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Synopsis

A three-dimensional analysis procedure for describing the behaviour of liquefied soil with a

free surface has been developed in the present study. The liquefied soil is modelled as a heavy,

incompressible viscous fluid. A set of three-dimensional Navier-Stokes equations and the

continuity equation are numerically solved under moving boundary conditions. For the purpose of

identifying the moving interface between the ambient fluid and the liquefied soil, the
volume-of-fluid technique (Hirt and Nicholas, 1981) is adopted. The predictive capability of the
proposed analysis procedure is discussed with reference to a class of dam-break problems in which

a column of water in air collapses under its own weight. The predicted performance compares

favourably with results of two-dimensional experiments of Martin and Moyce (1952), encouraging

further test of the three-dimensional analysis code developed.
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1. Introduction

In recent years, offshore pipeline engineering has
increasingly dealt with continental slopes and deep
waters. This means new problems have to be faced,
which were previously disregarded. Among these, the
hazard of sediment gravity flows has received attention
due to the richness in the physics involved and
environmental consequences (Hampton et. al, 1996;
Simpson, 1997). Sediment gravity flows are essentially
downslope currents of material denser than the ambient
water. They include subaqueous debris flows and
turbidity currents (Drago, 2002).

The importance of pore water pressures in the
dynamics of debris flows was pointed out by Iverson
(1997). The developments of pore water pressures may
exert significant effects on the process of subaqueous
liquefied sediment flow as well. Sassa et al. (2003)

developed a two-dimensional analysis code named
LIQSEDFLOW by combining a set of two-dimensional
Navier-Stokes equations for a fully liquefied soil domain
with a consolidation equation for a solidifying soil
domain.

The aim of this study is to extend LIQSEDFLOW so
as to deal with truly three-dimensional nature of liquefied
sediment flows. Toward this goal this paper restricts the
discussion into a fluid-dynamics module only. The
fluid-dynamics module is based on a set of
three-dimensional Navier-Stokes equations for a fully
liquefied soil domain that are to be combined with
consolidation equations for a solidifying soil domain.
The Navier-Stokes equations together with the equation
of continuity may be solved using a finite difference
method. Specifically, a simplified MAC method
(Amsden and Harlow, 1970) in terms of staggered
rectilinear grid is applied, and the Poisson equations



regarding the excess pore pressures may be solved using
the conjugate gradient (CG) method (Ferziger and Peric,
1997). For tracking the moving interface between the
ambient fluid and the liquefied soil, we will adopt the
volume-of-fluid (VOF) technique (Hirt and Nichols,
1981). An efficient volume-advection scheme (Hamzah,
2001) will also be used to ensure the conservation of
mass in the course of the liquefied flow.

We will then examine the validity of the proposed
analysis procedure against a class dam-break problems,
in which a column of water in air collapses under its own
weight.

2. The Numerical Model Developed

2.1 The governing equations

Consider a body of liquefied soil underwater. One of
the simplest yet meaningful modeling for the liquefied
soil is to regard it as a heavy, incompressible viscous
fluid with a free surface. There follow
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where u, v and w are the velocity in x, y and z directions,
respectively; p is the fluid density, g, g, and g, are
the components of gravitational acceleration, p is the
pressure, V is the kinematic viscosity.

2.2 Boundary conditions

Let Q be a fluid domain, bounded by X, inside
which consider a material surface moving with the fluid
whose equation is F(X,t) =0 (Fig. 1). The material
surface F'(X,¢) = 0 may be called a free surface or an
interface when it represents a surface across which the

properties of the medium are discontinuous.

Fig. 1 Solution domain for fluid flow problem

(1) Boundary conditions on =
On X, one or more components of fluid velocity
i can be prescribed, i.e.
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In Egs. (3) - (4), wis the prescribed velocity on X.
The last of these equations results from applying the
divergence theorem to the continuity equation and sets
an integral constraint on the normal component of the
velocity on 2. It is also possible to specify
Neumann-type boundary conditions on velocity, which
are conditions for the normal and/or tangential
components of the stress. These boundary conditions
take the form
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If the flow is two-dimensional and the boundary has
small curvature, the two stress conditions can be written

as
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In three dimensions, there are two local, linearly
independent, tangential directions. Provided boundary
conditions are always prescribed for each velocity
component at any boundary point, both Dirichlet or
Neumann conditions can be chosen, in either normal or
tangential directions. It is also possible to specify
different types of boundary conditions on different parts
of X.

An important case with stress conditions are free-slip
condition, in which the tangential stress is set to zero.
This boundary condition is not appropriate for real



viscous fluids, but it is useful in the numerical
approximations to the Navier-Stokes equations when the
effect of viscosity is relatively small and the boundary

layers near the walls cannot be resolved (Lemos, 1994).

(2) Free-surface boundary conditions

A free-surface is a material surface across which the
density is assumed to be discontinuous. A material
surface always consists of the same particles. The rate at
which any function varies for a moving particle is given
the material derivative of F. Thus the kinematical
relation defining a surface moving with the fluid is
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Conversely, by requiring the motion to be continuous, it
can be shown that a surface satisfying this equation
always consists of the same particles. Fixed or moving
walls also satisfy this equation, but in general Eq. (7)
should be regarded as another equation to be solved if the
position of the material surface F' cannot be known
a-priori.

The existence of a free surface poses three problems.
The first is how to determine of its position. The second
is how to determine of its time evolution. The third is the
prescription of the correct boundary conditions on all
points of the free surface. Since these boundary
conditions depend on the location and shape of the free
surface, the three problems are interrelated.

At a material surface, two transition relationships
must be satisfied. One is the continuity of velocity. The
other is the continuity of stress vector. The continuity of
velocity is a purely kinematical constraint and is called
the kinematic boundary condition. It is mathematically
expressed by Eq. (7). The continuity of the stress vector
is also required to prevent the material surface from
acquiring an infinite acceleration and is called the
dynamic boundary condition. The continuity of the
tangential component of the stress vector is expressed by
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In three-dimensional problems this equation must be

the following equality
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satisfled along different directions defined linearly
independent vectors { that lie on the local tangent plane
to F. In two-dimensional problems, Eq. (8) becomes a

scalar equation.
The continuity of the component of the stress vector,
gives the following equation

i,
P—H 0’.36 &, nn; .
me (9)

d"i d"j
p—Hu &—+E nn;+p;

J i

med 2

where py is the surface tension pressure. Surface tension
is important in capillary waves, which sustain wind stress
in the sea, and the combination of surface tension and air
entrainment originates much of the complexity of aerated
regions in breaking flow. Such effects are too complex to
be included in the present formulation. Therefore, for the
purposes of this work, surface tension is neglected.

If the free surface separates fluids of very different
densities, the dynamic free-surface boundary conditions
can be simplified. This is the case in fluid-gas interface,
in which the density and viscosity of the gas are much
smaller than those of the fluid. Consequently, the
pressure variations in the gas are much smaller if the
velocities and their derivatives have comparable
magnitude. Thus, the following approximate equations

may be used
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These equations are tangential and normal stress
conditions, respectively. The left-hand sides of Egs. (10)
and (11) refer to conditions in the fluid, whereas the
right-hand sides refer to conditions in the gas. If the fluid
is treated as an ideal fluid, the normal stress condition
is p=p,. This is called the inviscid free-surface
boundary condition.

2.3 Numerical method
(1) Computational mesh and internal obstacles
(a) Computational mesh

The governing equations (1) - (2) are discretized in a
non-uniform Eulerian mesh by using the MAC finite



difference method (Amsden and Harlow, 1970). The x-,
y- and z-momentum transports are respectively
calculated at the right, back and top faces of a cell and
the continuity equation is calculated at the center of the
cell (Fig. 2(a)). The computational domain is surrounded
by a layer of fictitious cells. These cells are used to set
velocity boundary conditions so that the same discretized

equations are used in the whole computational domain.

(b) Internal obstacles

Internal obstacles are may be introduced as a special
case of two-phase flow in such a way that the first phase
represents the fluid with a volume fraction ® and the
second phase represents obstacle with a volume fraction
equal to 1.0 - O (Kothe et al., 1994). The obstacle is
characterized as a fluid of infinite density and has zero
velocity. The volume fraction ® is assumed to take zero
in the obstacle material and take one in the fluid. The
partial flow flag ® becomes a perfect step function only
when obstacle boundaries coincide with mesh lines that
represent lines of constant x, y and z.

In general, obstacle boundaries can arbitrarily snake
through the mesh, cutting through cells. This gives rise
to ® values in the range (0.0<®<1.0) , which is
necessary to avoid a stair-step model of a curved interior
obstacle boundary. Those cells having values of ®
satisfying (0.0 < ® <1.0) are termed partial flow cells.
This is because a volumetric portion ® of such a cell is
open to flow while the remaining portion (1.0 — ®) is
occupied by an obstacle that impedes to flow.

Refer to Fig. 2(b) for the partial cell treatment with
internal obstacles (shaded region). In the presence of
internal obstacles, the finite difference equations are
facilitated by defining for each partial cell a volume
fraction ©,;, at the cell
fraction ©,,,,, at the right face, an area

center, an area

fraction ©, ;,,,, at the front face, and an area
fraction®, ., at the top face.
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Fig. 2 The 3-D staggered mesh arrangement
(a) Layout of dependent variables
(b) Partial cell treatment for internal obstacles

(2) Procedure of computation

The computational procedure proceeds as follows
(Fig. 3). Use explicit approximations to the Navier—
Stokes equations to compute the first guess for
new-time-level velocities. To satisfy the continuity
equation, perform pressure—velocity iterations. This
procedure is a variant of Newton’s method and is applied
to the Poisson equation with respect to pressure in
incompressible flow. More specifically, pressures are
iteratively adjusted in each cell and velocity changes
induced by the pressure changes are added to the
that have been
Navier—Stokes

velocities computed using the

equations with the predetermined
pressure field. The function F, defining fluid-occupied
regions, is updated to give the new fluid configuration.
All mesh cells are reflagged as full cells, surface cells or
empty cells. All variables are updated, the time and cycle
counters are incremented and the computational cycle is

restarted.

Reflag all cells
Compute pressure
interpolation factor

read
problem data

Initialize
dependent variables

Begin cycle
Explicit velocities

Adjust time step

Move new time
“» information into
old time arrays

Pressure-velocity |yeq

iteration

A 4

Advance F '7

Fig. 3 Flowchart of the computer program

(3) Finite-difference approximations to momentum
conservation equations
A standard finite-difference approximation to Egs.
(2) in MAC-type methods is expressed as
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Following Hirt and Nichols (1981), the convective
terms in Egs. (12) are discretized using a combination of
centered-difference

first-order donor-cell and

approximations. The expression for FUX is then given
by
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When o =0, expression (13a) reduces to the second-
order accurate centered-difference approximation. For
a =1, the first-order donor-cell form is recovered. The
expressions for FUY and FUZ are given by
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Likewise, the approximations for the convective

accelerations in the y-direction are:
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The approximations for the convective accelerations in
the z-direction read:

u'.
FWX =252 [Ax  DWL+ Ax, ,,DWR
Ax, (15a)
+asgnl;.. A%, DWL—Ax, ,,DWR)
Fwy = Y Ay, DWB+ Ay, DWF
Ay, (15b)
+asgnl! .. Ay, DWB= Ay, ,DWF)|
Fwz = Wik [Az,,DWA+ Az, DWT
Az, (15¢)

+asgn(w!,., Az, . DWA— Az, DWT)|
where

DWR = (szirl,j,kJrl/Z - Wirfj,k+l/2 )/Axm/z
DWL = (Wirfj,kﬂ/z - Win—l,_/,k+1/2 )/Axi—l/z



DWB = (W; Jh2 T Vzn J-Lk+/2 )/ Ay j-1/2
DWT =\w; k32 T W:j,k+1/2 )/ Az,
DwA = (w.'ij/z — W k)2 )/ Az,

i

DWF = (Wzn JHLk+12 VZ k12 )/ Ay j+1/2
( n

Ax, = Axy, + Ay, + aSgn(”:j,kﬂ/z)
X (Axm/z - Axi—l/Z)

Ay, = Ayj+1/2 + ij—l/Z + O‘Sgn(vz]‘,kﬂ/z)
X (ij'u/z - ij—l/z)
Az, =Nz, +Az, + aSgn(sz,ku/z XAZkH - Azk)

Here Ax,,, = (Ax,,, +Ax)/2, AV =&y, +AJ’_,-)/2
and Az, = (Az,,, +Az,)/2 . When the quantities in
the finite-difference expressions are required at positions
where they are not defined (eg. v, , in FUY
u; 2, 0 FVX, etc), they are interpolated before using
them in the finite-difference equations. When a product
between any quantities is required, the quantities are
averaged (interpolated) before the product is formed.
Lemos (1994) reduced a finite-difference to a
differential equation by expanding each of the finite
difference-function terms in a Taylor series. The lowest
order terms in the expansion represent the original
differential equation being approximated. All higher
order terms constitute the truncation errors caused by the
finite-difference approximation. The stability of a finite-
difference equation can often be determined from an
examination of these truncation errors. If only diffusion
truncation errors are retained to order Az and Ax?, the
finite-difference equations (12) can be reduced to
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In comparing Egs. (16) with Egs. (2), we find
additional terms in Egs. (16). Those terms involving
Atresult from the first-order approximation to du/ot,
ov/ot and Ow/ot, while terms containing Ax*, Ay* or
Az* stem from evaluating undefined variables by simple
average formulas and from computing derivatives of
u?, v2, w*, uv, uw and vw terms. These additional
terms represent negative diffusion coefficients so that the
finite-difference scheme might yield growing unstable
solutions if the viscosity v is smaller than the truncation
errors terms. Thus, according to Lemos (1994), the
following discretization of the viscous term in Egs. (12)
was adopted:
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(4) Finite-difference approximations to continuity
equation
Velocities computed from Egs. (12) in general will

7+l

not satisfy the continuity equation because p”" is not
available. To satisfy the continuity equation and to
determine the correct pressure, values of pressures and
velocities must be adjusted in each cell that is occupied
by fluid. In a full cell, pressure is changed in such a way
that the divergence D, left by the first step is driven to
zero; in a free-surface cell, the cell pressure may be
determined in such a way that a linear interpolation
between the pressure in the surface and adjacent full cell

yields the wanted value p; (usually zero) at the



free-surface location. In both cases, the velocities located
on the sides of the cell are simultaneously adjusted, in
response to the pressure change in the cell.

The pressure in a full cell is split into an old

time-level component and a correction such that
Ap; i = p,n;dk —Piix (13)

Then we can work out the pressure derivatives:
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Substituting these in the momentum equations gives:
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Let us define the following quantities:
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Then the momentum equations are written as:
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The iterative method starts with calculating a first
estimate of the velocities with a fully explicit guess
(4p" =0):
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For an improved guess the pressure correction Ap™®

should be included such that
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Substitute these into the continuity equation. Then, a
form of Poisson equation results:
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This equation can be solved for Ap'® . For this purpose
we used finite differences taking into consideration the

variable mesh to obtain:
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The pressure correction Ap'® is now computed from the

requirement D), = 0 such that
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Convergence of Eq. (24), which is a variant of the

Newton-Raphson

accelerated if D), is multiplied by an over-relaxation

factor w such that] < @ <2. An optimum value of  is
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relaxation technique, can be

often equal to 1.7; an unstable iteration results if @
exceeds 2 (Hirt and Cook, 1972).

In order to deal with a free surface, we need an
additional procedure because the location of the free
surface is unknown a priori. The procedure adopted
herein is described in brief as follows (refer to Fig. 4).
The surface cell pressure p;;; may be determined by a
linear interpolation (or extrapolation) between the
surface pressure, p,, and pressure, py, inside the fluid.
Namely,

ik =(1-py+p, 25)

where { =d, /d is the ratio of the distance between the
cell centers to the distance between the free surface and
the center of the neighbor interpolation cell. When the
surface tension effect is neglected, p, can be set zero.
Equation (24) can be used to compute the pressure
correction for a surface cell, provided S is replaced by

S=(1-)py +p, - Pijxk (26)

After the pressure correction is found from Eq. (24),
neighbor velocities are updated using Eq. (22). The
pressure correction is always computed using the most
up-to-date velocities.
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Fig. 4 Sketch for pressure interpolation procedure

In summary, the procedure of pressure iteration can
be stated as follows (refer to Fig 5). The correction of
pressure is calculated from either Eq. (24) for full cells or
from Eq. (26) for free surface cells. The corrected
pressure is then obtained from Eq. (27). The velocities
compatible with the new corrected pressure are obtained
from Egs. (28). This process is done iteratively until
the D, ;,
velocity field is in required accuracy.

term becomes sufficiently small such that the

‘ Temporary velocity (u, v, w)
and guess pressure (p)

NoYesﬁv
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Fig. 5 Flowchart of pressure-velocity iteration

(5) Numerical treatment of free surfaces

A free surface poses three problems in numerical
fluid dynamics: the surface must be numerically
described; the surface must be advanced in time; and



appropriate boundary conditions must be applied at the
location of the surface. These three problems are
interrelated, because the algorithm used to advance the
free surface in time depends on the method used to
define the free surface, and the boundary conditions can
only be applied after the location and shape of the
surface are known.

(a) Free-surface representation methods

The main issue is that free-surface representation
methods should be able to treat any free surface
configuration (nearly horizontal, nearly vertical, bubbles,
drops, overturning surfaces, etc) economically and
without logical problems. Two types of such methods
have been used for defining the location and shape of
free surfaces: line/interface methods and region (or
volume) methods. Examples of the first type are the
height function and line segment methods. Examples of
region methods are the use of marker particles and those
with “volume of fluid” techniques.

Height functions are the simplest method for treating
free surface problems. The free surface is defined be a
distance from a reference line. Thus, for a free surface
that is nearly horizontal, the reference line may be the
bottom of the mesh and#n =7(x,?), the height above
that datum, may be approximated by a set of discrete
values of 7 . In this approach, the slope of the
surface 077/0x must be smaller than the mesh aspect
ratio Ay/Ax . Furthermore, the method does not work at
all with multiple surfaces.

Line segments are a generalization of the
height-function method. In this method, the free surface
is defined as a chain of short segments. These segments
are defined by sets of ordered points whose coordinates
are stored. The length of such a segment should be
smaller than the minimum cell size. More storage is
required than in the previous case, but the method is not
limited to single-valued surfaces. There is one important
difficulty, however. When surfaces intersect or when a
surface fold over itself, segment chains must be
reordered. Detection of such intersections and efficient
reordering are difficult if not impossible.

Thus, the methods which define fluid regions rather
than interfaces are advantageous in situations involving
multiple free boundaries. This eliminates all ordering
problems found in line/surface methods.

The first of the region methods may be the
marker-and-cell (MAC) method. Storage requirements

with this method increase significantly, because a large
number of particle coordinates must be stored. It is also
time consuming to move all marker particles (an average
of four to ten marker particles per cell is needed). A free
surface is defined as a cell that contains marker particles
and has at least one neighbour cell without marker
particles. The actual location of the free-surface position
within the cell is determined by an additional
computation based on the distribution of marker particles
within the cell.

Marker particle methods offer the distinct advantage
of eliminating all logic problems associated with
intersecting surfaces. This is primarily a consequence of
the fact that while particles have to be ordered when
marking regions. The particle method is also readily
extendable to three-dimensional computations, provided
the increased storage requirements can be tolerated.

In retrospect, it appears that a method that defines
fluid regions rather than interfaces offers the advantage
of logical simplicity for situations involving intersecting
multiple free-surface boundaries. While the marker
particle method provides this simplicity, it suffers from a
significant increase in required computer storage. It also
requires additional computational time to move all the
points to new locations. It is natural, therefore, to seek an
alternative that shares the region defining property
without an excessive use of computer resources. Such a
method is described in the next section.

(b) YVolume-of-fluid (VOF) method

In the VOF method, a free surface is represented on
the fixed grids using fractional fluid volume in a cell (or
in a control volume). Each rectangle in Fig. 6 denotes a
unit cell. The fractional volume of fluid, F, is defined
such that it is equal to unity at any point occupied by
fluid and zero otherwise (Hirt and Nichols, 1981). As the
free surface moves, the fractional volume-of-fluid of
each cell is updated. In a numerical sense, every cell is
classified into three categories according to the value of
F (see Fig. 6). If a cell is completely filled with fluid, the
fractional volume-of-fluid of the cell is unity (/' = 1) and
the cell is considered to be in the main flow region. If a
cell is empty (F = 0), it belongs to an empty region and
its contribution to the computation of the flow field is
excluded. A cell is considered to be on the free surface
when the value of F lies between 0 and 1 (0( F'(1).

Although the VOF technique can locate free
boundaries nearly as well as a distribution of marker



particles, and with a minimum of stored information, the
method is worthless unless an algorithm can be devised
for accurately computing the evaluation of the F filled.
The time dependence of F is governed by Eq. (7). The
fact that F is a step function with values of zero or one
permits the use of a flux approximation that preserves its
discontinuous nature. This approximation, referred to as
the donor-acceptor scheme (Hirt and Nichols, 1981), is
described in more detail in the next section.
In  summary, the VOF method

with minimum

offers a

region-following scheme storage
requirements. Furthermore, because it follows regions

rather than surfaces, all logic problems associated with

intersecting surfaces are avoided with the VOF technique.

The method is also applicable to three-dimensional
computations, where its conservative use of stored
information is highly advatageous.

Thus, the VOF method provides a simple and
economical way to track free surface boundaries in two-
or three-dimensional meshes. In principle, the method
could be used to track surfaces of discontinuity in
material properties, in tangential velocity, or any other
property. The particular case being represented
determines the specific boundary condition that must be
applied at the location of the boundary. For situations
where the surface does not remain fixed in the fluid, but
has some additional relative motion, the equation of

motion, Eq. (7), should be modified.
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Fig. 6 Numerical methods for volume-of-fluid method

(¢) Methods for updating a free surface

The kinematic condition for the advection of the
VOF function (Eq. 7) can be written in finite difference
form as:

Fn+1 Fn

ijk = T jk

oF oF
Al u—+v—-=+w
Ox oy

oF
EJ (29)

The convective terms may be rearranged to divergence
form, minus a divergence correction term:

WO OF 08 _ o) o)

Ox oy oz ox Oy

+_6(Fw) - F[a—u + i +6_wj

oz ox Oy Oz

(30)

Substituting (30) into (29) we get the divergence part:

F o =Fy A{a(F”)ﬁ(Fv)ﬁ(Fw)} G1)
7 ox oy 0z

which is then updated with the correction:

n+l
et S . [Ou oOv ow
E//lc =F, , —AtF]; k( ox + 5 + EJ (32)

This sequence insures conservative advection of F
(Kothe et al., 1994). Ordinarily, the correction in (32)
would be zero due to continuity. However, it has been
found desirable to include the correction numerically
because although the magnitude is small yet non-zero
and of the order of eAf .

The divergence equation for F can be finite
differenced for the advection term in the x-direction in
terms of an upstream donor (d) cell at (id, j,k) and a
downstream acceptor (@) cell at (ia, j, k) (if ul"jlk)O,

idm=i-1, id=i, ia=i+1, otherwise, ia=1,
id=i+1,idn=i+2:
. . AA(Fu)
F:'d,j‘k = F:‘d,_/‘k - Ax, o)
o = F | ArA(Fu)

ia
Here the amount of F fluxed across the cell face in At is:

AA(Fu)= min(FiudJ .

1
::/2] kAt| + CF)C’

(34)
FyiAx,)
with the correction factor:

CF, = max[(Edm,j,k - E‘ad,_/’,k] ;1:1}2 J kAt|

- (F:'drn»fak ~Fajx )Axid ’0]

In these expressions, superscript @ denotes the acceptor

(35)

cell, subscript d denotes the donor cell, and double
subscript ad corresponds to either @ or d depending on
the surface orientation. Double subscript dm denotes the
upstream of the donor cell and Ax,, stands for the width
of the donor cell. The operator min in Eq. (34) prevents



the fluxing of more F from the donor cell than it has to
give, while the operator max in Eq. (35) accounts for an
additional F flux, CF,, if the amount of void (1-F) to be
fluxed exceeds the amount of void available in the donor
cell. Fig. 7 provides a pictorial explanation of Eq. (34),
where the shaded region represents the amount of fluid in
each cell and the striped region represents the amount of
fluid to be fluxed. The donor and acceptor cells are
defined in Fig. 7a for fluxing across a vertical cell face.
Following Nichols and Hirt (1981), the rules for
choosing ad =a or ad=d are the following.
When ad =d, the flux is an ordinary donor-cell
value, F' = F, d|V| , in which the F value in the donor cell
is used to define the fractional area of the cell face
fluxing, as shown in Fig. 7b. Whenad = a, the value of
F in the acceptor cell is used to define the fractional area
of the cell face across which fluid is flowing. In case (¢)
of Fig. 7, all the fluid in the donor cell is fluxed because
everything lying between the dashed line and the flux
boundary moves into the acceptor cell. In case (d) of

, must be
fluxed, the extra fluid between the dashed line and the
flux boundary is equal to the CF’, value in Eq. (34).

| UA o

Flux

Upstream | Donor Acceptor Upstream | Donor Acceptor
(a) (b) ad=d
|
)
Upstream |Donor | Acceptor Upstream |Donor Acceptor

(c) ad=a (d) ad=a
Fig. 7 Examples of free-surface shapes used in the

advection of '

Likewise, the approximations for F-convection in
y-direction can be expressed as:

~ AIA\F
F;‘,jd,k = F;Zd,k - ! ( V)
Ay id
. AtA(Fv) (36)
F:,j F:nja k A

Jja
Here the amount of F fluxed across the cell face in At is:

AIA(Fv) = min(Fl., stk VLN + CF,, -
F, Jd Ay jd

with the correction factor:

CF;, - max[(}?;,jquk —F: dkl znﬁl/z kAt| (38)

de k)Ay]d »O]

The F-convection in z-direction can be expressed as:

_( tjdmk

~ AtA(F
F:',jkd = i:}kd - ( W)
Az,
(39)
A . AA(Fw)
F:’,j,ka = E,j,ka Azka

Here the amount of F fluxed across the cell face in Az is:

AtA(Fw) = min(F,., kad

n+l
W, A+ CF,,
i,j,k+1/2 | (40)
E,./\dezkd)

with the correction factor:

n+l
CF, = max[(Fi,/,kdm —-F, Jokad ]Wi,;,kﬂ/z Af |

41
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Finally, the divergence correction is added:

= F o+ AF) D] “2)
(d) Discretization of free-surface boundary

conditions

After deciding which method will be used for
free-surface representation and updating, it is necessary
to impose the correct stress conditions at the free-surface
location. For a three-dimensional surface, the normal and
tangential stress conditions are

p—2y[%nf+%ni+%nf
Q+Q +[@+@jn n, (43)
& & " & &
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wheren, ,n, andn, are the components of the unit vector
normal to the surface, and 7,7, ,1,.,0,,,1,,,1,, are
components of the tangential unit vector. In these
equations it is assumed that the influence of the gas on
the fluid is negligible. For a free surface of small

curvature these conditions can be replaced by the simpler

expressions
o
-2 =0 45
p=2u— (45)
ou, du
—4+—L1=0 46
u( = " j (46)

Usually, these simplified stress conditions are used in
place of completing stress conditions because the former
is rigorous yet difficult to use (Nichols and Hirt, 1971).

The normal stress condition is imposed as a
boundary condition for the pressure. Incorrect normal
stress conditions result in a loss of momentum
conservation in free-surface cells; the free surface may
move too slowly or too fast, and the calculation may
become unstable. The type of pressure boundary
conditions in free surface codes (MAC and SMAC),
consisted of simply setting p, ;, = p, , regardless of the
position of the surface within the cell. This technique
was not very satisfactory, however. An improved
method consists of determining the free-surface position
within the cell (Nichols and Hirt, 1971). Then, the
pressure on the center of the surface cell is set in such a
way that an interpolation (or extrapolation) between the
surface cell and the adjacent interpolation cell yields
p = p, at the free surface (refer to Fig. 4) is given by Eq.
(25)

The correct tangential stress condition is given by Eq.

(46). To apply this condition, it is necessary to know the
position and shape of the free surface. If the surface cell
has only one neighboring empty cell, the boundary
velocity is set to ensure the vanishing of the velocity
divergence. When there are two or more empty
neighbour cells, the individual contributions to the

divergence equation are separately set to zero. Suppose,
for instance, that there are two adjacent surface cells
(i, j,k)and (i +1, j, k) in such a way that they have two
adjacent empty cells(i, j,k+1)and (i+1,j,k+1) (see
Fig. 8). Accordingly, tangential stress conditions may be
imposed by setting the velocities at all boundaries
between the surface and empty cells in terms of the
discritized continuity equation for the surface cell.
Namely,

u. = U, .
_ i+1/2,j.k i-1/2,/ .k
Wi jarja = Wijk-y2 — Az, K—Ax

i

| Vigryak T Vi
Ay,

(47
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Wit jk-1/2

Ui, jk-1 Uiry2,jk-1

Wi jk-3/2

Fig. 8 Sketch for discretized tangential stress condition

(e) Fluid volume adjustments

The value AF computed using the above procedure
is subtracted from the donor cell and added to the
acceptor cell. This process is repeated for all cell
boundaries in the mesh, and the resulting F values define
the new fluid configuration. Occasionally, the
time-advanced F' values may become slightly less than
zero, or slightly greater than unity. A remedy for these
situations may be done as follows. After the
F-convection calculation has been completed, the mesh
is swept to reset values of F' being less than zero back to
zero, and values of F being greater than one back to one.
Accumulated changes in fluid volume introduced by
these adjustments during a calculation are recorded and
may be printed out at any time.

There is another adjustment needed in F in order that
it may be used as a surface cell flag. A surface cell has
values of F' lying between zero and one and at least one
neighbouring cell that is empty. However, F values
cannot be tested against exact numbers such as zero and



one because round off error would cause spurious results.
Instead, a cell is defined to be empty when F' is less
than ¢, and to be full when F is greater than(l—¢&;) .
Here g, is typically 10, If, after advection, a cell has an
F value less than g, , this F' is set to zero and all
neighbouring full cells become surface cells by having
their F values reduced from unity by an amount 1.1g .
These changes in F are also included in the accumulated
volume change. It is observed that typically volume
errors after hundreds of cycles are only a fraction of one
per cent of the total fluid volume.

(f) Determining interfaces within a cell

For the accurate application of the normal-stress
boundary condition, it is necessary to determine the
location of the free surface within the surface cell. In
addition, it may be necessary to know the local
free-surface curvature (e.g. if surface tension effects are
to be included). In VOF technique, it is assumed that the
boundary can be approximated by a straight line cutting
through the cell. By first determining the slope of this
line, it can be moved across the cell to a position that
intersects the known amount of fluid volume in the cell.

For VOF slope calculation, a cell block is used in this
study so that the slope between a surface cell and a
neighboring cell does not lose its accuracy even though
the neighbouring cell is empty. A cell block is
constructed of a surface cell and its eight neighbouring
cells as shown in Fig. 8. For calculating the slope at the
face of a surface cell by use of neighbouring cells, it is
assumed that the interface of the free surface can be
represented by a single-valued function f{x) or fy) in the
x- or y-direction of the real computational domain. If the
surface is represented as f{x), f{x) can be approximated as
three cell columns that are the sum of the volume
fraction from cell (j-1) to cell (j+1) for each cell column
of Fig. 9:

(Aku; lk)
k=j
1, ==L o (48a)
J+l
(Akuz k )
k=j-1
= 48a
Ji I (482)
J+1
(Ayk F, k)
k=j-1
Jin=—"—F— I (48a)
where H = Z Ay, and /= 0 are taken as the bottom

edge of the (/-1) row of the cells.

The average slope at the center of a cell block is
calculated by equation (49)
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A similar calculation can be made for of /oy , i.e.
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where H = ZM Ax, and f'= 0 are taken as the bottom

edge of the (j-1) row of the cells.

y
k

F@-1j+1,k) | F@iyjHl,k) [FG+1,+1,k)

| surfacg cell
FU-1,,k)

F l,j‘,ng\ IE‘(I‘.§ 1,/‘,1’\) > x

F(-1j-1k) | Fj-1k) |Fi+1,j-1,k)

KAy D)o AV(i) —>fe-(i+ o

<~ Ax(i —1)>{«— Ax(i) —j+ Ax(i + 1)
Fig. 9 Definition of cell block

The height difference dH in each-direction, as shown
in Fig. 10 can be expressed as

dH = |m,dé|+ |m,dn| (52)
where m, =0f /05 and m, =of [on .

Once the surface slope and the side occupied by fluid
have been determined, a line can be constructed in the

cell with the correct amount of fluid volume lying on the
fluid side. This line is used as an approximation to the



actual surface and provides the information necessary to
calculate the pressure interpolation factor £ for the
application of the free-surface pressure boundary
conditions (Eq. 25).
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Fig. 10 Representation of height in a cell

(6) Mesh boundary conditions

At the mesh boundaries, several types of boundary
conditions may be imposed using the layer of the
fictitious cells that surround the mesh. The built-in types
of boundary conditions are as follows: free-slip, no-slip,
continuative and constant pressure boundary conditions.
Consider a left boundary, for instance, as illustrated in
Fig.11. If this is a rigid free-slip wall, then the normal
velocity and the gradient of the tangential velocity are
both set zero. Namely,

n+tl _ . oo+l on+l o n+l  _  on+l o,
Ui =05 Vi =Vajus Wi = Wajis
(53a)

n+l n+l | n+l  _ _ n+l
Flx = Fius Prjx = Pajs

If the left boundary is a rigid no-slip wall, then both of
the normal and tangential velocities are set to zero. That

is to say,
n+l
un+] _ 0 vn+l _ _vz,j,kAxl .
Lk =BV =" >
/ / Ax,
1 (53b)
71+
n+l _W2,_/'J€ 1 ,Fn+1 _Fn+1 ool n+l
Wik = 7 ok = 1200 Prjk = Pk
Ax,

For a continuative or outflow boundary, a prescription is
needed so that the fluid may flow out of the domain
computation. The continuative boundary conditions
imposed at the left wall are expressed as

n+l n+l n+l n+l n+l n+l

Uijke =W 0 Vije = Vajges Wijk = Wa ks

n+l _ o+l n+l o+l
Flx = Fjs Prje = Pajx

(53¢)
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Fig. 11 Velocity boundary conditions near the left wall

(7) Numerical stability

Numerical calculations often have computed
quantities that develop large high-frequency oscillations
in space and time. This behavior is usually referred to as
numerical instability, especially if the physical problem
has unstable solutions and if the calculated results exhibit
significant variations over distances comparable to a cell
width or over times comparable to the time increment. If
this happens, the accuracy of the calculated results
cannot be relied on. To prevent such numerical
instability or inaccuracy, certain restrictions should be
observed in defining the mesh increments, the time
increment and the upstream differencing parameter «.
The mesh increments should be chosen small enough
to resolve the expected spatial variations in all dependent
variables. Once a mesh has been chosen, the choice of
the time increment necessary for stability is governed by
two restrictions. First, fluid must not flow across more
than one computational cell in one time step because the
finite difference equations assume fluxes only between
adjacent cells. Thus, the time increment must satisfy the

following inequality

CAx CAy CrAz} 8

M

where the minimum is evaluated with respect to every

Aty (min{

b
vl

cell in the mesh andC,is a Courant number. Second,
when a nonzero value of kinematic viscosity is used, the
momentum must not diffuse more than approximately
one cell in one time step. A linear stability analysis shows
that this limitation implies

1 AXCAAZ?
VAL, (—7— > 5
2 (Ax +AY" +Az )

(33)

With At chosen to satisfy the above two inequalities,
the last parameter needed to ensure numerical stability is
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In the present computation code, the value of « is
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automatically adjusted to be:

uar

a = min| 1.2 max
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3. Simulation Results

v
Ay

wAt
Az

> >

3.1 Two-dimensional dam-break problem

We applied the proposed analysis procedure to a
two-dimensional dam-break problem in which a column
of water in air collapses under its own weight. This
problem is selected because the initial flow configuration
is simple and the experimental data are available. The
computed results are compared with the experimental
results by Martin and Moyce (1952).

The definition of the dam-break problem is
illustrated in Fig. 12. The rectangular computational
domain of size 5a x a x 1.5a is subdivided into a
non-uniform mesh of 100 grids in the x-direction, 20
grids in the y-direction and 30 grids in the z-direction.
The wvariables used in the computation are all
non-dimensional variables by choosing a as reference
length and ng_a as reference velocity. The non-
dimensional viscous coefﬁcientv/ [a4/(g.a)]is chosen
at 10° and the non-dimensional time increment
AT =Atyg./a
acceleration. In the problem under

is taken as 0.005, where g, is
gravitational
discussion a rectangular column of water is initially
confined between a vertical wall and a gate and is in
hydrostatic equilibrium. The water column is 1.0-unit
wide and 1.0-unit high. Gravity is acting downward with
unit magnitude. At the beginning of the calculation, the
right wall (dam face) is removed and the reservoir dam
water is allowed to flow out on to a dry horizontal floor.
It can be seen from Fig. 13 that the present analysis
procedure captures the essential features of the free
surface flow. The time histories of the water front
location and water column height are shown in Fig. 14.
The experimental results of Martin and Moyce (1952)
with a = 0.06 m, b = 0.06 m and the calculated results in
terms of two-dimensional LIQSEDFLOW (Sassa et. al.,
2003) are also plotted in this figure. It is seen that the
predicted performance compares favourably with the

observed flow behaviour, validating the three-
dimensional analysis code developed.

The application of the 3D-analysis code truly
three-dimensional flow problems is ongoing and will be

published in the near future.

removed at t=0

z-direction

z-direction

z-direction

Fig. 13 Calculated fluid configurations in two-
dimensional dam-break problem at three different
times: (a) 7=0.25; (c) T=1.5 and (c) T=3.0
T represent initial fluid configuration)
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3.2 Three-dimensional dam-break problem LIRS
The definition of the dam-break problem is Uiy ==
illustrated in Fig. 15. The rectangular computational

domain of size 5 x 1.2 x 1.5 is subdivided into a
non-uniform mesh of 100 grids in the x-direction, 24
grids in the y-direction and 30 grids in the z-direction. A

gate 0.3 m wide and 1.5 m high is provisioned in

computational domain. For numerical conditions, the

same condition as the two-dimensional dam-break

problem is applied. In the problem under discussion a

z-direction

rectangular column of water is initially confined in a
reservoir and is in hydrostatic equilibrium. At the
beginning of the calculation, the gate is removed and the
water is allowed to flow out on to a dry horizontal floor.
It is seen from Fig. 16 that the present analysis
procedure captures the essential features of the

three-dimensional free surface flow, warranting further

Fig.
scrutiny of the flow-out processes.

16 Calculated fluid configurations in three-

dimensional dam-break problem at three different
times: (a) 7=0.5; (c) T=1.5and (¢c) T=5.0
(

represent initial fluid configuration)




4. Conclusions

A  three-dimensional analysis procedure for
describing the flow-out behaviour of liquefied soil with a
free surface has been developed. The principal
conclusions derived are as follows:

The predicted performance compares favourably
with the results of two-dimensional experiments of
Martin and Moyce (1952). The calculated results are also
consistent with those predicted in terms of two-
dimensional LIQSEDFLOW (Sassa et al., 2003).

A truly three-dimensional dam-break problem is
worked out using the analysis code developed, inspiring
a better physical perception.

It is a subject for future studies to consistently
consider the effect of soil consolidation and other such
sedimentary processes in a manner compatible with the
present fluid-dynamics module. By doing so, it is hoped
that the three-dimensional analysis procedure will find
wider applications to sediment-related processes that

operate in waterfronts and coastal oceans.
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