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Synopsis

A framework is proposed for using distributed rainfall-runoff models for real-time

probabilistic flood forecasting. A stochastic rainfall pattern simulation model capable of

generating input for a distributed rainfall-runoff model is developed to facilitate a short-term

probabilistic forecast of river discharge at multiple locations in a watershed. Generation of

rainfall patterns over a 6-hour period is achieved using a translation vector rainfall forecasting

process modified to account for uncertainties in rainfall pattern development. The stochastic

rainfall generation model is coupled with a distributed rainfall-runoff model in a Monte-Carlo

simulation to provide a short-term ensemble forecast of distributed flood discharge. An

adaptive updating procedure for the real-time reduction of forecast error suitable for use with

a distributed rainfall-runoff model is developed for the system. An example application of the

proposed probabilistic flood stage forecasting system is provided for a typhoon event that

occurred in the vicinity of the Nagara River watershed located in Gifu, Japan.

Keywords: distributed rainfall-runoff model, Monte Carlo simulation, flood prediction, probabilistic forecasting,

rainfall generation

1. Introduction

It is the goal of flood forecasting to provide timely
and accurate estimates of future discharge conditions
at specific watershed locations. The wide variety of
forecasting techniques available to the hydrologist
today include physically-based rainfall-runoff
modeling techniques, data-driven techniques, and
varying degrees of mixtures of the two, with forecasts

ranging in scale from short-term involving a number

of hours, through to long-term involving a number of
months or years.

The use of physically-based models allows an
understanding of the hydrological process being
modeled to be incorporated in the equations that
describe it. Provided that the model can be suitably
described and calibrated, a reasonably accurate model
output can be produced. The forecasting ability of
these models can be improved by coupling them with

statistical models that use flood stage or discharge



observations to account for inaccuracies in the model
resulting from errors introduced by boundary
conditions, model parameters, and input data. The
time required for model development and calibration,
however, is considered a drawback associated with
the use of physically-based models. These models
have also been criticized for often ignoring the
spatially-distributed, time-varying, and stochastic
properties of the rainfall-runoff process (Zealand et
al., 1999), and for difficulties associated with the
availability of data for real-time forecasting. An
attempt is made here to further the understanding of
how these issues can be tackled in modeling the
rainfall-runoff process under typhoon conditions.

Distributed hydrological models have been used in
recent years for a range of different water quantity
and quality simulations, but have not yet found
widespread use in the field of flood forecasting. The
distributed nature of such models provides the
potential for simulations of superior accuracy to
purely data-driven models, and allows simulation
results to be provided for multiple locations within a
watershed. For this reason their use is investigated in
this research.

While it is necessary to increase the accuracy of
flood forecasts, there is also a largely unfilled need to
provide a measure of the confidence that can be
placed in a given forecast. No forecast of
hydrological conditions can be perfect, and often is
the case that too much faith is placed in a ébesti
prediction of future conditions, which can potentially
lead to non-optimal decisions being made during the
period leading up to a flood.

A Monte Carlo simulation approach that involves
the generation of numerous future rainfall pattern
series, and the input of these patterns into a
deterministic rainfall-runoff model to generate

simulated forecast hydrographs and allow the future

discharge of a river to be described in a probabilistic

sense, is proposed. The proposed framework calls for
the following system components:
o A simulation model

rainfall capable of

analyzing weather radar-observed rainfall
patterns and extrapolating these patterns to
provide an estimate of future rainfall conditions.

® A distributed rainfall-runoff model capable of
describing a watershed in terms of its distributed
geographical properties, and capable of
converting rainfall patterns into discharge at
each location within the watershed.

® A Monte Carlo simulation strategy for

combining the rainfall simulation model and the

distributed rainfall-runoff model to provide a

probabilistic forecast of future watershed
discharge conditions.

® An add-on for the rainfall simulation model to
allow stochastic generation of rainfall patterns
considering past weather radar observations.

® An adaptive updating scheme for a distributed
rainfall-runoff model capable of utilizing
real-time river discharge observations to reduce
forecast error.

A system comprising the above components is
described and discussed. An example application for
the Nagara River located in Gifu Prefecture, Japan, is
provided for a typhoon event that occurred in
September, 2000. A 6-hour-ahead forecast is desired
so as to provide sufficient time for the issuing of
flood warnings and appropriate operation of flood

mitigation structures and machinery.
2.  Probabilistic forecasting

Combined rainfall prediction and rainfall-runoff
simulation procedures for estimation of future flood
stage conditions generally attempt only to offer a
&esti estimate of future river watershed discharge

conditions without giving any information in regards



to the confidence of the forecast being made.
Information about the uncertainty in forecasts,
however, can be beneficial in a number of ways,
especially when this uncertainty is described in the
form of a probabilistic forecast.

Risk-based decision-making becomes possible
when probabilistic rather than deterministic forecasts
are provided. Risk-based flood warning is also made
possible through probabilistic flood stage forecasting,
where the probability of exceedance of design flood
levels can be provided. This has the benefit of
reminding the user that a given forecast is not certain,
and alerts the user to the range of flood stage heights
that could potentially be experienced. This would
help to remove the confusion during and after flood
events that would otherwise likely occur if a flood
stage prediction were exceeded, leading to damage or
loss of life as a result of misguided faith in what was
a ¢besti but by no means perfect estimate of future
conditions.

Uncertainty in watershed runoff predictions results
as a consequence of an inability to perfectly observe
and predict rainfall conditions, and the inadequacy of
the mathematical model used to approximate a highly
complex physical system. The uncertainty related to
the estimations of future rainfall conditions can be
referred to as precipitation uncertainty, and the
uncertainty related to the model structure, estimated
model parameters, and observed hydrological data,
can be collectively referred to as hydrologic
uncertainty (Krzysztofowicz, 2001).

Precipitation uncertainty is generally regarded as
the most influential cause of uncertainty in a flood
forecast (Moore, 2002). Ensemble or Monte Carlo
simulation-based forecasts of future hydrological
conditions may be used to estimate the uncertainty in
a flood stage forecast due to uncertainty in the
rainfall forecast input.

An ensemble forecast produced in this manner,

however, cannot alone provide a complete
probabilistic forecast, as it is only capable of
estimating an output distribution of model flood stage,
incorporating uncertainty in the precipitation input,
while ignoring the hydrologic uncertainty arising
from all other sources of uncertainty (Krzysztofowicz,
2001).

Attempts to date to produce probabilistic forecasts
of flood stage have considered rainfall as an averaged
or point process using a coarse temporal resolution of
the order of one hour, and have used lumped physical
to model the

models or black box models

rainfall-runoff process. Examples include the
precipitation uncertainty processor developed by
Kelly and Krzysztofowicz (2000), which uses a time
series of 6-hours watershed average precipitation
amounts as input for a lumped hydrologic model, and
the real-time flood forecasting system of Lardet and
Obled (1994), which uses stochastically generated
hourly time series of rainfall as a lumped input to a
rainfall-runoff model.
A framework for probabilistic forecasting of
discharge conditions throughout a watershed,
considering rainfall at a fine spatial and temporal
resolution, and using a distributed physically based
rainfall-runoff ~ model, is  presented  here.
Consideration is given to the effects of uncertainty in
the rainfall forecast, as well as observational and
modeling uncertainties. These hydrologic and
precipitation uncertainties are handled as follows:
® A Monte Carlo simulation involving generation
of future rainfall patterns is proposed for the
production of an ensemble flood stage forecast
considering precipitation uncertainty.

® A recursive adaptive updating technique is
proposed to reduce the influence of observation
and model errors, and to provide an estimate of
the uncertainty in the forecast due to hydrologic

uncertainty.



3. Monte Carlo simulation

A Monte Carlo simulation based probabilistic flood
forecasting procedure is proposed here. A translation
vector model for analysis of rainfall pattern
movement is extended to include a time series
analysis of observed pattern translation to allow for
stochastic generation of future rainfall patterns based
on the statistical properties of rainfall pattern
translation and growth-decay characteristics. These
generated future rainfall patterns are subsequently
input into a distributed rainfall-runoff model,
resulting in a distributed ensemble forecast of
watershed flood stage.

The simulation proceeds as follows:

(a) Observation: Radar observation of rainfall
patterns at regular intervals of As up to the
present (¢ = 0).

(b) Identification and analysis: Identification
of translation and growth-decay properties of
observed rainfall patterns over each At

interval. Time series analysis of observed

patterns to determine suitable time series
models to describe the fluctuations in translation
vector parameters.

(©) Rainfall pattern generation: Generation of
future rainfall patterns through extrapolation of
observed rainfall patterns based on identified
time series models of translation vector
parameter fluctuation, together with inclusion of
randomly generated white noise.

(d) Rainfall-runoff simulation: Running of the
rainfall-runoff model using observed rainfall
patterns to ¢ = 0 and each generated rainfall
pattern series to desired lead time ¢ = nlt¢ as
input, where n refers to the number of desired
future time steps.

(e) Probabilistic description of flood stage:

Description of forecast up to ¢ = nAt nlAt

using partial cumulative distribution functions
(pcdfis) for each channel position of interest in

the watershed.
4. Rainfall modeling and pattern generation

The translation vector model for analysis of
rainfall pattern movement developed by Shiiba et al.
(1984) is extended to include a time series analysis of
observed pattern translation to allow for generation of
future rainfall patterns based on the statistical
rainfall translation and

properties  of pattern

growth-decay characteristics.

4.1. Rainfall pattern translation model
Rainfall at time ¢ at a point on a horizontal surface
with the Cartesian coordinates of x, y, is given as

z(x,p,t). The translation model can be described as:

—tu—+tv—=w (1)

where « and v are the translation vectors and w is the
growth-decay head. These terms are further described
with the following one-dimensional functions:
u=cx+tcy+tc
v=c,xtey teg (2)

w=c,x tegy e,

4.2. Identification of translation vector
parameters

The parameters c¢; ~ c¢o are identified through
analysis of past rainfall patterns using the method of
linear least squares. A rectangular area within the
observation range of the precipitation gauging radars
is divided into rectangular mesh cells of dimension
Ax[Dy . The coordinates of this system are defined as
follows:

x, =@G-1/2)M&x, i=1,.,M

v, =( -2y, j=1,...N 3)

t, =k, k=0,.,-K -1

Here, At is a time step, M and N are the number



of mesh in the x and y directions, respectively, and
(K+1)Ar is the length of observed precipitation
data required for determination of the movement of

the precipitation patterns. In order to identify the

parameters,
-1 M-IN-l
=355 @
k=-K i=2 j=2

is minimized. vy is defined as follows:

Vie =~ a—z - (clx. +c2y_ +c3) % +
v ot |, ' / Ox |,

(6))
(C4xi tesy; +Cé)|:g_z:| _(C7xi TGy, te )}
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4.3. Time series analysis of translation and
growth-decay parameters

A time series analysis of observed rainfall patterns
is conducted to identify the time series characteristics
of rainfall pattern translation and growth-decay.
Autoregressive moving average (ARMA) models,
and the closely-related autoregressive integrated
moving average (ARIMA) models (Box and Jenkins,
1976) are convenient as they are capable of taking
into account the noise in the translation and
growth-decay of rainfall patterns. Forecasting of
short-term rainfall assuming that hourly rainfall
follows an autoregressive moving average (ARMA)
process was investigated by Burlando et al. (1993).
The time series analysis was applied directly to a
rainfall intensity data series at a point and the
accuracy of the forecasts was limited, even at short
lead times of 1 and 2 hours. The authors noted the
intrinsic limitations of the at-site linear model used in
their research, and cited the need for a forecast
capable of taking into account the influence of storm
movement and based on data monitored at a finer
temporal and spatial scale.

An ARIMA model is applied here to the translation
vector and growth-decay head of the rainfall pattern

translation model, and through identification of

appropriate model structure and parameters, the
model is used to stochastically generate rainfall
patterns based on past observed rainfall translation
characteristics. This theory is applied to a series of
rainfall patterns observed by radar at S-minute
intervals and defined on a 1-kilometer mesh grid.

A general ARIMA model of order (p,d,q) can be
expressed as:

o(B)0'e= g(B)d ©)
where ¢’ is the translation vector parameter at time ¢,
and ¢’ is the random error term at time ¢ having mean
zero and variance 0. . ¢(B) is a stationary
autoregressive operator, and &B) is a moving average
operator. B is a backward shift operator defined by
Bc' = ¢! and related to the backward difference
operator [ by 9= (1-B)", where d is the order of
differencing. The Autoregressive (AR) operator of
order p and the Moving Average (MA) operator of

order g can be expanded as

@(B)=1- @B - B> -+ ¢B” (7
and
6(B)=1-4B -6,B* -~ I}+§ B’ (8)

respectively, where ¢, @,..., ¢ are AR parameters,
and 6, 6,...., § are MA parameters.

In fitting an ARIMA model, p+g+2 unknown
U Qs @3 6.y @5 G must  be

estimated. Here 4 is the mean of the difference

parameters
0% and is assumed to be zero unless a
deterministic trend in the series is in evidence. For
details regarding parameter estimation, the reader is
referred to Box and Jenkins (1976), Walker (1931)
and Yule (1927).

4.4. Rainfall pattern generation

Future rainfall patterns can be stochastically
generated through extrapolation of parameters using a
time series model estimated using the methodology

proposed above. With each extrapolation step, the



random variable @' is sampled from a normal
distribution based on the mean and variance of the

error determined during model identification. Initial

1 -2

values ¢’ and ¢ are also estimated during the
identification process, and likewise an initial a"’ can
be estimated by fitting observed values of ¢ into the
estimated time series model, where j = t-1, -2,0 t-m,
and m is the number of observed rainfall patterns for
the storm event under analysis.

The simulation proceeds through solution of (6)
for each future time step. In order to achieve this for
each step, noise terms a' must be generated for each
translation parameter c;.

Each future noise term a' is sampled by first
generating a random number ¢ between 0 and 1.
Note that here @ is used in reference to the standard
normal variable and has no connection to the AR
parameters introduced above. The corresponding
value of z is then extracted from a normal distribution
with a probability density function described by:

-(x=p4)*
e K 7 9

¢(x):—, —oo<xy <o
oN2m

and a corresponding distribution function
P(Z<2)=®(z) = @x)dr, —o<z <o (10)

where g, is the distribution mean and o, is the
standard deviation of the error term. This is achieved
by sampling

Z=¢' an
from a table describing the standard normal
distribution ( /=0, o = 1), and then converting this

z value to a corresponding value taken from a normal

distribution with mean g and standard deviation
o0 such that
a; =(0;2) + 14 (12)

An ARIMA (1,0,1) model is considered here for

parameters c; and ¢4, and a white noise process is

considered for parameters c;, cs, and co. A time series
plot of the c¢; parameter calculated from observed
rainfall patterns in the vicinity of Nagara River over
the period 11/9/2000 17:05 f 20:00, is shown in Fig.
1 together with an example simulated time series for
the following 6 hours. Note that it is not important
that the simulated series matches the observed series,
but rather that the nature of the fluctuation in the
series is similar. It should be remembered that the
simulated series contains a random input and will be

different for each generated rainfall pattern set.
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Fig. 1 Time series of c; and example randomly

generated series

Generation of future rainfall patterns then proceeds
through tracing the pattern movement backwards
along a characteristic curve defined by a set of ¢;
generated using (6) at each time step, together with

the following differential expressions:

d);(tt) = clx(t) +czy(t) +c,

d);lg‘t) =cpx (1) +esp(t) +¢ (13)
d.

Zd(tt) =cyx(t) ey (1) +e

The above expressions can be rearranged to generate

a pattern for a time step of 1 into the future:

z(x,y,t0 +T) =
* (14)
z(x(to),y(to),to)—S(T;cl,---,cg) v,
1



X
=R =T;¢, ",
S rCresal s

where § and R are 3x3 and 2x3 matrices,
respectively.

5. Distributed rainfall-runoff model

The distributed
Hydro-BEAM (Kojiri et al., 1998) is a tool that was

rainfall-runoff model
initially developed for simulating water quantity and
quality in rivers, based on an understanding of the
hydrological processes that occur within a watershed.
It has since been used in a pioneering work on
comparative hydrology, where a methodology for
assessing the similarity between watersheds was
proposed (Park et al., 2000), to investigate sediment
transport processes in the large watershed of the
Yellow River, China (Tamura and Kojiri, 2002), and
to investigate pesticide levels in rivers and their
effects on hormone levels in fish (Tokai et al., 2002).

Hydro-BEAM is used for the first time here for
real-time flood stage forecasting. The use of a
distributed rainfall-runoff model allows simulation of
discharge levels at every point within a watershedis
channel network, rather than just at a few specified
locations as with lumped-parameter hydrological
models.

Hydro-BEAM is configured for this research to
accept radar-observed precipitation inputs at a
1-kilometer mesh scale at 5-minute intervals. The
watershed is modeled as a uniform array of
multi-layered mesh cells, each containing information
regarding surface land use characteristics, ground
surface slope and runoff direction, and the
presence/absence of a channel. An approximation of
the kinematic wave method is used to model
watershed runoff on the surface and in the upper

subsurface layer. The applied Hydro-BEAM model is

calibrated to include only two subsurface layers, to
allow for a fast real-time calculation. Evaporation
losses during a flood event are ignored, as the impact

of these losses is considered negligible.
6. Distributed adaptive updating

In order to facilitate the real-time updating of the
calculated discharge given by the distributed
rainfall-runoff model used for this research, such that
an accurate real-time discharge prediction can be
achieved, observed discharge data available in
real-time from discharge observation stations within
the watershed must be utilized. The rainfall-runoff
model cannot merely rely on the correct prior
identification of model parameters and the accuracy
of observed and predicted rainfall patterns in
attempting to produce an accurate model output. It is
clear that no matter how accurately model parameters
are calibrated, the uniqueness of each hydrological
event, and the inherent weaknesses of the model as a
simplified representation of a physical reality, ensures
that an error between model output and actual
discharge will always be present.

A large number of studies (Kitanidis and Bras,
1980; Puente and Bras, 1987) have successfully used
discharge observations to improve flood forecast
accuracy through application of the state-space
Kalman filter (Kalman, 1960) to the problem of
real-time  adaptive  estimation  of  lumped
rainfall-runoff model parameters. A number of novel
schemes have also been proposed in recent years for
directly improving forecasts of future discharge based
on discharge observations. One example is that of
Khu et al. (2001) where a genetic programming
technique was used to estimate a function relating the
error between a time series of model outputs and

observed discharges to improve forecasts of river

discharge.



The problem of wupdating a distributed
rainfall-runoff model in real-time to reflect actual
river discharge conditions poses two main challenges.
The first challenge is that of how to combine a
filtering algorithm with a kinematic wave-based
model. Secondly, how can an entire watershed model
be suitably updated using discharge observations
available at only a limited number of locations? The
above two issues are discussed in detail in Smith
(2003) where a scheme suitable for a distributed
rainfall-runoff model such as the one being used in
this research is proposed. In this scheme, the
recursive updating of the watershedis discharge is
achieved through individual recursive updating of
gain parameters at each of the watershedis
observation points.

Recursive filtering of a time-variable gain
parameter ¢ is performed for each model mesh cell
containing a river discharge observation station. A
predictor-corrector algorithm based on that of Young
(1984) is employed for the recursive estimation of the

gain parameter, and is outlined in Fig. 2. O, and

Q are the observed discharge and the predicted
discharge, respectively, for time ¢. Here Cy is a
noise variance ratio (NVR), and is used together with
P to control the degree to which the time-variable
gain is allowed to change between steps, with filter
memory decreasing for increasing values of Cyyx.

In order to apply filter results from a limited
number of locations to every mesh cell in the model,
an interpolation scheme is developed for a watershed
based on the characteristics of the watershedis flow
routing map. In this scheme a weight vector
a=(a,.a,,-a, is determined for each
observation point, denoting the influence from 0 to 1

of the gain estimated for each of the m observation
points, such that Zil a, =1. An example array of

weight vectors calculated based on four observation
stations located in Nagara River watershed, Gifu,
Japan (seeFig. 4), is shown in Fig. 3. A complete
description of the algorithm for the determination of
the distributed weight vectors can be found in Smith

(2003).

Precipitation

Observation [ Rainfall-runoff
model loop

Predict
@Tt—l = Cé—l Q
P;p—l = Pr—l +CNVR >
Qz = QmodAt\t—l
Correct
¢* _ % + Pt\t—le I:Qt _‘ﬁ\:—lgj
=@_, .
1 t 1+Pt‘,—1Qt2
2 [
_ _ I:Pt\t—IQr]
t tle-1 1+ B‘,_IQZ
Qmod.t = @Qmod,th—l

Fig. 2 Recursive filtering algorithm for estimation of adaptive gain parameter and updating of a distributed

rainfall-runoff modelis discharge



(b)

Fig. 3 Influence of four water stage observation points on each mesh cell of the Nagara River watershed: (a)

©

Inari, a,,(b) Shimohorado, a,, (c) Mino, a,, and (d) Chusetsu, a,

7. Application

An application is conducted for a typhoon event
that occurred in the vicinity of the Nagara River
watershed in Japanis Chubu region over the period of
the 10th to 13th of September, 2000.

The Nagara River is a southward flowing river
located in the Gifu and Mie prefectures of Japan. It
has a total catchment area of 1985 km” (Ministry of
Construction, 2000) and a long history of flooding.
Radar observations of precipitation conditions over
the entire landmass of Japan are made available in
real-time by the Japanese Ministry of Land,
Infrastructure and Transport. Radar data is currently
provided at five-minute intervals at a spatial
resolution of lkm by weather radars located at
Gozaisho and Jyatoge, which cover the Nagara River
watershed and surrounding areas.

The Hydro-BEAM distributed rainfall-runoff
model is fitted to the Nagara River watershed using a

combination of digital survey data and printed

materials to generate a flow routing map (Fig. 4) and
a land use map, and using rainfall and discharge
observations for calibration of runoff and infiltration
parameters. 1556 mesh cells of approximately 1km?
in area are used to describe the upper and middle
catchment areas existing upstream of Chusetsu. The
land use of this area is divided into 5 categories, and
the percentage cover of each land use for each mesh
cell is extracted from data sets obtained from satellite
images. The model parameters are calibrated through
trial and error using observations from typhoon
events that occurred between 1992 and 1999.

A data set of the most recently observed 36
sequential 160X 160 km rainfall patterns measured
on a | km scale at 5-minute intervals is used for the
rainfall model identification, which is repeated for
each 5-minute time step during the simulation. The
patterns are converted to translation vectors through
the use of the rainfall pattern translation model. The
simplified case of parallel translation is considered

here, whereby only the translation vector parameters



¢3, cg, and the growth-decay parameters c;, cs, and ¢
are used. The time series characteristics are
determined for each parameter, and based on the
resulting time series equations, time series of each
parameter are stochastically generated and converted

into 25 sets of 6-hour rainfall events.
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Fig. 4 Nagara River watershed flow routing map

The discharge results of 25 sets of 6-hour generated

rainfall patterns at the midstream location of Inari and

the downstream location of Chusetsu are given in Fig.

5 and Fig. 6, respectively. The simulated rainfall

input does not have a major influence on the

hydrographs of the downstream location for the first
3 hours of the rainfall-runoff simulation. The
influence on the hydrographs of the midstream
location appears an hour earlier. A probabilistic
forecast of flood discharge considering only
precipitation uncertainty is given for Inari and
Chusetsu in Fig. 7 and Fig. 8, respectively. Plots of
the 6-hours ahead 50% and 95% non-exceedance
probability limits of discharge for all channel
locations within the Nagara River watershed are

shown in Fig. 9(a) and Fig. 9(b), respectively.

These results, when coupled with an estimate of
hydrologic uncertainty, provided by the adaptive
updating scheme outlined above, can provide a
complete probabilistic forecast of flood stage
conditions for an entire watershed.
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Fig. 5 Simulated future discharges for Inari, 20:00
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probabilistic forecast of flood stage at each point
8. Conclusions L .
within a watershed has been proposed. A translation
A comprehensive strategy for providing a vector l‘nOdel fOI‘ StOChaStiC I‘ail‘lfall generation haS

been successfully developed and combined with a



distributed rainfall-runoff model to account for the
uncertainty that exists in a flood stage forecast due to
an inability to perfectly forecast rainfall conditions.
An application demonstrating the ability of the Monte
Carlo Simulation-based system to provide an
ensemble forecast of future flood stage conditions for
a six-hour lead time has been demonstrated.
Distributed rainfall-runoff models hold great
potential for application in the field of flood
forecasting, and the strategies proposed and

employed in this research serve as a basis for their

future use.
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