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Synopsis 

Non-homogenous multiplicative random cascade method downscales spatial rainfall 
field from a coarse scale into a finer one. Currently, this kind of downscaling is less reliable 
even though it correctly produces a long term average spatial pattern. It fails reproducing 
the patterns in repeated trials; and there is a higher chance of magnitude fluctuation. These 
drawbacks are needed to overcome. In this study, a new method, named as random cascade 
Hierarchical and Statistical Adjustment (HSA) method, is introduced and tested to 
downscale 1.25 degree GAME Re-analysis data into 10-minute spatial resolution. The 
obtained results are highly improved, quite robust and reliable than the previous method.  

 
Keywords: random cascade method, downscaling, GAME Re-analysis data, HSA method 
 

 
1. INTRODUCTION 
 

Accurate simulation of space time rainfall field 
is an important task in hydrology. It is an important 
binding forcing to understand the space time 
variability of hydrologic factors, and to drive small to 
large-scale, short to long-term simulations of runoff 
quantity and quality. There are numerous attempts to 
use products of global scale space time rainfall 
models, e.g. General Circulation Models (GCM), in 
local scale hydrological analysis for a number of 
reasons. This demands a reliable disaggregation of a 
coarse GCM scale rainfall field to a smaller scale of 
local catchments (Burlando and Rosso, 2002). This 
paper presents an improved method to disaggregate 
the spatial rainfall field using a non-homogenous 
multiplicative random cascade method. 

There is a large scale difference between global 
scale (climate or atmospheric) models and regional or 
local hydrological models. Still these models are 
necessary to be coupled in order to understand and 
predict a clear scenario of local and regional impacts 
on hydrological cycle due to global changes. Coarse 
scale products of GCMs are an inadequate basis for 
assessing local / regional scale impacts as it is hardly 
able to resolve many important sub-grid scale 
processes (Hostetler, 1994; Wilby et al., 1999). It is 
necessary to identify the sub-grid scale features for 
local or regional hydrological analysis, which is not 
seen in a coarser scale frame. 

Current emphasis on the physical basis of 
rainfall representations (Eagleson, 1984; Gupta and 
Waymire, 1979; Smith and Karr, 1984) are developed 
after understanding a clear picture of rainfall field 
structure that a rained area of a given scale has one or 
several smaller-scale areas of more intense rain zones 
embedded within it (Waymire et al., 1984).  
Investigation on the statistical fluctuations in space 
and time rainfall intensity and their mathematical 
representations has yielded two major stochastic 
space-time rainfall-modeling approaches. The first 
approach that focuses on cluster point process to 
reproduce the hierarchical spatial and temporal 
organization exhibited by observations of space-time 
rainfall (Austin and Houze, 1972; Gupta and 
Waymire, 1979; Waymire et al., 1984; Kavvas et al., 
1987) has been criticized for its difficulty and 
unambiguity in parameter estimation (Sivapalan and 
Wood, 1987) and inability to fully describe the 
rainfall structure over a large range of scales 
(Foufoula-Georgiou and Krajewski, 1995). The 
second approach is based on the scaling invariance 
features of observed spatial rainfall fields (Schertzer 
and Lovejoy, 1987; Lovejoy and Schertzer, 1990; 
Gupta and Waymire, 1990) with extreme variability 
and strong intermittence (Georgakakos and 
Krajewski, 1996), which has yielded a multiplicative 
random cascade theory (Lovejoy and Schertzer, 1990; 
Gupta and Waymire, 1993). Due to the scaling 
invariance or self-similarity concept in this approach 
of space-time rainfall modeling, the parameterization 



is parsimonious and valid over a wide range of scales 
(Lovejoy and Schertzer, 1990; Gupta and Waymire, 
1993; Over and Gupta, 1994; Foufoula-Georgiou and 
Krajewski, 1995; Olsson, 1996). 

In a large or global scale, the space-time rainfall 
fields obtained from the re-analysis of GCM outputs 
are now abundantly available with considerably 
acceptable accuracy (Prudhomme et al., 2002). The 
advancement of global scale climate / atmospheric 
models has already achieved much higher resolution 
in temporal scale as short as 15 minutes unlike the 
spatial scale.  Currently, GCM outputs at 6 hour, 12 
hour or daily intervals are often being tested in 
hydrological simulations of large scale catchments. 
This range of data frequency approximately fulfills 
the general need of temporal data in hydrological 
modeling. On the other hand, there is a wide gap in 
the spatial scale between the availability of GCM or 
similar large-scale model outputs and the need of 
hydrological models (Burlando and Rosso, 2002). 
This is one of the major obstacles to apply the global 
scale observation in the assessments of local scale 
hydrological behavior.  

The need of reliable and accurate spatial 
disaggregation is pretty high to analyze real world 
problems by using current GCM scale outputs as the 
spatial rainfall structure induces significant effect in 
hydrological analysis of small to large-scale 
catchments (Shrestha et al., 2002). Spatial rainfall 
field, which plays a significant role in any subsequent 
analyses involving the rainfall field as primary or 
secondary information, contains a higher degree of 
spatial variability that has to be modeled at the local 
scale. A multiplicative cascade treatment based on the 
statistical theory of turbulence (Mandelbrot, 1974) 
offers a concrete way of modeling these fields 
(Schertzer and Lovejoy, 1987) as the kinetic energy 
transfer is seen in the cascade of turbulent eddies 
from a large energy scale to smaller dissipation 
scales. Similarly, in the cascades of rainfall modeling, 
an area of higher intensity rainfall is embedded in 
larger areas of lower intensity rainfall, which are 
again a part of even larger areas but of even lower 
rain intensity. Debates are ongoing on suitability of 
approaches to form the multiplicative random cascade 
whether continuous or discrete. A continuous form of 
multiplicative random cascades has the major 
advantage of developing cascades over a continuous 
interval of scales instead of only a discrete set 
(Marsan et al., 1996); however, a discrete form of 
multiplicative random cascade has ability to separate 
rainy and non-rainy area (Gupta and Waymire, 1993; 
Over and Gupta, 1994) and can be adopted to respect 
the discrete sub catchment partitioning of the 
landscape by the drainage network of a catchment 
(Gupta et al., 1996; Over and Gupta, 1996). 

The spatial rainfall modeling based on discrete 
multiplicative random cascades (Over and Gupta, 
1994; Jothityangkoon et al., 2000; Tachikawa et al., 
2003) has been tested for spatial disaggregation in 

different places under different condition with similar 
conclusion that it is possible to capture long-term 
spatial variability of sub grid scale. The existing 
model is not applicable to generate rainfall field at 
shorter time scale and hence not useful to apply the 
outcomes as input to models of the rainfall-runoff 
process (Jothityangkoon et al., 2000). To improve the 
modeling structure and / or algorithm is therefore 
very necessary and important to obtain accurate and 
reproducible disaggregated rainfall field, which may 
be useful for real world problems of short and long 
timescale.  

The multiplicative random cascade method 
assumes the isotropic spatial statistics, which is not in 
line with the rainfall observation and fails to generate 
practically useful, especially short time scale rainfall 
field. As stated earlier, the need of spatial 
disaggregation is much crucial for the purpose of 
utilizing the disaggregated GCM scale spatial rainfall 
field; the focus in this paper is given on spatial 
structure of the rainfall field, leaving the part of study 
of temporal structure as a further research topic in 
random cascade method. We have found that 
inclusion of spatial correlation field in the 
multiplicative random cascade is successful to 
improve the disaggregation of the spatial rainfall 
field. This method is applied to a 560 km X 320 km 
region over eastern Chinese territory (Fig. 1) using 
hourly rainfall data of 1.25-degree resolution and 
disaggregated to 10-minute spatial resolution. The 
method is named as HSA method. 

This paper is organized as follows: Section 2 
reviews the existing discrete random cascade method. 
Section 3 describes the observation of rainfall spatial 
correlation. Section 4 discusses about the HSA 
method. Section 5 mentions about data and parameter 
estimations. Section 6 presents results and 
discussions. The conclusions are presented in section 
7. 
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Fig. 1 : Location of the study region. 
 

2. Revision of existing stochastic spatial rainfall 
model 

 
Spatial disaggregation is carried out using the 

discrete random cascade approach. In which, the 
cascade construction process successively divides a 
two-dimensional (d = 2) bounded region into b equal 



parts (b = 2d) at each step, and during each 
subdivision the mass (or volume) of rainfall over the 
region obtained at the previous disaggregation step is 
distributed into the b subdivisions by multiplying by a 
set of “cascade generators” W, as shown 
schematically in Fig. 2 (for the case of d = 2 and b = 
4). The homogenous form of the discrete random 
cascade model is adapted as proposed by Over and 
Gupta (1994). 

For an area at level 0, denoted by 0
0∆ , has the 

outer length scale of 0L  and average rain intensity of 

0R . The initial rain volume ( )0
00 ∆µ  becomes dLR 00 . 

At level 1, the rain volume ( )0
00 ∆µ  divides into b = 4 

sub-areas denoted as i
1∆ , (i = 1, 2, 3, 4) and the sub-

area rain volume ( )i
11 ∆µ  is id WbLR 1

1
00

− , (i = 1, 2, 3, 
4). At level 2, each of the sub-area volume is further 
subdivided into b = 4, all together 2b  = 16 sub sub-
area, denoting them as i

2∆ , (i = 1, 2, ..., 16) and the 
corresponding volume ( )i

22 ∆µ  is iid WWbLR 21
2

00
−

, (i = 
1, 2, ..., 16). The process of sub-division is continued 
further until the nth level up to nb  sub-areas, which 
are denoted as i

n∆ , (i = 1, 2, ..., nb ). At the nth level, 
the volume in the sub-areas can be expressed as  
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Fig. 2: Schematic of cascade branching 

The cascade generators W are non-negative 
random values with E[W] = 1, which is imposed to 
ensure the mass conservation from one discretization 
level to the next (see Over and Gupta, 1996). To get 
the cascade generator W values, Over and Gupta 
(1994, 1996) has proposed a model called beta-
lognormal model such that 

 
BYW =   (2) 

 

Here, B is a generator from the “beta model” that 
separates the rainy and non-rainy zone on the basis of 
discrete probability mass function and Y is obtained 
from lognormal distribution (Gupta and Waymire, 

1993) in the form of 

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, where X is 
standard normal random variate and 2σ  is a 
parameter equal to the variance of Yblog . The value 
of W is evaluated as  
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This model consists of only two parameters, 

β and 2σ . The parameter estimation method is 
proposed by Over and Gupta (1994, 1996) by using 
the Mandelbrot-Kahane-Peyriere (MKP) function, 
named after Madelbrot (1874) and Kahane and 
Pyeriere (1976), which characterizes the fractal or 
scale-invariant behavior of the multiplicative cascade 
process.  This method yields the following equations 
for the parameter β and 2σ , 
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Here, ( ) ( )q1τ  and ( ) ( )q2τ  are the first and 

second derivative of the slope ( )qτ  with respect to q. 

The slope  ( )qτ  represents the scaling relationship 
for different exponent q in the process of obtaining 
statistical moment across different level of 
subdivision. Choosing the value of q = 2 gives less 
variable estimates of β and 2σ  without affecting the 
simulation (Jothityangkoon et al. 2000).  

This model is preferred as a test disaggregation 
model for three main reasons. First, the number of 
parameter to be estimated is quite low. Second, the 
parameters β and 2σ values estimated by equation (4) 
and (5) exhibit spatial homogeneity and remain 
largely scale invariant across the wide range of 
regions (Jothityangkoon et al. 2000). Third, the 
spatial structure of rain field is based on the 
lognormal distribution, which has been observed as a 
good descriptor of the marginal distribution of rainfall 
intensities on field (Bell, 1987) and confirmed by 
Crane (1990) within a range of rain intensities. Thus, 
a combination of threshold setting for non-rainy 
zones by the use of “beta model” in rainfall field 
simulation of lognormally distributed rainy zones is a 
convincing approach. Works of Jothityangkoon et al., 



2000 and Tachikawa et al., 2003 have presented 
additional examples of its ability to reproduce the 
spatial statistics of rainfall field using this model. 
However, some inconsistencies between the log-
normality of rain and self similarity concept are 
limiting it to be a fully satisfying from theoretical 
analysis (Gupta and Waymire, 1993).  

The beta lognormal model (Over and Gupta, 
1994, 1996) of discrete random cascade theory is 
attempted to modify for describing the spatial 
statistics and generating practically applicable 
disaggregated rainfall field as well. The modified 
model tested by Jothityangkoon et al., 2003 and 
Tachikawa et al., 2003 have changed the equation (2) 
into 

 
BYGW =  (6) 

 
Here G is introduced to incorporate the observed 

spatial gradients in mean annual, monthly and daily 
rainfall as a ground truth forcing in terms of 
deterministic multiplier by Jothityangkoon et al., 
2003. Introduction of G has biased the beta lognormal 
model farther from its earlier form of theoretical 
agreement with self similarity concept; however, it 
has been justified for the need of considering the 
known ground information in the disaggregation 
process rather than depending just on mathematical 
numbers. The trial model succeeded to generate not 
only spatial patterns of long term mean daily, 
monthly, and annual rainfall but also to mimic spatial 
patchiness characteristic of daily rainfall, estimated in 
terms of a wet fraction. In the trial model of 
Tachikawa et al., 2003, the G is introduced to 
incorporate the topographic effect in spatial 
distribution of rainfall, based on the findings of 
Nakakita et al., 2001, in terms of deterministic 
multiplier as well. This trial also succeeded to 
generate long term spatial pattern of mean monthly 
rainfall. Both the trials are unable to generate rainfall 
fields at shorter time scales. This limits its use in 
many kinds of hydrological applications yet. 

 
3. Spatial correlation of the rainfall field 

 
Generally rain falling cloud clusters expand to 

few-hundred-kilometers scale but rainfall 
disaggregation is conducted up to smaller scale of a 
few kilometers because the rainfall events of 
hydrologic interest is of smaller spatial scale than the 
scale of cloud clusters. When the spatial scale of 
disaggregation target is much smaller, the 
neighboring cells inside or nearby a rainy zone 
possesses higher chance of rainfall around same time 
because they mostly would have encompassed within 
the same cloud cluster. In smaller spatial scale, the 
rain events are observed to have strong spatial 
correlation and shall not be treated as totally random 
event. The spatial correlation in rainfall field 
corresponds to the rain-cell coverage and movements 

on its natural way along with the energy dissipation 
of the cloud mass. Existence of spatial correlation in 
the spatial rainfall fields can be described by a spatial 
correlation function as the observations have shown 
the same shape and approximately the same scale 
sizes (Crane, 1990). Fig. 3 shows the spatial 
correlation of the rainfall data over the study area. 

 

Fig. 3: Spatial Correlation of rainfall data 

The spatial correlation gradually decreases upon 
increase of distance. The decaying shape of the 
spatial correlation function may be represented by a 
logarithmic function (equation 7). Its parameters may 
be obtained simply by regression analysis of the 
observed spatial correlation data. A threshold distance 
may be set to omit spatial correlation at very far 
distance that may be out of interest in spatial rainfall 
disaggregation.  
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Where, Z is distance in kilometers; Zρ is the 

spatial correlation value at Z; 0Z is the threshold 
beyond which the spatial correlation remains zero by 
the use of the logarithmic spatial correlation function 
with α , κ  and λ  parameters. 

 
4. Spatial correlation effect in random cascade 
method 

 
The spatial rainfall field generated by 

multiplicative random cascade method is isotropic. 
Moreover, the repeated trial of rainfall generation has 
a rare possibility of yielding similar spatial rainfall 
field due to randomness of the cascade generator W. 
However, the observed rainfall is non-homogenous 
and anisotropy. The lower chance of reproduction and 
substantial difference from the observed scenario 
(discussed in section 6) has limited the popularity and 
practical application of the existing method. We 
sketch a method to improve current multiplicative 
random cascade method that attempts to include the 



spatial correlation effect in order to incorporate the 
non-homogenous anisotropy and increase reliability. 
This method is named as HSA-method, which refers 
Hierarchical and Statistical Arrangement method. 
Fundamentally, this method learns from the 
neighboring region to understand the sub-grid scale 
local anisotropy by utilizing the multiple coarse grid 
scale information and their influence on small scale 
rainfall field in terms of the spatial correlation. The 
process description is as follows.  

In the process of cascades of the downscaling a 
two-dimensional (d = 2) spatial field, the nb numbers 
of sub-areas, named as i

n∆ , (i = 1, 2, ..., nb ) are 
obtained at nth level with the grid dimension 

nd
L 0 . For 

each of these sub-areas, a spatial correlation reference 
index H is evaluated, which works as a spatial guide 
matrix later on. The reference index H is influenced 
by the average rain intensities Rm of the surrounding 
eight coarse scale grids (m = 1, 2, …, 8) and 
corresponding distances of the sub-area from the 
referred neighbor grid mZ . For nth level, the 
reference index can be represented as,  
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Here, jk

nH is the non-negative reference index at 
nth level for jkth sub-area; Rm is the rainfall of mth 
neighbor cell; m

nZρ is the spatial correlation with the 

mth neighbor viewed from jkth location at nth level, 
from where the distance up to the mth neighbor 
becomes m

nZ . For the sub-area, the j and k represents 

the central point of the sub-area; however, the mj and 

mk for coarse grid area are shifted to the nearest 
location of central grid area, as shown in Fig. 4, 
assuming that the average rainfall intensity of the 
coarse grid has no any specific rain centroid or 
dominant region inside it. 

The random cascade generator i
nW , associated 

with the sub-area i
n∆ , (i = 1, 2, ..., nb ), are expected 

to define proper magnitude of rainfall at proper 
location; however, there is no spatial order to identify 
a proper location for assigning a particular i

nW value. 

Sequential assignment of the i
nW values following the 

calculation order of current model leads to haphazard 
spatial arrangement due to dependence of the 

i
nW values on the random variate X. A new form of 

model is proposed here to improve the haphazard 
arrangement condition such that, 

 
[ ] BYW =•  (11) 

 
Here, [ ]•W  represents the W with its spatial 

address [ ]• , which is missing in equation (2). The 

reference index jk
nH  may be used to obtain the 

missing spatial address [ ]•  since it has a clear two 
dimensional spatial reference j and k inside the sub-
dividing region. 

 

 
 

Fig. 4: Look up eight surrounding cells to 
evaluate reference matrix 

  
At every additional level (n+1), four more 

random cascade generators, '
1

i
nW +  (i' = bn+1-3, bn+1-2, 

bn+1-1, bn+1) appear for newly disaggregated sub-area 
'

1
i
n+∆ from i

n∆ , (i = nb ) as usual. In the new model, 

their spatial address [ ]•  is determined on the basis of 

comparison between the reference indexes ''
1
kj

nH + and 

the random cascade generators '
1

i
nW + . The '

1
i

nW +  may 

need to reshuffle its location within '
1

i
n+∆  in order to 

attain same hierarchy of ''
1
kj

nH +  locations. This is 
called as the hierarchical adjustment that minimizes 
the chances of haphazard spatial allocation of the 
cascade generators in successive progress of 
disaggregation. In other word, it is a forcing 
mechanism to control the random spatial location by 
assigning address to the homeless random generators. 
This process principally does not introduce arbitrary 
bias to the theoretical consideration of current random 
cascade method, because the generators '

1
i

nW + are 
mathematically independent to their spatial locations 



within the boundary sub-areas i
n∆ at one level back 

until the '
1

i
nW +  values are generated by equation (2). 

One relocation operation at this case involves only 
four W values. In the case of testing re-allocation 
after two or more level ahead, a strong influence of 
spatial correlation may dominate the process due to 
overlapped assignment of [ ]• , which may generate a 
risky condition of disappearing random nature and 
essence of turbulence theory.  

The spatial nH  field is a smooth gradient 
surface and its shape is based on the surrounding 
coarse grid average rainfall. The lowest and highest 
zones of the nH  field present valuable information 
as these are most possibly non-rainy and rainy zones 
respectively. Most of cases, the peak rainy cells of the 

( )nn ∆µ  field may not be in accordance with the 

possible rainy zones of nH  field and / or non-rainy 

cells of the ( )nn ∆µ  field may not be in accordance 

with the possible non-rainy zones of nH  field. 
Though these extreme high and low value cell 
numbers may not be significant to influence spatial 
statistics, they might have practical significance. 
Therefore at the nth level, the spatial locations of the 
extreme ( )nn ∆µ  values are re-adjusted following 
hierarchical order after statistical separation of 
extreme high and low zones for both fields.  This 
process is called as the statistical adjustment. This 
process might induce some bias, however, it may be 
considered as a compromise in theory to obtain 
improved result. The statistical adjustment is omitted 
if the correlation of nH  field and ( )nn ∆µ  field is 
found higher than a target correlation, which is 
adapted 80% arbitrarily in this case. The extreme 
value separation, which takes part in statistical 
adjustment, is done by statistical measures of the 
entire nb rainfall values (See Appendix C). The 
flowchart of the HSA method is given in Appendix A. 

  
5. Experiment data and parameter estimation 

 
5.1 Experimental data preparation 

 
The rainfall data is obtained from the GEWEX 

Asia Monsoon Experiment (GAME) Re-analysis, 
Version 1.1 for the period of May 1st, 1998 to August 
31st, 1998. This data is available for 6 hour interval in 
two spatial resolutions - 1.25 degree and 2.5 degree. 
We have taken GAME 1.25 degree data in this study 
to use in spatial downscaling experiment to obtain a 
10-minute resolution data. Since such finer resolution 
data is not available, there rises up a problem to 
verify the obtained result of downscaling afterward. 
To fill up this gap, the GAME 1.25 degree data is 
converted to 10 minute spatial resolution data by 

forcing a known spatial pattern from HUBEX-IOP 
EEWB data (abbreviated from the “Huaihe River 
Basin Experiment – Intense observation period – 
Estimation of Energy and Water Budget” termed 
‘EEWB data’ here after).  The precipitation field of 
EEWB data is generated from ground based 
observation with time and space (distance and 
direction) interpolation technique (Kozan et al., 2001) 
at hourly time step. A number of various methods 
may be adapted to transfer the spatial pattern from 
one data to another data. In this experiment, the 
spatial rainfall pattern of source EEWB data is 
considered as a fluctuation from its mean value, 
which is transferred to the target GAME data over the 
same domain simply using arithmetic approach. The 
spatial pattern transfer relation may be written as,  
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Here, P4t is experimental 10-minute data; P1t@ s 

is original GAME 1.25 degree data at s – reference 
resolution; P2t is EEWB 10 minute data; and P3t@ s is 
reference coarse data produced by averaging the 
EEWB data at the reference resolution s. The 
reference resolution s is set 1.25 degree and 
coefficient 1=ξ . In some cases, P4t values may 
appear negative, which is forced to make zero. The 
accumulated value of the new data then appears to be 
slightly different from the accumulated value of the 
original GAME1.25 data due to forcing the negative 
values to zero. A factor of ratio between the new 
accumulated value and the accumulated value of 
original data is multiplied to all the data (equation 13) 
for maintaining the total accumulated input as same 
as that of the original data. Thus the P5t is the final 
experimental data (Fig. 5), which is utilized here 
equivalent to the observed data.  

The ‘experimental 10 minute data’ equivalent to 
‘observed fine resolution data’ is aggregated to 1.25-
degree resolution to obtain the original level of coarse 
resolution. The aggregated form of 1.25-degree data 
is employed in the downscaling process as the input 
coarse resolution data source and then the 
disaggregated 10 minute spatial data is obtained as 
the ‘simulated fine resolution data’. The fine 
resolution observed and simulated data is then 
compared with each other to check the model’s 
performance. (See Appendix B). 

 



 
 

 
 
 

Fig. 5: Typical example of spatial patterns of 
Experimental data and GAME1.25 data 

 
 

5.2 Sub-grid organization 
 
There is an inconsistency between the grid 

system of coarse resolution and finest target 
resolution. The 1.25-degree  data is 75-minute, which 
is 7 and half grids at 10-minute resolution. In 
downscaling process, 3 levels succession of cascading 
needs 80-minutes coarse data to obtain 10-minute 
data as the final product. In this experiment, it is 
necessary to stick on 10-minute resolution to compare 
the obtained results with the available finest 
resolution data. Thus, to compensate the half grid 
mismatch between the source data and downscaling 
product, the sub-grid organization is employed as 
follows. 

The coarse grid cell rainfall is multiplied by 
7.5/8.0 before beginning the downscaling. This is 
treated as level 0 rainfall intensity and proceeded to 
downscale into level 1, 2 and 3. At 3rd level, 8 sub-
grid cells are developed. Rainfall intensities of the 
sub-grid cells are multiplied by 8.0/7.5 after the 
downscaling and treated them as 10-minute sub-grid 
cell rainfall intensities. The 8th sub-grid cell value is 
memorized to average with the 1st sub-grid cell value 
of adjacent coarse grid. In this way, one sub-grid cell 
plays role of common sub-grid cell in between two 
coarse grid cells both in rows and columns. There is 

no common sub-grid between 2nd and 3rd coarse grid 
cells. Next common sub-grid cells appear in between 
3rd and 4th coarse grids and so on. 

 
5.3 Parameter estimation of “beta-lognormal” model 

 
The parameters β  and 2σ values are estimated 

using the data of fifteen coarse cells for 2952 time 
steps following method advised by Over and Gupta, 
1994. The β values are found more diverse in case 

of low rain intensity (Fig. 6). The 2σ values are less 
sensitive (Fig. 7) to the rain intensity variation. After 
trying several forms of equations, the best-fit curve is 
given by following parametric relation (equation 14 
and 15) with the coarse grid rainfall.  

 

( )Rexp1692.0exp845.0078.0−=β  (14) 

Fig. 6: Distribution of β versus rain 

 

Fig. 7: Distribution of 2σ versus rain 
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Here, R is the rainfall intensity at level 0. These 

equations are used to evaluate the β  and 2σ in the 
process of obtaining random cascade generator as 
described in previous section. 

(a) Experimental 10 min Data  

(b) GAME 1.25 degree Data  
 



 
5.4 Parameters estimation of spatial correlation 
function 

 
The spatial correlations are evaluated for all 

four-month rainfall data on hourly interval from May 
through August, which include both dry and rainy 
season. The decreasing trend of rainfall spatial 
correlation with increase in distance is found 
consistently within approximately 100 kilometer 
radius region. Beyond that distance, the correlation 
appears to be negative or zero or fluctuating between 
small negative and positive values. The rain events 
beyond 100 kilometer radial range rarely find their 
mutual spatial correlation means that the rainfall field 
at this spatial scale is governed by separate processes; 
possibly separate dominant cloud cluster. The 
parametric values of α , κ  and λ  are found to be 
2.0, -0.3 and 2. The  α and κ  has exhibited 
negligible sensitivity (not shown here) in overall 
result of the experiment at ± 25 % fluctuation in the 
evaluated values. However, λ has exhibited high 

sensitivity, as it is prime parameter to determine the 
shape of logarithmic function 

 
6. Results and discussions 

 
In this section, we present and compare the 

results of current disaggregation model and modified 
new model by viewing their ability to generate 
correct and reliable rainfall field. Current 
multiplicative random cascade method using “beta-
lognormal model” has a major weakness that it does 
not reproduce similar patterns in separate realizations 
from the same source data.  Completely different 
results in terms of spatial pattern and mass 
conservation may outcome in repeated trials. Fig. 8 
illustrates this and clearly displays the limitation of 
the current model. Clear split of rainy and non-rainy 
bands are visible to appear at different locations in 
different trials. This kind of random or unreliable 
output is mainly responsible for their 
inappropriateness in practical applications, even 
though it helps to understand the rain statistics. 

 

 
 

Fig. 8: Repeated realizations from the random cascade method 
 



Unpredictable and random spatial arrangement 
of the disaggregation model output corresponds to the 
absence of spatial guidance in the multiplicative 
random cascade theory. Failure to model peak rainfall, 
numbers of rainy / non-rainy cells and rainfall 
statistic corresponds to the wrong selection of 
statistical distribution considered in developing the 
multiplicative cascades and thresholds. The 
weaknesses of the current model can also viewed in 
the same way. Basically its ability to simulate rain 
statistics (Jothityangkoon et al., 2000; Tachikawa et 
al., 2003) gives less ground to debate on statistical 
limitations of cascade building and threshold setting 
“beta model”. The observed differences in spatial 
structure of multiple realizations clearly show that 
spatial modeling part may be criticized more sharply.  

On the other hand, the different realizations 
obtained from the introduction of HSA method, 
discussed in section 4, in random cascade 

downscaling technique (called hereinafter “random 
cascade HSA method”) has displayed a promising 
ability to fix the problem of unpredictable random 
spatial pattern (see Fig. 9). Random spatial structures 
on multiple realizations are disappeared from the 
simulated set of results by this modified method and 
the outcomes are closely similar to the spatial 
structure of observed data (see Fig. 10). The rainy and 
non-rainy bands do not mix up randomly on the 
repeated trials and the separations of zone are found 
in proper location as that exist in observed data. We 
have found the same kind of result in all 2952 
realizations of hourly time steps. This may be 
considered as a prominent signal of reproducibility 
and accuracy of the spatial rainfall modeling. The 
random cascade HSA method seems able to model 
the spatial rainfall pattern without ensemble of 
realizations or much fewer than what is needed before.

 

 
 

Fig. 9: Repeated realizations from the random cascade HSA method 
 



Table 1 Spatial correlation statistics with different disaggregation methods 
 

 RC RCV RCH RCHV RCHSA RCHSV 

Average 0.3447 0.3089 0.5486 0.5734 0.5717 0.6000 

Maximum 0.9303 0.8937 0.9069 0.9246 0.9250 0.9255 

Minimum -0.0252 -0.0081 0.2218 0.2265 0.2026 0.2382 

Std.  dev. 0.1402 0.1252 0.1019 0.1035 0.1093 0.1072 

RC : random cascade method; RCV : random cascade method with mass conservation; RCH : 
random cascade method with hierarchical adjustment; RCHV : random cascade method with 
mass conservation and hierarchical adjustment; RCHSA : random cascade HSA method; 
RCHSV : random cascade HSA method with mass conservation 
 
 

 
 

Fig. 10: Snapshots of Input data and output data in downscaling experiment 
 

 
There are 15 coarse grid spatial blocks of 1.25 

degree resolution, which are downscaled to (42 X 25) 
grids of 10 minute resolution (see Fig. 10). Each 
block is downscaled separately to obtain the entire 
disaggregated rainfall field. The hierarchical 
adjustments of the cascade generators are done at 
every additional level and the statistical adjustment at 
the end level. To evaluate the performance of the 
generated rainfall field, a two-dimensional matrix 
correlation coefficient is calculated between the 
simulated rainfall fields and observed fields 
(discussed in section 4). The average of 2952 
correlation coefficient between the disaggregated data 

and the observed data is found to be 0.34. The 
realization with very low correlation coefficient, for 
example 0 or negative, is considered as a complete 
failure case to simulate the rainfall field, however 
very high correlation coefficient such as 0.93 is 
experienced as a rare success case. The random 
cascade HSA method is successful to increase the 
average correlation value level high up to 0.57 in this 
simulation (See Fig. 11). The hierarchical adjustment 
is found much effective to improve the results than 
the statistical adjustments and both of them are found 
always to improve the result (See Table 1). 

 



 
 

Fig. 11: Comparison of spatial correlations between 
disaggregated and experimental 10 minute data 
before and after introduction of HSA method 

 
6.1 Mass conservation in disaggregation 

 
Though the spatial structures are reproducible by 

random cascade HSA method, the magnitudes of the 
downscaled rainfall field are variable due to presence 
of random generators and failing the mass to conserve. 
The recursive equation of limiting mass ∞µ  by 
letting ∞→n is given by Gupta and Waymire 
(1993), 

 
( ) ( ) ( )iDi

nn
i
n ∞∞ ∆=∆ µµ ,  (i = 1, 2, ..., nb ),   (16) 

 
where, ( )iD∞  is statistically independent of 

( )i
nn ∆µ  and identically distributed as, 
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With the constraint E[W] = 1, it can be shown 

E[ ∞D ] = 1 with conjunction of equation (1) and (16) 
that verifies the interpretation of mass conservation 
(Over and Gupta, 1994). However, this condition 
does not guarantee the conservation of mass for each 
realization of the cascade, which is appeared in Fig. 9. 
It is practically impossible to attain mass 
conservation in every realization with present cascade 
formulation. Nevertheless, the total mass 
accumulated in space, time has significant importance 
in hydrological analysis, and the mass fluctuation is 
not preferred as it may confuse further investigation 
processes. The practical applications based on 
random cascade downscaled data may have a risk of 
losing ground to believe especially in rainfall quantity 
driven analysis if its mass fails to conserve in practice. 

Alternatively, additional multiplier can be 
introduced to obtain path-wise mass conservation in 

the form of “microcanonical” cascades (Mandelbrot, 
1974). A forced mass balance is tested by introducing 
independent multiplier after implying cascade 
generators in every level. The multiplier is given by,  
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Here i

nM is multiplier for sub-area i
n 1−∆ at (n-1)th 

level. The p
n∆  are further divided sub-areas inside 

i
n 1−∆ . This forcing assures the mass conservation. A 

summary of result-comparison is presented in Table 1. 
The mass conservation forcing has deteriorated 

the random cascade method in average performance 
but it has less standard deviation in the result that 
indicates a more stable disaggregation. The 
hierarchical adjustment is seen more effective than 
the statistical adjustment (see RC, RCH and RCHS 
values in table 1) to improve the spatial pattern and 
reliability. The mass conservation forcing also 
improves the disaggregated result significantly when 
it is coupled with random cascade HSA method or 
random cascade method with hierarchical adjustment. 
This may be an indication that the hierarchical 
adjustment is synchronous with microcanonical 
cascades but the mass conservation forcing may not 
work in other conditions.  

 
6.2 Influence of downscaling on catchment scale 
rainfall data 

 
The total rainfall amount inside the catchment is 

likely to be changed as the progression of the 
downscaling process. Multiplication of the random 
cascade generators and the initial rainfall mass 
successively disorders the total rainfall amount at nth 
level of disaggregation. This phenomenon is 
investigated in both random cascade method and 
random cascade HSA method by evaluating the 
accumulated rainfall mass over four month period of 
analysis in three different sized catchments inside the 
study region. The catchments considered for this 
investigation are respectively Suiping (2,093 km2), 
Wangjiaba (29,844 km2) and Bengbu (132,350 km2).  

To obtain the accumulated rainfall mass, the 
disaggregation experiment is repeated 30 times. 
Every realization yields a different mass of the total 
accumulated rainfall inside the catchments boundary 
even after forcing the mass conservation in both 
random cascade method and random cascade HSA 
method. The fluctuation of the accumulated rainfall 
over the entire analysis period is evaluated in terms of 
the standard deviation of the accumulated rain within 
the catchments coverage. The results are presented in 
Table 2. 

 



 
Table 2 Statistics of accumulated rainfall mass over four month period from 30 disaggregation realizations 

 

 

Bengbu 

(132,350 km2) 

Wangjiaba 

(29,844 km2) 

Suiping 

(2,093 km2) 

Mean of accumulated rainfall in 4 months (mm) 

Level RC RCHSA RC RCHSA RC RCHSA 

0 807.2  807.2 901.7  901.7 901.0  901.0 

1 805.9 803.4 900.7 893.6 905.7 1019.6 

2 807.7 783.2 899.8 882.3 905.5 1011.6 

3 807.0 728.6 899.0 833.6 904.8 961.9 

Standard deviation of accumulated rainfall (mm) 

Level RC RCHSA RC RCHSA RC RCHSA 

0 0.000 0000 0.000 0.000 0.000 0.000 

1 8.891 1.442 16.168 4.944 21.086 9.068 

2 10.264 1.550 17.391 4.110 38.380 24.921 

3 11.415 1.647 19.944 4.257 41.455 25.407 

 
RC : random cascade method;   RCHSA : random cascade HSA method; 

 
The obtained results in Table 2 present an 

interesting scenario of differences between the 
assumptions and reality. The random cascade method 
is almost successful to conserve the mean rainfall 
mass throughout the progress of disaggregation level 
displaying its strength of homogenous distribution of 
rainfall field in all regions because the mass is found 
conserved in all different sized catchments. This may 
not represent the ground truth. The boundaries of the 
catchments do not follow the rectangular grid 
boundaries of the current modeling. Therefore there is 
expected to appear changed accumulation of rainfall 
mass depending on the size of grids and the rainfall 
falling into it. Surrounding rainy or non-rainy zones, 
which is not included in the same catchment but 
included in the same grid covering over the 
catchment, should have shown their influence in the 
accumulated rainfall mass when the size of the grids 
are subjected to change. Since, the rainfall field is 
non-homogenous and anisotropy in nature, the 
change in accumulation of rainfall mass should 
appear more clearly within the catchment boundary 
unlike the results produced by the random cascade 
method. The random cascade HSA method seems 
able to produce the effect of anisotropy and non-
homogenous rain in the accumulated mass within the 
catchments. There is both increase and decrease of 
mean accumulation, which might occur due to the 
changed system of grid size when viewed within a 
boundary of particular catchment. 

The increase of standard deviation value (Table 
2) as it grows the level of disaggregation indicates 

that the disaggregated outputs are more uncertain at 
higher disaggregation level. Rapid gain of standard 
deviation in random cascade method depicts a lower 
chance of getting reliable disaggregated result.  The 
random cascade HSA model seems to perform much 
better reliability because it has prevented to swell the 
standard deviation value drastically, which maintains 
very small deviation in the disaggregated results than 
that of the random cascade method. This phenomenon 
is appeared in all three catchments of different sizes.  

The different standard deviation values on 
different size catchments represent the uncertainty 
level in rainfall field generation with respect to the 
size of the catchments. A higher value of standard 
deviation in smaller catchments size (see Table 2) is a 
clear indication of the higher uncertainty associated 
with the rainfall field generation in the smaller scale 
of catchments.  

 
7. Conclusions 

 
Existing spatial rainfall disaggregation method 

based on multiplicative random cascade theory is 
attempted to modify in order to control the random 
realizations. Current ability of those models to 
describe the spatial statistics of disaggregated rainfall 
field from GCM output scale to finer scales are not 
enough to produce practically useful results for short 
time scale, especially to use them in hydrologic 
analysis. This limitation is improved drastically by 
the proposed modification in the random cascade 
method, which incorporates the spatial correlation of 



rainfall field that strongly exists at finer scale. In the 
proposed HSA method, the cascade of disaggregation 
is devised to incorporate the spatial correlation effect 
by assigning the cascade generators’ spatial location. 
The controlled spatial assignment of cascade 
generators on the basis of correlated reference index 
re-arranges spatial pattern such that it is found 
promisingly successful to preserve the existence of 
hierarchical structure of rain band, which is one major 
component of meso scale rain cells. 

Synthetic rainfall field generation is tested over 
eastern Chinese region covering 560 km X 320 km 
area. The simulation has used 15 grids of 1.25 degree 
resolution to generate 10-minute spatial data for four 
month period at hourly time step. The random 
cascade HSA method is found quite successful to 
reproduce exactly similar spatial rainfall field pattern 
as that of observed pattern in every realizations 
separating rainy and non-rainy zones properly. The 
average correlation coefficient between the observed 
and simulated rainfall field is improved to 0.57 from 
0.34 after introducing the HSA method. The 
hierarchical adjustment of HSA is found more 
effective than the statistical adjustment. The 
statistical adjustment is necessary to fine-tune the 
proper location of extreme values. A mass 
conservation forcing to form microcanonical cascade 
is found working well with the hierarchical 
adjustment of the cascade generator, which has 
further improved the average correlation coefficient 
to 0.60. The ability of reproducibility and accuracy of 
the spatial rainfall modeling opens up chances to use 
the synthetically generated rainfall data in practical 
application of shorter time scale such as rainfall-
runoff analysis. 

The rainfall variability of the disaggregated 
rainfall field within the boundary of hydrologic 

catchment is found growing as the growth of 
disaggregation level, which is more serious for 
smaller sized catchments than a larger one. From the 
evaluation of the statistics of 30 realizations, it is 
found that the random cascade method is able to 
conserve the accumulation mass according to its 
initial assumption. The accumulated mass 
conservation of generated rainfall field is erroneous 
while viewed for a particular catchment in different 
grid size system. For the catchment, the accumulation 
mass is expected to fluctuate as a response of non-
homogenous and anisotropic rainfall field in the 
course of disaggregation process, which is appeared 
in random cascade HSA method. In addition, the 
random cascade HSA method is found largely 
successful to control the swelling uncertainty of 
rainfall accumulation in small to large size 
catchments.  

The presented method contains some limitations, 
for example, it can be applicable only in continuous 
coarse grid structure such as GCM outputs because it 
uses the spatial correlation information from 
neighboring coarse grids. So, this method may find 
difficulty to apply in single coarse grid disaggregation 
having no surrounding neighbor. Also, this method 
does not consider temporal correlation; however, 
there are many evidences of the existence of temporal 
correlation of rainfall field. The adaptation of beta-
lognormal model may also be questioned for proper 
statistical representation of the rainfall field as there 
is no evaluation of alternative distribution even 
though the beta-lognormal model has produced 
satisfactory results in this case. Perhaps this model is 
suitable for the study region in particular. 
 
 



Appendix A  
 

 
 

 
Flow chart of random cascade HSA method 

 



Appendix B  
 

  
 

Flow chart of experimental data generation and disaggregation of rainfall fields 
 
Appendix C 
 
In the statistical adjustment, the performance often depends on extreme values selection criteria. The statistical 
measure ( BB δσµ ± ) is used as the margin to separate extreme high and low values of the distribution of nH  

and ( )nn ∆µ  field, where, B  stands for either nH or ( )nn ∆µ ; Bµ is the mean of B field and Bσ is the 

standard deviation of B field; δ is a coefficient to widen and narrow down the selection. Equal number of 
extreme high value cells filtered by a “greater than BB δσµ +  condition” and equal number of extreme low 

value cells filtered by a “lower than BB δσµ −  condition” are allowed to take part in statistical adjustment. The 
results are appeared well when δ =1.2 is taken. The statistical adjustment is found less effective when the value 
of δ is 0.8>δ >1.6. Nonetheless, the overall results are not much affected while the δ value is ranged within 
1.0≤δ ≤1.4 (see Table 3). 
 
Table 3 Sensitivity of δ value in the performance of random cascade HSA method 
 

 δ value used in ( BB δσµ ± ) condition 

 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

Average 0.5583 0.5677 0.5712 0.5717 0.5702 0.5698 0.5572 

Maximum 0.9059 0.9289 0.9150 0.9250 0.9245 0.9170 0.9269 

Minimum 0.2238 0.2126 0.2137 0.2026 0.2054 0.2133 0.2118 

Std.  dev. 0.1079 0.1067 0.1102 0.1093 0.1099 0.1042 0.1137 
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ランダムカスケードモデルの改良とそれを用いたグローバルスケール 降雨推定量のダウンスケーリング 
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要  旨 
非等方性を考慮したランダムカスケードモデルを開発し，それを用いてマクロ

スケールの降雨の空間場からより信頼性の高い詳細スケールの降雨場を生成する

ことを目的とする。これまで，ランダムカスケードモデルを用いたダウンスケー

リング手法は，長期間の平均的な降雨の空間パターンの再現には成功しているも

のの、ある時間の平均空間降雨強度をダウンスケールした結果は，その時間の実

際の降雨の空間分布とは必ずしも対応しない。これらの欠点を克服するために，

本研究では階層統計的適合ランダムカスケードモデル(Random Cascade Hierarchical 
and Statistical Adjustment Method)を新たに提案し，それを用いて GAME 再解析デー

タ(1.25 度空間分解能)を 10 分空間分解能にダウンスケールすることを試みた。本

手法によって得られた詳細スケールの降雨空間場は，これまでのダウンスケール

手法と比べてより現実の降雨場に近く、生成される降雨場はシミュレーションご

とに大きくばらつかないことを示した。 
 

キーワード: ランダムカスケードモデル, ダウンスケーリング, GAME 再解析データ, 
HSA 法 

 
 


