One can also notice that

the “central” h value of the spectrum is close to 0.5,

which is an indication of the nearly random behaviour

of the time series. Enescu et al. (2003) obtained a

similar result, by using a “monofractal” approach, the

Detrended Fluctuation Analysis (DFA) technique. We

conclude that the defining temporal characteristics of

the analysed data set (M  2.8) are mono-fractality
and randomness. We cannot exclude, however, the

existence of a non-random (quasi-periodic?) pattern

for the major Vrancea earthquakes, as discussed by

Fig. 8 Logarithmic plot of the Amplitude of CWT along ridges (maxima lines of the

Continuous Wavelet Transform). At large scales there is only one well-defined, predominant

slope of the lines, while at smaller scales there is a range of slopes. Because of the large

number of WTMM lines, only a representative set was considered in this plot.



Enescu et al. (2003).

Figure 7 shows the partition functions Z(q,s)

computed from the WTMM skeleton of the second

time series considered here for analysis: the inter-

event times of the “Kobe sequence”. One can easily

notice that there are two distinct, well-defined,

scaling domains, at smaller scales and larger ones

respectively, as indicated in the figure. Further

evidence for the existence of these two scaling

regions is presented in Fig. 8, which displays the

amplitude of the Wavelet Transform along Ridges

(i.e. maxima lines). As Eq. (4) also suggests, the

slopes of these maxima lines correspond to the local

Hölder exponents (or local singularities) of a time

series. However, for most “real” signals, these “local”

slopes are intrinsically unstable (mainly because the

singularities are not isolated), thus making very

difficult the estimation of these local exponents. In

contrast, the partition function approach provides

global estimates of scaling, which are statistically

more robust. However, by closely examining Fig. 8,

one can notice that again there is a rather clear

crossover between small and large scales.

By computing the corresponding D(h) spectrum

for each of the two scaling domains, at small scales

(21 ~ 24)  we observed multifractal behaviour, while

at larger scales (24 ~ 29) the series is monofractal,

with an exponent of about 0.8. The first scaling

domain extends roughly from hours to days, while the

second one corresponds to periods of time up to 2-3

years. As is known, h > 0.5 could indicate the

presence of correlations (or long-range correlations),

but there is also another important factor that can

produce h > 0.5. It relates to the probability

distribution of the time series (in our case the

probability distribution of the inter-event times).

Thus, for series with a power law like probability

distribution (or other distributions characterised by

heavy tails), one observes h > 0.5. A method to

discriminate between LRD and the results of the

probability distribution effects is to analyse the

shuffled version of the signal. By shuffling the series,

the correlation is lost but the power law like

distribution, if present, remains unchanged. In other

words, the shuffled series would have h = 0.5 in the

first case (only LRD) and h > 0.5 in the second one

(only power law like distribution). We shuffled our

series and obtain h = 0.5, which excludes the

possibility of an h larger than 0.5 caused by the

probability distribution.

There is still one more factor that could

“induce” LRD-like characteristics: the presence of

trends within the data. As already mentioned, the

wavelet approach eliminates the effect of polynomial

trends, if an appropriate mother wavelet is used to

compute the CWT. However, there are situations

when other types of trends are present in the time

series, like for example power law or oscillatory

trends. As shown by Kantelhardt et al. (2001) and Hu

et al. (2001), both kinds of non-stationarities,

superposed on LRD data, could produce crossovers of

the scaling region. By carefully analysing our

sequence, we identified some oscillatory behaviour

and also periods of “accelerating seismicity” or

quiescence. As shown by Enescu and Ito (2001) and

Enescu (2004) anomalous earthquake frequency

Fig. 9 Multifractal spectrum in the case of ETAS model simulation. By analysing the

spectrum one can assume a quasi-monofractal, non-correlated process. A scaling

range between 22 and 29 was used to compute the D(h) spectrum.



changes occurred several years before the 1995 Kobe

earthquake. The increase and decrease of earthquake

frequency could have been associated with power law

(or higher order polynomial?) trends of the

earthquake intervals. Therefore, it is possible that

such rather complex non-stationary patterns are

responsible for the large value of h and thus for the

LRD signature obtained in this study. We would like

to note, however, that while a clear distinction should

be made between simple, trivial trends and genuine

long-range dependence, such a separation is probably

less definite in the case of trends having complex,

low-frequency characteristics. On the other hand,

more important to emphasise in our case is the

existence of two distinct scaling domains, both of

them associated with fluctuations that are intrinsic to

the data. More research has to be done, however, to

identify “the nature” of these fluctuations and their

physical background.

The computation of the D(h) spectrum at small

scales (21 to 24 ; see Fig. 7) showed multifractality,

which probably corresponds to inhomogeneous local

scaling behaviour of the time series. The result may

also reflect the incomplete detection and removal of

aftershocks. However, these findings are less reliable

due to the limited length of the data set and a rather

short scaling domain.

Our third case is concerned with the analysis of

a simulated earthquake sequence, obtained by using

the ETAS model. Figure 9 shows the D(h) spectrum

computed by using a scaling region of the partition

functions Z between 23 and 210. The plot shows a

monofractal spectrum, with a Hurst exponent, h, close

to 0.5. It is an expected finding for a sequence that

has low offspring productivity and thus behaves

quasi-randomly in the range of scales mentioned

above. The result demonstrates that the small number

of aftershocks, which occurred for very short periods

of time, could not influence significantly the

spectrum’s characteristics at larger scales.

Our final analysis is concerned with another

earthquake simulation, EBZ_A (see chapter 3). We

are primarily interested here to see if oscillatory

behaviour of the time series could induce a crossover

of scaling and apparent long-range correlation. Figure

10 shows the result of basic statistical testing of data.

We represent the cumulative probability distribution

of the inter-event times in a half-logarithmic plot. A

random occurrence of earthquakes corresponds to an

exponential distribution of the inter-event times and,

thus, in such a case, one would expect a straight line

of the plot. The evident departure from linearity is a

clear proof that the simulated earthquakes do not

occur randomly. The step-like shape of the plot

suggests that some recurrence intervals are strongly

preferred, or in other words that our data has several

quasi-periodicities.

Figure 11a presents the frequency of

earthquakes versus time (the total time span of the

earthquake sequence is 150 years). The graph

confirms the periodic behaviour found before. We

have also analysed the variation of CWT coefficients

with time and found the same oscillatory behaviour.

Fig. 11b displays the partition functions in the case of

the EBZ_A simulation, only for q = 2, 3 and 4. As in

the case of the “Kobe earthquake time series”, one

can see a segmented plot, which indicates different

characteristics across scales. It is beyond the scope of

this study to analyse in detail the influence of

oscillatory trends on the multifractal characteristics of

the analysed signal, as they are revealed by wavelet

analysis. Some preliminary results, however, indicate

that such a relation could be “quantified” and

employed as a useful tool to analyse the behaviour of

complex signals.

5. Conclusions

The present paper presents an in-depth analysis of

the multifractal and correlation properties of real and

simulated time series of earthquakes, using a wavelet-

based approach. Our study reveals the clear fractal

pattern of the analysed series of inter-event times and

their different scaling characteristics.

In the case of the intermediate depth seismic

activity in Vrancea, Romania, we found random and

monofractal behaviour that occurs for a rather broad

range of scales. The crustal seismic activity in the

Hyogo area, Japan, has different characteristics, the

most notable ones being the crossover in scaling and

the long-range correlation signature observed at

larger scales. It is not certain, however, what is the

“nature” of this LRD-like behaviour. We believe that

the complex non-stationarities of the data (trends) are

responsible for this result. There is some evidence in

support of our assumption, coming from theoretical

studies of LRD with superposed oscillatory or power

law trends.

The investigation of two simulated earthquake

sequences helped to understand the fractal and

correlation properties of the real data. Thus, the

Fig. 10  Cumulative probability plot of inter-event

times for EBZ_A simulation. A Weibull

probability distribution is fitted to the data. The

graph suggests the non-Poissonian character of

the time series and the existence of quasi-

periodicities (see text).



analysis of the ETAS model sequence, with a “low

productivity” of aftershocks, showed that the

clustering which occurs “locally” does not have any

influence on the results at larger scales. The

investigation of the time series of earthquakes,

simulated by using a cellular fault embedded in a 3-D

elastic medium, revealed the quasi-cyclic behaviour

of the earthquake occurrence. We have shown that

there are several crossovers of scaling, which are

probably associated with the oscillatory trends of the

simulated sequence of earthquakes.

The fractal characteristics of our time series were

mainly addressed in this study by computing “global

estimates of scaling”. However, by using a recently

developed technique (Struzik, 1999), one can

evaluate the Hölder exponent at an arbitrary location

and scale. Such an approach has led to interesting

findings in different fields, such as medicine (Ivanov

et al., 1999) and the economy (Struzik, 2001). In our

next studies we are planning to follow such a “local”

approach to study the complexity of earthquake time

series. Moreover, by using a 2-D wavelet transform,

we would like to extend our research from time series

to spatial patterns of seismicity.
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