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Synopsis 

     Higher resolution topographic information contained in the topographic index of 

TOPMODEL is lost when a coarse grid resolution DEMs are used. This research has 

introduced a resolution factor and a fractal method for scaled steepest slope in the 

topographic index to account for the scale effect in up-slope contributing area per unit 

contour length and slopes respectively. The method being successful to derive a 

topographic index distribution of a fine resolution DEM by using only coarse resolution 

DEM, has been coupled with TOPMODEL to develop Scale Invariant TOPMODEL. The 

simulated runoff from the Scale Invariant TOPMODEL applied at 1000m grid resolution 

DEM of Kamishiiba catchment (210 km2) in Japan, with the same set of effective parameter 

values derived from 50m grid resolution DEM, have matched with the simulated runoff of 

the 50m DEM resolution TOPMODEL. 

 

Keywords: scale invariant, downscale, fractal method, topographic index distribution, 

TOPMODEL 

 

 

1.  Introduction 
 

Despite the enormous capacity of today’s (and 

tomorrow’s) information technologies, the 

complexity of the Earth’s surface is such that the 

most voluminous descriptions are still only coarse 

generalizations of what is actually present 

(Goodchild, 2001). This implies that the need for 

continued and sustained research on scale issues is 

therefore self-evident. In the field of hydrology, since 

the introduction of the first blueprint of a distributed 

hydrological model (Freeze and Harlan, 1969) the 

desire to develop more physically realistic distributed 

models has been motivated for forecasting changes in 

hydrological behavior due to a variety of land use 

and climate changes and for hydrologic predictions in 

ungauged basins. An important part of this goal is to 

replace the dependence of models on calibrated 

‘effective parameters’ with physically realistic 

process descriptions that use parameters inferred from 



 

the direct observation of land surface conditions. 

As the spatial extent is expanded beyond point 

experiments to larger watershed regions, the direct 

extension of the point models requires an estimation 

of the distribution of model parameters and process 

computations over the heterogeneous land surface. If 

a distribution of a set of spatial variables required for 

a given hydrological model (e.g. surface slope, soil 

hydraulic conductivity) can be described by a joint 

density function, then digital elevation models 

(DEMs) and geographical information systems 

(GISs) may be evaluated as a tool for estimating this 

function. Now the question to be asked is whether 

current GISs and current available spatial data sets 

are sufficient to adequately estimate these density 

functions. 

Several researches (Quinn et al., 1991; Wolock 

and Price, 1994; Zhang and Montgomery, 1994; 

Iorgulescu and Jordan, 1994; Bruneau et al., 1995; 

Fran chini et al., 1996; Saulnier et al., 1997; 

Mendicino and Sole, 1997) have discussed the effects 

of digital elevation model map scale and data 

resolution on the distribution of the topographic 

index, concluding that there is interdependence 

between DEM scale and topographic index 

distribution. Lack of a method for the translation of 

the scale dependence relations into effective 

hydrological models have posed a serious problem 

for the ungauged basins of developing countries 

where only coarse resolution DEM data, e.g. 30 arc 

second resolution DEM data set in GTOPO30, USGS 

web site, is available (Pradhan and Jha, 2003). 

Band and Moore (1995) point out that higher 

frequency topographic information is lost as the 

larger sampling dimensions of the grids act as filter. 

This is one of the nature and extent of the scale 

problem and without a method to solve this problem, 

the consequence is even more serious to prediction in 

ungauged basins. If this argument is accepted a 

hydrological modelers should seek methods to 

acquire a more realistic subgrid scale 

parameterization. 

When analyzing physically based models we see 

that models such as SHE (Abbott et al., 1986a; 

Abbott et al., 1986b) TOPMODEL (Beven and 

Kirkby, 1979), IHDM (Rogers et al., 1985) have no 

need, in theory, of precautionary calibration since the 

relative parameters offer a clear physical significance 

which makes an estimate of their values possible in 

relation to a knowledge of the basins characteristics. 

However, it seems to be necessary to differentiate 

between physically based in the sense of being based 

on defined assumptions and theories, and physically 

based in the sense of being consistent with 

observations. The fact that a model may be physically 

based in theories but not consistent with observations 

results primarily from the mismatch in scales between 

the scale of observable state variables and the scale of 

application.  

Even in a fully distributed physically based 

hydrological model, the differential equations 

concerning the various hydrological processes 

(overland flow, infiltration, percolation etc.) are 

solved for the single cells in which the basin is 

subdivided, introducing a conceptualization of the 

phenomenon itself for hydrological processes (the 

heterogeneity of the hydrological quantities inside the 

cell are ignored). Conceptualizations introduced in 

this way, result in different performances in the 

models themselves with variations in the assumed 

scale. In catchment hydrology, the need is not much 

for a model that is theoretically acceptable, but for a 

model that is consistent with observations at the scale 

of interest (Beven, 2002). An alternative blueprint for 

a physically based hydrological model proposed by 

Beven (2002) is one that is acceptably consistent with 

the data.  

TOPMODEL, in practice, represents an attempt 



 

to combine the computational and parametric 

efficiency of a distribution function approach with the 

link to a physical theory and possibilities for more 

rigorous evaluation offered by a fully distributed 

model.  Though it is used for a wide variety of 

application, it’s dominating geomorphometric 

parameters that account for the hydrological 

similarity condition is also strongly influenced by the 

resolution of a DEM used. This results in parameter 

inconsistency and predictive uncertainty across 

scales.   

In this study we focus on the influence of DEM 

resolution on dominating geomorphometric 

parameters - such as slope angle, upslope contributing 

area, which are considered as the main controls in a 

number of hydrological processes - and develop a 

method to downscale the topographic index of 

TOPMODEL by incorporating scaling laws. By using 

the method, the topographic index distribution of a 

fine resolution DEM is successfully derived by using 

only a coarse resolution DEM (Pradhan et al., 2004). 

Then we develop a Scale Invariant TOPMODEL by 

coupling the method to downscale the topographic 

index distribution with TOPMODEL and it is shown 

that the Scale Invariant TOPMODEL is consistent 

with observation when applied at coarse resolution 

DEM with the parameter identified at fine resolution 

DEM.     

 

2. Dependence of Topographic Index Distribution 

of TOPMODEL on DEM Resolution 

 

The topographic index (Kirkby, 1975) of 

TOPMODEL is defined as 
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where a is the local up-slope catchment area per unit 

contour length and β is the slope angle of the ground 

surface. TOPMODEL allows for spatial 

heterogeneity by making calculations on the basis of 

the topographic index distribution. The Topographic 

index is scale dependent which leads identified 

parameter values to be dependent on a DEM 

resolution. This makes difficult to use model 

parameter values identified with different resolution 

model. To overcome the problem, the scale invariant 

model of topographic index is proposed. To scale 

upslope contributing area per unit contour length a 

and slope angle of the ground surface β, a resolution 

factor and a scaled slope with a fractal method is 

introduced.  

 

2.1  Theory of TOPMODEL 

The topographic index defined by Equation (1) 

describes the tendency of water to accumulate and to 

be moved down slope by gravitational forces. For 

steep slopes at the edge of a catchment, a is small 

and β is large which yields a small value for the 

topographic index. High index values are found in 

areas with a large up-slope area and a small slope, 

e.g. valley bottoms. The TOPMODEL theory can be 

formulated by the concept of local saturation deficits, 

water needed for saturation up to surface. 

Following Beven and Kirkby (1979), Beven 

(1986) and Beven (2000), subsurface flow rate qb(i,t), 

per unit contour length [L2T-1] can be related to local  

soil storage deficit below surface saturation or depth 

to water table S (i,t) [L] by 
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where, i is any point in a catchment, tanβi is slope 

angle, To is the lateral (horizontal) transmissivity 

when the soil is just saturated to the surface-zero 

storage deficit- [L2T-1] and fKoTo ≈ , Ko is 

saturated conductivity at the soil surface and f is a 

parameter. m is a decay factor of saturated 



 

transmissivity of soil with respect to saturation deficit, 

also with dimensions of length [L]. Under 

quasi-steady state conditions, due to an assumed 

spatially uniform recharge rate, R [LT-1] 
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where, ai is the area draining through i per unit 

contour length [L2]. Equation (3) can be rearranged to 

Equation (4). 
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Integrating the point deficits over the catchment area 

of interest A, the spatial mean deficit ( )tS
___

 is given 

by 
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and substituting for lnR from Equation (4) 
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where, 
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ln1γ is a constant for 

the basin. Equation (4) and (5) yield a relation 

between ( )tS
___

 and S (i,t) at each single location i.      

The combined soil topographic index part in Equation 

(6) is defined as 
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Underlying the development of Equation (6) is an 

assumption that all points with the same combined 

soil topographic index value shown by Equation (7) 

are hydrologically similar (Beven, 1986).   

Subsurface contributions to streamflow, Qb(t) [LT-1] 

(Beven, 1986; Beven, 2000) can be derived from 

Equation (6) as 
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 Considering lateral transitivity to be constant in 

a catchment or subcatchment, then the key role for 

hydrological similar condition is played by the 

distribution function of the topographic index. The 

bitter fact is that higher frequency topographic 

information contained in topographic index is lost as 

the larger sampling dimensions of the grids act as 

filter. This makes the hydrological similarity 

condition accounting combined soil-topographic 

index in Equation (7) to vary with the variation in a 

DEM resolution used. To overcome this problem, this 

research has developed a method to downscale a 

topographic index distribution.  

 

2.2  DEM resolution effect on topographic index 

Fig.1 shows the density function of the 

topographic index at four different DEM resolutions 

in the Kamishiiba catchment (210 km2) in Japan 

without taking into account the scale effect. Distinct 

shift of the topographic index density functions 

towards the higher value is seen as the resolution of 

DEM becomes coarser. This is a clear indication of 

the lost of higher frequency topographic information 

as the larger sampling dimensions of  the grids act as  



 

filter. Table 1 shows the distinct effect of DEM 

resolution on a spatial mean value of the topographic 

index λ in Equation (9). 
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Only available DEM data for most of the parts of 

the world that covers ungauged basins of developing 

and underdeveloped countries is that of 1km x 1km 

grid resolution. Analyzing Fig. 1 and Table 1, we can 

readily imagine the blunder in predicting ungauged 

basins using only coarse resolution DEM with the 

parameter values identified at the finer resolution 

DEMs. 

 

3.  Development of the Method to Downscale 

Topographic Index 

 

A method to downscale topographic index of 

TOPMODEL has been developed by combining the 

following two parts of solutions. 

 

3.1  Resolution factor in topographic index 

It is observed that the small contributing area is 

entirely lost when the resolution of DEM gets coarser. 

Fig. 1 clarifies that higher frequency topographic 

information contained in a topographic index 

distribution is lost. In Fig. 1, the peak value of the 

density distribution of the topographic index for 50m 

grid resolution DEM is 4.2 [ln(m2)] and the peak 

value for 1000m grid resolution DEM is 8.6 [ln(m2)]. 

DEM Resolution [m] 50  150  450  600 1000 

Topographic constant λ [ln(m2)] 6.076 7.423 9.222 9.622 10.353 
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Fig. 1 Effect of DEM resolution on density distribution of topographic index 

Table 1 DEM resolution effect on topographic constant, λ, value in Kamishiiba catchment 



 

In fact the smallest contributing area derived from a 

DEM resolution is a single grid area of the DEM at 

that resolution. Thus the area smaller than this grid 

resolution is completely lost. However, as we use 

finer resolution DEM, the smaller contributing area 

that is the area of finer grid resolution is achieved. 

From this point of view we introduced a number of 

sub grids Ns (see Fig. 2) concept in topographic index 

as shown in Equation (10).  
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where TI is the topographic index. Ci is the upslope 

contributing area of the coarse resolution DEM and 

W*i is the unit contour length of target resolution 

DEM. Ns is the total number of subgrids within a 

coarse resolution grid and i is a location in a 

catchment. 

Fig. 2 shows 9 subgrids within a coarse resolution 

grid. The area of the coarse resolution grid shown in 

Fig. 2 itself is the smallest contributing area for that 

DEM resolution. When this area of coarse resolution 

DEM is divided by the number of sub grids Ns, i.e. 9 

in Fig. 2, area of a sub grid as smallest contributing 

area for the target DEM resolution is obtained. 

Moreover, in Equation (10), the unit contour length of 

coarse resolution DEM, Wi, is replaced by the unit 

contour length of targeted DEM resolution W*i (see 

Fig. 2) to derive the lost portion of the finer values of 

contributing area per unit contour length. 

 The density distribution of the higher values of 

contributing area per unit contour length is found 

lower in case of finer grid resolution DEM than that 

of coarser grid resolution DEM. This is the reason for 

the topographic index derived from coarser resolution 

DEM to shift towards the higher value throughout the 

density distribution, not only at the peak of the 

density distribution, than the topographic index 

derived from finer resolution DEM (see Fig. 1). 

Structure of Equation (10) having logarithmic 

function, proportionately pulled back this higher 

topographic index density towards that of finer 

resolution DEM.  

If we consider resolution factor Rf as 
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then it is clear from Figure 2 that 
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Equation (11) and (12) yield  

 

sifi NWRW *=        (13) 

 

 

C
oa

rs
e 

gr
id

 re
so

lu
tio

n 

W
* i

 W
i  

Sub grid

1 

4 

2 3

6 5

7 8 9

Flow direction 

Ns = 9 = Rf 2 

Fig. 2 Sub grids within coarse grid resolution for introducing resolution factor in topographic index 



 

From, Equation (10) and Equation (13) resolution 

factor is introduced in topographic index as  
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3.2  Fractal method for scaled steepest slope  

The underestimation of slopes when using the 

coarse resolution DEMs can seriously affect the 

accuracy of hydrologic and geomorphological models 

(Zhang et al., 1999). To scale the local slope, we 

followed the fractal theory in topography and slope 

proposed by Klinkenberg and Goodchild (1992) and 

Zhang et al., (1999) and developed a modified fractal 

method for steepest descent slope.    

 

(1)  Fractal method for average slope estimation 

proposed by Zhang et al. (1999) 

The variogram technique can be used to calculate 

the fractal dimension in a region when the log of the 

distance between samples is regressed against the log 

of the mean squared difference in the elevations for 

that distance. 

The variogram equation used by Klinkenberg and 

Goodchild (1992) to calculate the fractal dimension 

of topography is: 
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where Zp and Zq are the elevations at points p and q, 

dpq is the distance between p and q, k is a constant and 

D is fractal dimension. Topographic fractal properties 

of Equation (15) can be used to scale slope as 

follows: 
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where 5.0k±=α is a constant. Because the left part 

of the above equation represents the surface slope, it 

can be assumed that the slope value θ is associated 

with its corresponding scale, grid size, d by the 

equation: 

 
( )Dd −= 1αθ        (17) 

 

This implies that if topography is unifractal in a 

specified range of measurement scale, slope will then 

be a function of the measurement scale (Zhang et al., 

1999). However, it is impossible to predict the spatial 

patterns of slopes due to the single value of the fractal 

dimension and the coefficient in the fractal slope 

equation for the whole DEM. To overcome this 

problem Zhang et al. (1999) proposed that the 

coefficient α and fractal dimension D of Equation 

(17) are mainly controlled by standard deviation of 

the elevation of the sub regions in a DEM and 

brought out the regressed relations between α and D 

separately with the standard deviation of the elevation. 

In deriving the regressed relation, Zhang et al., 

(1999) considered the smallest sub area (window) to 

be composed of 3 x 3 pixels. Hence elevations of nine 

neighboring grids in the DEM are taken to obtain the 

standard deviation of the elevation for a sub area.   

It is found that the slope derived from the method 

by Zhang et al., (1999) tend to match only with the 

average slope within the 3 x 3 moving window pixels 

of the coarse resolution DEM but completely failed to 

take into consideration of the steepest descent slope 

defined as the direction of the maximum drop from 

center pixel to its eight nearest neighbors. Steepest 

descent slope also known as D8 method 

(O’Callaghan and Mark, 1984; Jenson and Domingue, 

1988; Martz and Garbrecht, 1992) has a significant 



 

role in hydrological modeling that incorporates DEM. 

Thus we propose a modified fractal method for 

steepest descent slope.  

 

(2)  Fractal method for steepest descent slope  

In this research, a modified model for fractal 

method to account for the steepest slope change due 

to change in DEM resolution has been developed 

which is described in the following points:  

(a) Unlike the distance d of Equation (17) be 

represented by constant grid size, in every step 

(location) in a 3 x 3 moving window pixels, this 

distance d of Equation (17) is provided as the steepest 

slope distance (dsteepest). Fig. 3A shows the steepest 

slope distance dsteepest to be dx, dy and 

22 dydx + according to the direction of steepest 

descent of the slope in X-axis, Y-axis and diagonal 

axis DD respectively. 

(b) It is found that there is not much variation 

in standard deviation of elevation from high 

resolution DEM to low resolution DEM in the same 

sub-area. Fractal dimension D is related to standard 

deviation of elevation σ [m] in 3 x 3 moving window 

pixels as per Zhang et al., (1999). 
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(c) The fluctuations of the coefficient α values 

were found very high from one local place to another 

in comparison to D value in Equation (17). Unlike the 

method by Zhang et al., (1999) in which α values are 

derived from standard deviation σ of the elevation in 

3 x 3 moving window pixels), we developed a new 

method in which coefficient α values are derived 

directly from the steepest slope of the available 

coarse resolution DEM, keeping the fact that steepest 

slope itself represents the extreme fluctuation. The 

modified equation is: 
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As for example in Fig. 3A, where the steepest slope is 

shown in diagonal direction, αsteepest at that location i 

   ( )D
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Fig. 3 Fractal method for scaled steepest slope at a location I of the 3 x 3 moving window pixels 



 

is given by, 
( )( )D

steepest
steepest −

+
= 1

22 dydx

θ
α  where dx 

and dy are the steepest slope distances of the coarse 

resolution DEM in X-axis and Y-axis. 

(d) While downscaling, the distance variation 

in the target resolution DEM is made as per the 

direction of the steepest slope in the coarse resolution 

DEM. Hence in Fig. 3B the down scaled steepest 

slope θscaled is shown in the same direction to that of 

the coarse resolution DEM steepest slope (Fig. 3A). 

Considering Fig. 3B, the downscaled steepest slope 

θscaled is given as 

 

( )D
scaledsteepestscaled d −= 1αθ      (20) 

 

where dscaled = 22 yx ∆+∆  in Fig. 3B and ∆x, 

∆y are the steepest slope distances of the target 

resolution DEM in X-axis and Y-axis respectively.   

 

(3)  Scaled topographic index distribution 

By combining Equation (14) and Equation (20), 

the method to downscale the topographic index which 

includes resolution factor to account for the effect of 

scale in up slope contributing area per unit contour 

length and a fractal method for scaled steepest slope 

as an approach to account for the effect of scale on 

slope is given by Equation (21). 
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where, (TI)scaled is the scaled topographic index and 

(tanβi)F  is θscaled of Equation (20) which is the scaled 

steepest slope by fractal method.  

 

4.  Scale Invariant TOPMODEL 

 

Total runoff is calculated as the sum of two flow 

components:  saturation excess overland flow from  

Fig. 4 Development of the Scale Invariant TOPMODEL 
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variable contributing areas (Dunne and Black, 1970) 

and subsurface flow from the saturated zone of the 

soil as shown in Fig. 4. Area with S (i,t) ≤ 0 (in 

Equation 6) are contributing areas for saturation 

excess overland flow. Following Equation (6), the 

dependency of S (i,t) on other variables in 

TOPMODEL  is shown as 

 

( ) ( ) ),,,,(, mTITotSftiS λ=       (22) 

 

Again from Equation (8) the dependency of 

subsurface flow from the saturated zone (SZ [m] in 

Fig. 4) in TOPMODEL, Qb(t) is written as 

 

( )),,,()( tSmTogtQb λ=       (23) 

 

In Equation (22) and Equation (23) the only 

independent heterogeneity accounting observable 

variable is the topographic index TI. To, λ, m and 

( )tS  in the catchment or subcatchment are directly 

influenced by the topographic index value, which 

changes with the resolution of a DEM used. This 

makes recalibration in the model compulsory as the 

scale of observable state variables and scale of 

application are mismatched. Thus in the 

TOPMODEL concept, to make topographic index 

value scale invariant, Equation (1) has been replaced 

by Equation (21) that leads to the development of 

Scale Invariant TOPMODEL. The scale invariant 

function defined by Equation (21) is based on scale 

laws and does not add any extra parameter burden 

when coupled with TOPMODEL.  

Root zone store, RZ [m] in Fig. 4 for each 

topographic index value is depleted only by 

evapotranspiration, and that water is added to the 

unsaturated zone drainage storage, UZ [m] in Fig. 4, 

only once the root zone reaches field capacity or 

maximum root zone storage, RZmax [m]. The drainage 

from the unsaturated zone is assumed to be 

essentially vertical and drainage flux per unit area qv 

[LT-1] is calculated for each topographic index class 

which is controlled by S (i,t) and saturated 

conductivity at the soil surface Ko (Beven, 1986) as 
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where fToKo ≈ and f is a parameter. Initial 

condition for average saturation deficit )0(
___
S is 

derived from Equation (8) taking Qb(0) as initial 

observed discharge (Beven, 1987).
___
S  in the 

successive time step is calculated by Equation (25). 
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where Qv (t), total input to groundwater from the 

Topographic constant, λ [ln (m2)], value for scaled DEM from 1000 m grid resolution to 

50 m target grid 

resolution 
150 m target grid resolution 

450 m target grid 

resolution 

600 m target grid 

resolution 

6.474 7.573 9.11 9.604 

Table 2 Topographic constant, λ, value for scaled DEM from 1000 m grid resolution to finer grid resolutions in 

Kamishiiba catchment 



 

unsaturated zone, is the sum of  qv(t) over all grids 

in the catchment and Qb(t) is the groundwater 

discharge to the stream. Muskingum-Cunge routing 

method is used for hill slope channel routing (Cunge, 

1969). 

 

5.  Results and Discussion 

 

The method to downscale the topographic index 

and the Scale Invariant TOPMODEL are applied to 

Kamishiiba catchment (210 km2), Japan. Details of 

the results and discussion are presented in the 

following paragraphs. 

5.1 Application of the method to downscale the 

topographic index distribution 

The method to downscale the topographic index 

of TOPMODEL is applied to Kamishiiba catchment 

(210 km2). Table 2 shows the scaled topographic 

constant λ from 1000m grid resolution DEM to 

various target DEM resolutions by applying the scale 

invariant model. The downscaled values of λ from 

1000m grid resolution to finer DEM resolutions in 

Table 2 are almost equal to the values of λ in Table I 

derived from that fine grid resolution DEMs.  

Fig. 5a  is  the topographic index distribution  

 

Fig. 5 Spatial distribution of scaled topographic index applied to Kamishiiba catchment (210 km2). (a) 

topographic index distribution using 1000m DEM resolution, (b) scaled topographic index distribution obtained 

from 1000m DEM resolution to 600m DEM resolution, (c) scaled topographic index distribution from 1000m 

DEM resolution to 450m DEM resolution, (d) scaled topographic index distribution from 1000m DEM 

resolution to 150m DEM resolution, (e) scaled topographic index distribution from 1000m DEM resolution to 

50m DEM resolution, (f) topographic index distribution using 50m DEM resolution 



 

using 1000m DEM. Fig. 5 b, c, d and e are the scaled 

topographic index distribution obtained by using the 

scale invariant model with the same 1000m grid 

resolution DEM to 600m, 450m, 150m and 50m grid 

resolution DEM respectively. Fig. 5f is the 

topographic index distribution using 50m DEM. 

Distinct difference can be seen between spatial 

distribution of the topographic index in Fig. 5a and 

Fig. 5f that are from 1000m-grid resolution DEM and 

50m-grid resolution DEM respectively. The spatial 

distribution of topographic index displayed by Fig. 5e 

has matched the existing reality displayed by Fig. 5f.   

Fig. 6 shows the perfect fit of density function of 

scaled topographic index distribution from 1000m 

grid resolution DEM to various grid resolution DEMs 

by using scale invariant model. It is found that in the 

finer resolution range of DEM, between 50m-grid 

resolution DEM and 150m-grid resolution DEM 

where the slope obtained is more precise and does not 

vary significantly, resolution factor (Rf) alone played 

the dominant role in the scale invariant model. Above 

150m DEM scale, effect of resolution on slope is 

found distinct. 

 

5.2 Hydrological similarity concept of 

TOPMODEL across different DEM 

resolutions in the catchment 

Specifying a spatial distribution for To being 

much more problematic, in most applications, it has 

been assumed to be spatially homogeneous, in which 

case the similarity index defines by Equation (7) 

reduces to the form ( )βtana .  

But when the resolution of the DEM change, the 

spatial distribution of topographic index also change. 

In this scenario, the same effective parameter value of 

To for changed DEM resolutions and similarity index 

reduced to the form ( )βtana  cannot fulfill the 

hydrological similarity concept of TOPMODEL 

across different DEM resolutions in the catchment.  

In the combined soil topographic index for 50m 

DEM resolution in Fig. 7, the effective parameter 

value of lateral transmissivity of soil is 9.8 m2/s 

which is calibrated at 50m DEM resolution of 

Kamishiiba catchment (210 km2). Keeping the same 

effective parameter value of To obtained from 50m 

grid resolution DEM (9.8 m2/s) and applied in 

combined soil topographic index distribution where 

the topographic index distribution is from 1000m grid 

Fig. 6 Comparison of density function of scaled topographic index from 1000m grid resolution DEM to finer 

grid resolution DEM and the density function of the topographic index at that fine scale in Kamishiiba 

catchment (210 km2) 
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resolution DEM (see Fig. 7) has distinctly shifted the 

combined soil topographic index distribution towards 

the much higher values from that of combined soil 

topographic index distribution from 50m DEM 

resolution. Thus keeping the same effective 

parameter value of To for changed DEM resolutions 

and similarity index reduced to the form ( )βtana  

cannot fulfill the hydrological similarity concept of 

TOPMODEL across different DEM resolutions.  

It is also observed that increasing in effective 

parameter value of lateral transmissivity of soil pulled 

back the higher valued distribution of combined soil 

topographic index from 1000m grid resolution DEM 

towards combined soil topographic index from 50m 

grid resolution DEM, but the parameter value tends to 

exceed more than 100m2/hr –exceeding the physically 

acceptable range- before the combined soil 

topographic index distribution from 50m grid 

resolution and 1000m grid resolution DEM matched. 

In this case the value of To parameter determined by 

model calibration is rather to compensate for the 

overestimation of the combined soil-topographic 

index ( )]βtanln[ Toa in Equation (7) obtained 

from higher resolution DEM.  

For the solution of the discussed problems, the 

method to downscale topographic index distribution 

is applied to downscale the topographic index 

distribution from 1000m-grid resolution DEM to 

50m-grid resolution DEM. This downscaled 

topographic index distribution from 1000m-grid 

resolution DEM to 50m-grid resolution DEM is then 

coupled with the effective parameter value of lateral 

transmissivity of soil (To=9.8 m2/hr) calibrated at 

50m-grid resolution DEM to obtain scaled soil 

topographic index for 50m-grid resolution DEM (see 

Fig. 7). In Fig. 7 it is shown that scaled soil 

topographic index distribution has matched the soil 

topographic index at 50m-DEM resolution. At this 

point, the method to downscale topographic index 

distribution has solved two problems. Firstly, it 

fulfilled the hydrological similarity concept of 

TOPMODEL across different DEM resolutions of a 

catchment by keeping the same effective parameter 

value of To for changed DEM resolutions and 

similarity index reduced to the form ( )βtana . 

Secondly, it has given consistency to the effective 

parameter with observations at the scale of interest. 

 

5.3  Application of Scale Invariant TOPMODEL 

In Fig. 8, A(I), A(II) and A(III) are the 

simulation result from 50m DEM resolution 

TOPMODEL; B(I), B(II) and B(III) are the 

simulation results from 1000m DEM resolution 

TOPMODEL; C(I), C(II) and C(III) are the 

simulation results from Scale Invariant TOPMODEL, 

applied at 1000m DEM resolution and the 

topographic index downscaled to 50m DEM 

resolution, that belong to rainfall events Event(1), 

Event(2) and Event(3) respectively. 

For the simulation results shown in Fig. 8 A(I),  
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Fig. 8 Simulation results of TOPMODEL (with and without coupling the downscaling method of topographic 

index) applied to Kamishiiba catchment (210 km2). A(I), A(II), A(III) are the simulation results from 50m 

DEM TOPMODEL. B(I), B(II), B(III) are the simulation results from 1000m DEM TOPMODEL without scale 

invariant model for topographic index. C(I), C(II), C(III) are the simulation results from Scale Invariant 

TOPMODEL at 1000m DEM resolution and topographic index downscaled to 50m DEM resolution. Same set 

of effective parameter values, identified by 50m DEM resolution TOPMODEL, is used for all the simulation 

results in A(I), A(II), A(III), B(I), B(II), B(III) , C(I), C(II) and C(III). D(I), D(II) and D(III) are the simulation 

results from 1000m DEM TOPMODEL without scale invariant model for topographic index and with 

parameters recalibrated at 1000m DEM resolution 
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A(II), A(III), B(I), B(II), B(III), C(I), C(II) and  

C(III), the used effective parameter of TOPMODEL, 

see Table 3, are identified by 50m DEM resolution 

TOPMODEL. But, D(I), D(II) and D(III) are the 

simulation results from 1000m DEM resolution 

TOPMODEL where parameters used are identified at 

1000m DEM resolution. 

Although the Identified effective parameters in 

Table 3 are calibrated by 50m DEM resolution  

TOPMODEL in Event (2), Fig. 8A(II), which 

gave the Nash efficiency of 94%, the importance is 

also given to the model consistency of 50m DEM 

resolution TOPMODEL with the same set of 

parameters to other events (in Event (1), Fig. 8A(I), 

Nash efficiency is 90% and in Event (3), Fig. 8A(III), 

Nash efficiency is 78%). Parameter value for m was 

derived also from the first-order hyperbolic function 

that fitted the recession curve obtained from the 

observed discharge of rainfall event (1). The derived 

value of the parameter m by the recession analysis 

(Ambroise et al., 1996; Güntner et al., 1999), i.e. 

0.078 m, is found near to the calibrated parameter 

value of m by 50m DEM resolution TOPMODEL, i.e. 

0.07 m. The value for parameter f that relates To and 

Ko is kept as unity in all the simulations.  

Comparing Fig. 8B(I), B(II), B(III) with  Fig. 

8A(I), A(II), A(III) respectively it is seen that the 

magnitudes of the differences in TOPMODEL 

predictions based on different DEM resolutions, with 

the same set of parameter values, are large. In Fig. 

8B(I), B(II) and B(III), the simulated hydrograph 

shows overestimation or underestimation of the 

discharge in comparison with the observed flows and 

also in comparison with the simulated hydrographs in 

Fig. 8A(I), A(II) and A(III) respectively.  

The simulated discharge in Fig. 8B(I), B(II) and 

B(III) are very sensitive to rainfall showing 

overestimation of discharge in the rainfall duration 

and underestimating of discharge as soon as the 

rainfall stopped or diminished. Because of this 

inconsistency of 1000m DEM resolution 

TOPMODEL prediction, keeping same parameter 

values identified at 50m DEM resolution 

TOPMODEL, the Nash efficiency in Fig. 8B(I), B(II), 

B(III) drastically dropped down to 50%, -45% and 

–180% respectively.  

 

5.4  Discussions 

It is a bitter fact of the scale effect where 

hydrological models like TOPMODEL being 

physically based on defined assumptions and theory 

completely fails to justify itself as physically based 

practically, in the sense of being consistent with 

observations.  

Earlier in Table 1 we showed that as the 

resolution of DEM gets coarser, a spatial mean value 

of topographic index, λ in Equation (9), increases. As 

λ value increased, the predicted mean depth to the 

water table decreased, or average saturation deficit 

shifted from higher value towards zero value. In the 

Lateral transmissivity of soil at 

saturation condition, To 

[m2/hr] 

decay factor of lateral transmissivity with 

respect to saturation deficit,  m [m] 

Maximum root zone 

storage, Rzmax [m] 

9.8 0.07 0.001 

Table 3 Effective parameter values identified by 50m DEM resolution TOPMODEL and used (same parameter 

values) for different events and different DEM resolutions in Kamishiiba catchment 



 

model zero saturation deficit is the state of the 

vertical soil profile to be completely saturated up to 

surface. Any further rainfall after zero local saturation 

deficit state is directly contributed as surface runoff, 

local saturation deficit is directly related to average 

saturation deficit by Equation (6). Lower the 

saturation deficit, the maximum daily flow and the 

variance of the daily flow increased. This is because 

more the initial saturation deficit value shifts towards 

the zero saturation deficit condition the lesser is the 

amount of rainfall input needed to produce the 

surface runoff which accounts for the peak flows (see 

Fig. 9).  

Fig. 9, shows that the average saturation deficit 

predicted by 1000m DEM resolution TOPMODEL, 

by keeping the effective parameter identified at 50m 

DEM resolution, has unrealistically reached the state 

of complete saturation throughout the simulation 

period. This indicates that a large part of the 

catchment is unrealistically at the state of complete 

saturation. This is why the saturated area contributing 

the surface runoff is unrealistically large within the 

catchment that is overestimating the simulated 

discharge during rainfall duration in Fig. 8B(I), B(II) 

and B(III).  On the other hand, in TOPMODEL, 

topographic constant λ affects the maximum 

subsurface flow rate (see Equation (8)); the higher the 

λ value, the lower the maximum subsurface flow rate. 

Table 1 shows that value of λ increased from 6.076 

[ln(m2)] to 10.353 [ln(m2)] as the resolution of DEM 

changed from 50m to 1000m. Thus at 1000m DEM 

resolution, the subsurface flow rate produced by the 

TOPMODEL is much lower which is only the 

simulated discharge at no rainfall hours. This is the 

reason for the underestimation of the simulated 

discharge during no rainfall hours in Fig. 8B(I), B(II) 

and B(III).   

The saturated condition found through out the 

simulation period shown in Fig. 9 when analyzing the 

saturation deficit of 1000m DEM resolution 
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resolution TOPMODEL, 1000m DEM resolution TOPMODEL and Scale Invariant TOPMODEL applied at 

1000m DEM resolution with scaled topographic index to 50m DEM resolution. In all these cases the applied 

effective parameters are identified by 50m DEM resolution TOPMODEL 



 

TOPMODEL is because of the reason that higher the 

topographic constant λ value lower the capacity to 

conduct water down slope through subsurface flow 

paths (Equation (8)) and therefore having a lower 

saturation deficit. Zhang and Montgomery (1994), 

Wolock and Price (1994) have also showed that 

increasing the coarseness of DEM data resolution 

tended to decrease the mean depth to water table and 

increase the peak flow but did not come up with any 

effective solution approach.  

The Scale Invariant TOPMODEL is applied at 

1000m DEM resolution of Kamishiiba catchment. 

The Scale Invariant TOPMODEL downscaled the 

topographic index from 1000m-grid resolution DEM 

to 50m-grid resolution DEM. Table 2 shows that the 

downscaled λ from 1000m DEM resolution to 50m 

DEM resolution is very close to λ value at 50m DEM 

resolution; Fig. 5 and Fig. 6 shows the similar spatial 

distribution of scaled topographic index from 

1000m-grid resolution DEM to 50m-grid resolution 

DEM and topographic index at 50m-grid resolution 

DEM. Thus in Fig. 9, the average saturation deficit 

simulated from Scale invariant TOPMODEL is quite 

similar to average saturation deficit simulated by 50m 

DEM resolution TOPMODEL. Because of the 

successful achievement of the topographic index 

distribution and the average saturation deficit 

produced by 50m-grid resolution DEM by using only 

1000m-grid resolution DEM shown in Fig. 5, Fig. 6 

and Fig. 9, the Scale Invariant TOPMODEL applied 

at 1000m DEM resolution simulated discharge in Fig. 

8C(I), C(II) and C(III) that matched with the 

simulated discharge of 50m DEM resolution 

TOPMODEL in Fig. 8A(I), A(II) and A(III) 

respectively. Thus the Nash efficiency in Fig. 7C(I), 

C(II) and C(III) are 92%, 89% and 71% respectively. 

Fig. 8 D(I), D(II) and D(III) are the simulation 

results of 1000m DEM resolution TOPMODEL that 

is recalibrated at 1000m DEM resolution. The used 

recalibrated parameter is from the Event (1) in Fig. 8 

D(I) that gave the highest Nash efficiency, 91%, 

among all the three events. The recalibrated value of 

To at 1000m DEM resolution shoot up from 9.8 m2/hr 

(the calibrated value by 50m DEM resolution 

TOPMODEL) to 97 m2/hr. What is clear from this 

analysis is that an increase in the mean of 

( )}βtanln{a , λ , caused by using a coarser scale 

DEM would have been compensated for by an 

increase in calibrated value of To but then the 

parameter value would exceed physically acceptable 

range making the problem of false assumptions less 

restrictive than it might otherwise be, since 

calibration can often compensate for such 

deficiencies. 

Also in Fig. 8 D(II) and D(III) the recalibrated 

parameter at 1000m DEM resolution is used. The 

Nash efficiency obtained from Fig. 8 D(II) and D(III) 

are 81% and 47% respectively. Though recalibrated 

parameter is used in Fig. 8 D(I), D(II) and D(III), the 

Nash efficiency is found always lower than in Fig. 8 

C(I), C(II) and C(III). This makes clear that for 

different rainfall events in the same catchment, the 

performance of the 1000m DEM resolution 

TOPMOEL with the parameter calibrated at 1000m 

DEM resolution is less consistent than that of the 

performance of the Scale Invariant TOPMODEL 

applied at 1000m DEM resolution and with the 

parameter identified at 50m DEM resolution.   

 The burden of parameter uncertainty and model 

inconsistency brought by the compulsion to 

recalibrate or by the application of the model 

parameter identified at coarse resolution DEM is 

solved by the Scale Invariant TOPMODEL. It is 

shown that the Scale Invariant TOPMODEL is 

consistent with observations (observed discharge 

data) although scale of observable state variables and 

scale of application are mismatched. 

 



 

6.  Conclusion 

 

 This research has developed a Scale Invariant 

TOPMODEL to fulfill the need of a physically based 

hydrological model, which is independent of DEM 

resolution effects and consistent with observations 

although scale of observable state variables and scale 

of application are mismatched. Analyzing the scale 

laws this research has developed concept of 

resolution factor to account for the effect of scale in 

up slope contributing area per unit contour length in 

topographic index and a fractal method for scaled 

steepest slope as an approach to account for the effect 

of scale on slopes, which are combined to develop the 

method to downscale topographic index distribution. 

The method to downscale the topographic index plays 

the role of scale invariant function in this newly 

developed Scale Invariant TOPMODEL. It is hoped 

that the findings of this research seeks its 

applicability as a tool to a wider range of boundary as 

per the scale problems in hydrological processes and 

solution approach is concerned. 
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要  旨 

粗い分解能の数値標高データを用いてTOPMODELの地形指標分布を求めると，実際の地形が有する

地形情報が失われてしまう。この欠点を補うために、本研究ではリゾルーションファクターとフラク

タルとを用いて，等高線単位長さ当りの上流面積と勾配に対するスケール効果を取り除く手法を提案

する。この手法を用いることにより，粗い分解能を持つ数値標高データを用いた場合も，詳細な標高

データを用いた場合と同等の地形指標分布を得ることが可能となる。このダウンスケールされた地形

指標をTOPMODELに組み込むことにより，スケール不変TOPMODELを開発する。上椎葉ダム流域（210 

km2）に本手法を適用し，1000m分解能の標高データから得られる地形指標分布と50m分解能の標高デ

ータから得られる地形指標分布とが極めてよく一致することを確認した。また，50m分解能の

TOPMODELを用いて同定されるモデルパラメータを，1000m分解能の標高データからダウンスケール

して得られるスケール不変TOPMODELに組み込んだところ、ダウンスケールされたスケール不変

TOPMODELモデルによる流出計算結果と50m分解能TOPMODELモデルの流出計算結果とが極めてよ

く一致した。これによりスケール不変TOPMODELを用いることによって，ある空間スケールの

TOPMODELモデルによって得られたパラメータ値が，異なる空間スケールのモデルでも利用可能であ

ることを示した。 

 

キーワード: スケール不変, ダウンスケール,フラクタル, 地形指標, TOPMODEL 

 

 


