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Modeling of L ateral Preferential Flow through Soil Pipesin Hillslope
Daizo TSUTSUMI Roy C. SIDLE Masaharu FUJTA Ken'ichiro KOSUGI*
* Graduate School of Agriculture Kyoto University

Synopsis

A general modeling method describing the three-dimensional lateral preferential water flow in a
hillslope with soil pipes was developed. Matrix flow and pipe flow were regarded as the separated flow systems
and calculated by their respective governing equations (Richards and Manning's equations respectively)
considering the interaction between these two flow systems. The model accommodates both partially and filled
pipeflow and seepage into the pipe as well as backflow from the pipe to the surrounding soil matrix. Simulations
were conducted for conditions outlined in an earlier bench-scale experiment. Both groundwater levels and
preferential flow that were influenced by the location of a high roughness element within the soil pipe were
accurately simulated; other models have not simulated such conditions.

Keywords:. soil pipes pipeflow matrix flow Richards equation Manning's equation



