積雲対流による物質の鉛直輸送に関する数値的研究

安永 数明*・木田 秀次*里村 雄彦*・西 憲敬*

*京都大学 大学院 理学研究科

要旨

境界層の空気が,対流システムによってどの高度に運ばれているのかを調べるために,TOGA COARE 集中観測中の 1992 年 12 月 19 日から 27 日にかけての対流活動の活発な時期を、雲解 像モデル (ARPS)を用いてシミュレートした.境界層を起源とする仮想的なオイラートレーサ を,対流システムからのデトレイメント量を評価するために使用した.

トレーサのデトレイメント量の極大は,150 hPa,400 hPa,600 hPa の3つの高度で見られた. 150 hPa という高度は,もっとも活発な雲の雲頂高度と対応していた.幾つかの感度実験から, 600 hPa の高度のデトレイメントは,500 hPa 付近の安定層と,氷から水への融解過程に影響を 受けていた.500 hPa 付近の安定層は,このシミュレーションの期間中には,良く観測されてい た.400 hPa のデトレイメントの極大は,他の高度に比べて幾分弱めであった.この極大は,500 hPa 付近の安定層に影響を受けたものではあったが,融解過程には,影響を受けていなかった.

キーワード: 積雲対流,物質輸送,物質循環

1. はじめに

二酸化炭素,水蒸気,オゾンなどの大気微量成分や大 気中に浮遊するエアロゾルの分布は,大気の放射特性を 通じて地球大気の気候に大きな影響力を持つ.近年社会 的な注目を集めている温室効果気体の増加による地球温 暖化予測を精度良く行う上で,比較的大きな放射強制力 を持つそのような大気微量成分やエアロゾルの鉛直分布 に関する情報は,非常に重要である.

積雲対流は,そのような大気微量成分やエアロゾルを 1時間程度の時間スケールで境界層内から自由対流圏ま で一気に輸送することができる.高高度では一般的に境 界層内に比べて風が強く,自由対流圏まで持ち上げられ た物質は,より広範囲に拡散することになる.高高度で は反応性の高い物質が少ないため,境界層に存在してい た時と比べると長寿命となる.そのため積雲対流は,地 表起源の大気微量成分やエアロゾルの寿命や分布を決定 する上で,非常に重要な役割を果たしている.また大き な放射強制力を持つ大気微量成分やエアロゾルの分布を 通して,地球大気の気候に対しても重要な役割を果たし ている.

これまで積雲対流による物質の鉛直輸送に関して,多 くの観測もしくは数値モデルを用いた研究が行われてき た.しかしそれらの研究において積雲対流の物理過程に 踏み込んで輸送過程を理解しようとしたものは多くない. そのためその重要性にも関わらず積雲対流による物質輸 送過程が,どういった物理過程によって特徴づけられる

かは,現在に至っても明らかになってはいない.

Intertropical Convergence Zone (ITCZ) や, South Pacific Convergence Zone (SPCZ) などの海面温度 (SST)の高い領域では基本的に条件付き不安定な成層 をしており,そこでは孤立積雲や組織化した積雲システ ムが,しばしば観測される.また低緯度では弱い傾圧性 のため,水平方向に比較的一様な環境場となっており,鉛 直運動に関して純粋に対流過程だけに注目して理解を進 めることが容易である(Houze 1993).そのため高い海面 水温を持った低緯度領域は,積雲対流による物質の鉛直 輸送を対象に研究を行うのに適している.

積雲対流に伴う様々なスケールの運動が,トレーサ物 質の境界層から自由対流圏への鉛直方向の輸送に影響を 与えている(例えば,対流性領域での上昇流,層状性領域 での下降流,上昇流を補償する形で引き起こされるメソス ケールの下降流 など).本研究では,対流システムからの デトレイメントの鉛直プロファイルをトレーサ物質の鉛 直輸送の指標として用いる.すなわち本研究では,雲か らデトレイメントした空気が,積雲対流に伴う種々のス ケールの運動によって更なる鉛直方向の輸送を受ける可 能性はあるものの,境界層の空気が対流システムによっ てどの高度まで運ばれてデトレイメントしたかを調べる,

熱帯地方における積雲対流の成長は,環境場の成層状 態の影響大きく受けている. Johnson et al. (1996) は, 熱帯海洋上での集中観測 Tropical Ocean Global Atmosphere Coupled Ocean - Atmosphere Response Experiment (TOGA COARE) における intensive flux array

(IFA) 領域内での幾つかの観測地点のサウンディングデー タから,顕著な安定層が2km (800 hPa 付近,貿易風 帯の逆転層に似たもの),5 km (500 hPa,温度 0°C付 近), 15-16 km (100 hPa, 圏界面付近) に存在すること を発見した . Johnson et al. (1999) は , 更に同じ TOGA COARE での降水粒子のレーダエコートップの鉛直分布 において,極大が上記の3つの安定層の近くに存在する ことを発見した. すなわち,浅い積雲, 中層まで発達する 積雲, 圏界面付近まで発達する積乱雲が, この西太平洋 域での積雲の顕著な雲タイプであることを指摘した.ま た Zuidema (1998) は, 600 hPa - 700 hPa 付近の高度 の安定度が,その上下の 500 hPa や 800 hPa 付近の安 定度に比べて弱くなっており, それに対応して 600 hPa - 700 hPa 付近の高度で, 雲の鉛直分布が極小となって いることを TOGA COARE でのサウンディングデータ を用いて指摘した.

積雲対流の雲頂だけでなく積雲対流からのデトレイメ ントも環境場の成層状態の影響を強く受けることは,良く 知られている. Richards (1961) は, 水槽実験で様々な浮 力を持ったサーマルが密度ギャップを通過する際に,サー マル内の物質が、そこでどの程度デトレインするかを観 測した.その結果、密度ギャップをデトレイメントしない で通過する物質の量は,サーマルの浮力と密度ギャップ の大きさの比で決定されることを指摘した.また Dahm et al. (1989) は, 水槽実験で密度ギャップを, サーマル が通過する際の力学的なメカニズムを,数値実験を交え ながら考察した.その結果サーマルが密度ギャップの境 界面を通過する際に、その境界面を変形させ、その変形 した境界面が元に戻るときにサーマルの一番外側の層が, 引きずり出されることでデトレイメントが起こるという ことを指摘した.上記の2つの研究は,水槽内での実験 であり,凝結過程を含む雲に対して上記の結果やメカニ ズムをそのまま直接結び付けられる訳ではない.しかし 実際の積雲が水槽内でのサーマルとある程度似通った性 質を持つならば,安定層が存在した時にその層付近へ積 雲によって境界層内の物質が運ばれる、という可能性を |示唆した点で,これらの研究は重要である.

Bretherton and Smolarkiewicz (1989) は, 一般風の ない場での降水を伴わない孤立積雲の周りの流れを考え るために,ブシネスク方程式の枠組みでモデルを組み立 てた.そのモデルに従うと積雲の周りの流れは,積雲の 上昇流を補償するために,重力波が応答することよって 理解できるとしている.更に雲の浮力が減っていく高度 で,雲からのデトレイメンが多くなることも同時に指摘し ている.この結果を, Johnson et al. (1996) で得られた TOGA COARE IFA 領域での平均温度プロファイル に あてはめて考えると, 500 hPa 付近の安定層の存在によ り,その高度付近では雲の浮力が減るため,雲からのデト レイメントが増えることが示唆される.Zuidema (1998) は, Raymond and Blyth (1992) が提案した buoyancysorting という雲モデルを TOGA COARE IFA 領域に おいて観測された平均温度プロファイルに適用して,雲の 集合体 (cloud ensemble) としてのデトレイメントの鉛直 プロファイルを調べた.その結果 Johnson et al. (1996) の指摘する 500 hPa (温度 0°C)付近の安定層, 600 hPa 付近の安定度が弱い層に対応して,400 hPa は顕著なデト レイメントの極大,600 hPa は顕著な極小となることがわ かった . Mapes (2001) は , 鉛直 1 次元のコラムモデルを , TOGA COARE IFA 領域において観測された平均温度 プロファイルに適用して, 雲の集合体 (cloud ensemble) としてのデトレイメントの鉛直プロファイルを調べた.そ の結果,積雲加熱が起こった場合でもボックス内の温度プ

ロファイルが不変という仮定を置くと,鉛直方向に安定 度が変化しているために,加熱領域(即ち積雲領域)から の,非断熱過程による発散 (diabatic divergence, Mapes and Houze 1995) が, 200 hPa, 600 hPa, 900 hPa の高 度に極大が, 400 hPa, 750 hPa, 1000 hPa 付近に極小 が生じることを示した.上記の3つの研究は,いずれも 熱帯海洋上において Johnson et al. (1996), Zuidema (1998) が指摘した温度成層の時に中層でデトレイメント が促進されたり,抑制されたりする可能性を示している. しかし,研究毎に色々な仮定を置いており,その仮定の 妥当性が明らかになっていないことと, デトレイメント が促進される高度は研究によって微妙な違いが存在する ことから,いまだ熱帯海洋上における 500 hPa 付近の安 定層と積雲対流による物質輸送の関係について,完全な 結論を下すには至っていない.そのため,積雲対流から のデトレイメントプロファイルについて雲を解像する数 値モデル (CRM) を用いて詳細に調べる事は非常に価値 のあることである.

CRM は,積雲対流による鉛直輸送の研究で良く使われ る. Scala et al. (1990) は, NASA によって行なわれた 集中観測 Second Amazon Boundary Layer Experiment (ABLE 2B) の 1987 年 5 月 6 日に観測されたスコールラ インを,2次元の雲解像モデルを用いて再現し,その再現 されたスコールラインによる輸送過程を仮想的なオイラー トレーサを用いて調べている. それによると雲の Anvil 領 域 (高度 10 km 付近) では,6 km より上を起源とする空 気が,大部分を占めており,境界層から直接到達したもの はあまり多くないことを指摘している.また,氷から水へ の相変化による融解により,上昇流が弱められて,更にそ の高度での rotor circulation を駆動することで,対流の 上昇流からのデトレイメントが,5km辺りの高度で強め られることを指摘した.しかし, Scala et al. (1990) は, 観測されたスコールラインの再現が主目的であり,環境 場の成層状態については全く議論しておらず,シミュレー ションで見られた中層でのデトレイメントが, 融解過程 に伴う冷却過程により強められた rotor circulation のみ で全て説明がつくか,それとも環境場の成層状態も重要 な役割を果たしているのかについては不明である.Lu et al. (2000) は, Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) phase III で観 測された積雲対流が活発な1週間程度の期間を雲を解像 する数値モデルを用いて再現し,そこに境界層にソース を持つ仮想的なオイラートレーサを流して,その輸送過 程を調べた.それによると再現実験を行った期間中に多 量のトレーサが圏界面まで運ばれていたが , その一方で 5 km にも比較的多くのトレーサが運ばれていた.しか しこの研究の第1目的は,数値モデルで得られた結果が 既存の積雲パラメタリゼーションでうまく表現できるか, ということであり, 中層に運ばれたトレーサについては, 全く言及はしていない.

本研究では,以上を踏まえて以下のような問題に焦点 を当てる.1)熱帯海洋上の積雲対流からのデトレイメン トプロファイルは,どの高度に極大を持つのか?2)そ の極大は何によって支配されているのか?これらの問題 を明らかにするために,TOGA COARE IFA で観測さ れた激しい対流イベントを含む8日間のシミュレーショ ンを数値モデルを用いて行なう.この選択した8日間は, 500 hPaの安定層が良く観測される期間でもあった.本 論文では,仮想的なオイラートレーサを用いてデトレイ メントプロファイルの極大の高度を決定し,その後幾つ かの感度実験からその極大高度の支配プロセスを明らか にする.

この研究では前述のとおり 1992 年 12 月 19 日から 27 日にかけての TOGA COARE IFA 領域における対流 システムのシミュレーションを行った.西風バーストが, 1992 年 12 月の終りから 1993 年 1 月の始めにかけて観 測されており, TOGA COARE 期間中最も活発な対流 システムが,その西風バースト直前の12月21日から25 日にかけての下層における西風と東風の収束により発生 した.またこの対流が活発な期間中 apparent moisture sink (Q_2) の極大は, apparent heat source (Q_1) の極 大の高度にほとんど一致していた.これはこの時期層状 性の雲が良く発達していたことを示唆している (Lin and Johnson 1996). 更にこの時期 500 hPa 付近に安定層, 600-700 hPa 付近に比較的不安定な層が,良く見られて いた (図 1). Johnson et al. (1996) は, 500 hPa 付近で 観測される安定層の幾つかは、融解によって生成された ものであることを指摘しており (これを cool-moist case と称している), その時 600-700 hPa は, 安定度が弱く なっていた (Johnson et al. 1996, 図 12). それゆえ,こ の時期観測された 500 hPa 付近に安定層, 600-700 hPa 付近に不安定な層という組合わせは,融解によって生成 されたもの (cool-moist case) であると考えることがで きる.

この研究において,雲解像モデルとして Advanced Regional Prediction System (ARPS)の2次元版を使用し た.ARPSは,Oklahoma大学の'the Center for Analysis and Prediction of Storms (CAPS)'で開発されたモ デルである.ARPSの詳細については,Xue et al. (2000) やXue et al. (2001)に詳しい.熱帯海洋域の対流活動の シミュレーションにあたって,雲微物理に関するパラメ タリゼーションにおいて幾つかの変更を行った.一番大 きな変更点は,Lin et al. (1983)による雹と雪の落下速 度を計算する際の係数を,Rutledge and Hobbs (1983) による霰と雪の係数に変えた点である.これは,熱帯域 では雹ほど大きな氷は発達しないからである.この変更 を行うことで,McCumber et al. (1991)は,熱帯のメソ スケール対流システムのシミュレーションで結果の向上 を指摘している.

モデルで使用した初期プロファイルは, IFA 領域で平 均された 12月 19日 00UTC のサウンディングデータを 利用した.これは, Lin and Johnson (1996) によって 計算されたものである.0.5 K 以下のランダムな温度擾 乱を最初のタイムステップだけに 1 km 以下の高度に与 えている.解像度は鉛直方向に変化しており,最下層で 50 m, 最上層 350 m, 平均 200 m となっている.水平 方向には 1000 m の解像度, 500 km の領域を与えてい る.東西方向の境界は,周期境界条件とした.IFA 領域 は,赤道に近く(中心位置は,約2°N,155°E),コリオリ パラメターは,無視した.海面からの潜熱,顕熱フラック スは,観測された時間的に変化する海面温度を用いて計 算している.放射過程においては,短波放射,長波放射 ともに陽に計算している.ここでのモデル実験は2次元 ということで,現実大気にそのまま応用するには幾つか の欠点がある.しかしながら, Grabowski et al. (1998) は,2次元と3次元のモデル結果を比較して,時間的な 振動性が重要でない場合(数時間以上の場合)は,2次元 モデルは熱帯領域の雲システムを特徴を充分捕らえるこ とができることを示している.

モデル結果を観測に近づけるために,大規模場の運動 による温位,水蒸気,水平方向の運動量の変化を,大規模 場の強制力(L.S.F)として各予報式に与えた.その大規模 場の強制力は, Lin and Johnson (1996) による TOGA COARE IFA 領域の平均プロファイルから計算した.この 手法は,様々な研究で用いられており(例えば Grabowski et al. 1996, Su et al. 1999, Tao et al. 2000 など), そ れぞれの研究で対流イベントを良く再現していることが 確かめられている.水蒸気に関する大規模場による強制 力は,次のように表される.

$$\left(\frac{\partial \bar{q_v}}{\partial t}\right)_{L.S.F.} = -\bar{\mathbf{v}} \cdot \nabla \bar{q_v} - w \frac{\partial \bar{q_v}}{\partial z} \quad , \tag{1}$$

ここで v は水平風ベクトル, w は鉛直風,変数の上に つけた線は, IFA 領域での平均値をそれぞれ表している. 水平運動量に関しては,大規模強制力は観測値から計算 できないので,ナッジングで代用して,以下のように表 現される.

$$\frac{\partial \bar{\mathbf{v}}}{\partial t} \Big)_{L,S,F} = -\frac{\bar{\mathbf{v}}_{model} - \bar{\mathbf{v}}}{\tau_{u,v}} \quad . \tag{2}$$

 $\bar{\mathbf{v}}_{model}$ は,モデル領域で水平平均した水平風, $\tau_{u,v}$ は, 2時間を採用した.

また温位に関しては,大規模強制力に更にナッジング を加えた.これは,積分期間中に1日あたり約0.5-1K ほど対流圏全体にわたって,モデル領域が冷えるのを防 ぐためである.このモデル領域が冷えるというバイアス は,ARPSに特有のものではない.この時期のTOGA COARE IFA 領域の再現実験を行った雲解像モデルの幾 つかで,同じような傾向が確認されている(例えばSuet al. 1999).そのため,温位に関するトータルの強制力は, 次のように表される.

$$\left(\frac{\partial\bar{\theta}}{\partial t}\right)_{L.S.F.} = -\bar{\mathbf{v}}\cdot\nabla\bar{\theta} - w\frac{\partial\bar{\theta}}{\partial z} - \frac{\bar{\theta}_{model} - \bar{\theta}}{\tau_{\theta}} \quad , \quad (3)$$

 $\bar{\theta}$ は, IFA 領域での平均温位の観測値を表す.また $\bar{\theta}_{model}$ は,モデル領域で平均した温位を表す. τ_{θ} は,6時間を採用した.

図2は,シミュレーションの期間中に,モデルによっ て算出された地表での降水率である.また比較のために, IFA における 水蒸気収支から計算された降水率 (Lin and Johnson 1996 から引用) も一緒に載せた. モデルに組み 込んだ水蒸気の大規模収束の効果は,Lin and Johnson (1996) による IFA 領域での降水率の計算にも利用されて おり,モデルによほどの不具合がない限りは,2つの降水 率は一致するはずである.実際,図からわかる通り良い 一致を見せている.モデルグリッドを,対流性降水,層状 性降水,降水なし,という3タイプに Tao et al. (2000) と全く同じ方法を用いて分類した.その分類方法では,地 表降水率を第一に考え、その次に融解層以下の高度にお ける雲水量,上昇流の速度を考慮して対流性降水,層状 性降水の分類を行なうものである.シミュレーション期 間 (12 月 19 日~27 日) で平均した降水量において,上 記の方法を用いて計算された層状性降雨の割合は,50% であった.この値は, SSM/I, レーダから計算された値 (それぞれ 37, 40%)や, GCE model によって計算され た値 (50%) によくあっている (これらは全て Tao et al. 2000 による).

図3は,モデル領域で水平平均した温度減率の時間変化である.観測から得られた図1と比べると,モデルでは800hPa以下の高度の特徴の再現性が悪いが,500hPaの安定層や,600-700hPaのあまり安定度が強くない層の再現が良くできていることがわかる.すなわちこの研究で注目している高度における温度構造の特徴は,良く捕らえられており,このモデルの結果はデトレイメント

の極大と幾つかの物理過程の関係を議論するのに充分な 精度を持っていると判断できる.

3. 仮想トレーサの設定方法とデトレイメントプロファ イル

まず最初に,エントレイメントとデトレイメントを定 義する.ある時刻 t₀ に雲の外にあった空気が,ある一定 時間 δ t後(すなわち 時刻 t₀ + δ t)に雲の一部分となっ たとき,その空気はエントレインされたと考える.同様 に,ある時刻 t₀ に雲の中にあった空気がある一定時間 δ t 後(すなわち 時刻 t₀ + δ t)に雲の外に出てしまったとき, その空気はデトレインされたと考える.ここでモデル内 で雲は,凝結物全体の混合比が 0.1 g·kg⁻¹の閾値を越え たものと定義される.即ち q_c , q_r , q_i , q_s , q_g をそれぞ れ雲水,雨水,雲氷,雪,あられの混合比とすると雲は $q_c + q_r + q_i + q_s + q_g > 0.1$ g·kg⁻¹の領域で定義される. 不活性な(Inert:化学反応を起こさない)オイラートレー サを積雲対流による境界層からの輸送過程を調べるため

に使用した.これらは,地表にソースを持つラドン (Rn) や,ヨウ化メチル (CH₃I) などを代表したものと考える ことができる.トレーサの輸送過程は,保存性の高いフ ラックス形式を用いて計算した.

この研究では,3種類のトレーサを使用している.1 番目のトレーサ (これを T_1 と呼ぶ)は,毎モデルタイム ステップに 1.2 km 以下の高度での雲の外で,1 kg kg⁻¹ の一定混合比に初期化する.もし1モデルタイムステッ プの間に,雲の中へエントレインされた場合は,エント レインされた部分を T_1 から取り除いて,2番目のトレー サ(これを T_2 と呼ぶ)に加える. T_2 のソースは,以前に 雲の中にエントレインされた T_1 のみである. T_2 は,雲 の中でだけ存在する.もし1モデルタイムステップの間 に雲からデトレインした場合,デトレインした部分を T_2 から除去する,そのため一度デトレインした T_2 が,再び エントレインされることはない.

こういったトレーサに関する方法を用いることで,数 時間の寿命をもった雲システムからのデトレイメント量 を正確に見積もることができる.なぜなら,そのデトレ イメント量は,トレーサの初期化時間に強く依存するか らである.例えば,初期化を対流システムのプレコンディ ショニングの時に行うと,背の低い積雲からのデトレイ メント量を過大評価してしまうことになる.なぜなら,そ のプレコンディショニングの時には,背の低い雲の割合 が多いからである.逆にもし初期化を深い対流が発達す る直前に行うと,背の低い雲からのデトレイメントを過 小評価することになる.

しかし,このトレーサに関する方法は欠点も存在する. T_2 は,雲と環境場の境界に強い濃度傾度が存在する.そのためデトレイメントの過程において数値拡散の影響を 強く受けることになる.しかしながら, T_2 のデトレイメ ントでは,移流が主要な過程になっておりこの数値拡散 が,800 hPaより上の高度でデトレイメントに関する正 規の情報を隠してしまうようなことはない.3番目のトレーサ(これを T_3 と呼ぶ)は,1.2 km以下の高度では, 初期化を毎タイムステップごとに一定混合比(1 kg kg⁻¹) で行う.1.2 km以上の高度に輸送された T_3 は,24時間 毎に取り除かれる.即ち,1.2 km以上の高度に輸送され た T_3 は,それがたとえ雲の中であろうと外であろうと, 毎タイムステップごとに取り除かれることはない.そのた め,1.2 kmより上の高度の T_3 の総量は,24時間たつま で増え続けることになる. 図 4 は, T_2 の 10 分間におけるデトレイメント量の積 分期間 (19 日から 27 日まで) での時間鉛直断面図である. これから積雲対流によって境界層から各高度へ, どの程 度輸送されてデトレイメントしているかが分かる.図に おいて, デトレイメントの極大が, 150 hPa, 400 hPa, 600 hPa に存在していることが分かる.150 hPa の極大 が一番明瞭である一方で, 400 hPa はほかの二つに比べ てあまりはっきりとはしていないし,高度も比較的大き く変化している.

図 4 における中層のデトレイメントの極大の原因を考える前に,400 hPa,600 hPa に T_2 のデトレイメント 極大があったときの典型的な例の1つ (12月22日16 UTC)を示す.図5は,モデル内で計算されたトレーサ T_3 の積雲対流による輸送過程の一連様子である.図5(a) では,積雲対流が急速に発達している最中であり,境界 層からトレーサ T_3 を上方へ運んでいるのが分かる.新し い対流セルが,スコールラインの前方に形成されて,前 の対流は,最高高度まで発達している(図5(b)).新しい 対流セルが次々と発達している一方で,前の対流は層状 性雲の特徴を示している(図5(c)と(d)).成熟期にお いて,トレーサ T_3 の高濃度の領域が4.5(600 hPa),7.5 (400 hPa),13 km (180 hPa)の高度に見える.そこで は,もはや強い鉛直流は見られない(図5(d)).

4. 400 hPa と 600 hPa におけるデトレイメント極 大に関する考察

前節では,150 hPa,400 hPa,600 hPa の高度にデト レイメントの極大があることを示した.ここでは幾つか の感度実験を通して,400 hPa,600 hPa における極大 を作り出した原因は何かを考える.表1には,全ての感 度実験の名称と簡単な説明が載せてある.

表1において CNTRL は標準実験である.これは,前 節で示したシミュレーションの一部分を取り出したもの である.感度実験は,標準実験において中層のデトレイ メントが最も顕著であった21日-22日に注目して行った.

1番目の感度実験 (NS) では,式(3) での温位のナッジ ングに用いる温度プロファイルを,500 hPa の高度に安 定層を持たないものに取り替えた.その他の状況は(大規 模場の強制力や水平風のプロファイル)は,CNTRLと 全く同じである.この実験から,500 hPa の安定層がデ トレイメントに影響を与えているかどうかの判断が可能 になる.

2番目の感度実験 (UCS) では,式 (2) での水平風の ナッジングに用いるプロファイルを 12 km 以下で,一定 の鉛直シアー (約 $-1 \times 10^{-3} \text{ s}^{-1}$)を持つものに取り替えた. シミュレーションの期間中 500 hPa 付近は, $-2.5 \times 10^{-3} \text{ s}^{-1}$ から 0 s⁻¹ までシアーが急激に変わる高度になって おり (Su et al. 1999, 図.1),この UCS の感度実験で, その水平風の鉛直シアーがデトレイメントに与える影響 について評価することができる.

Scala et al.(1990) は, 融解過程という氷から水への相 変化に伴う冷却によって駆動される rotor circulation に よって, 中層での対流からのデトレイメントは促進され ることを示しており, この融解の効果を評価するために 4 番目 (MLTH) と5 番目 (MLT0)の感度実験を行った. ここでは, 雲微物理の融解過程における効率に関する係 数を変化させている.すなわち MLTH においては, 融解 過程の効率を半分に, MLT0 においては, 融解過程を全 く起こらないようにした.

図 6, 図 7, 図 8, 図 9 は, 感度実験 CNTRL, NS,

MLTH, MLT0の結果を示す.それぞれ(a)の図は,トレーサT2のデトレイメントの鉛直分布の時間変化(b)の図は,モデル領域で平均した温度減率の時間変化を示している

図 6(a) と (b) は,図4 と図3から21日と22日の 部分を,それぞれ取り出したものである.図6(a)では, 深い対流は500hPa付近の安定層が弱いときだけ発達し ていることが分かる(例えば21日の10UTC,21UTC, 22日の21UTC).図6(b)と比べると,図7(b)は,500 hPa付近の安定層がほとんどなくなっていることが分か る.図7aでは,中層の安定層の弱さに対応して,ほと んど全ての深い対流が150hPaまで到達しており,中層 にデトレイメントの極大は見られない.これらの結果は, 明らかに400hPa,600hPaのデトレイメントの極大は, 500hPa付近の安定層によって影響を受けていることが 分かる.

UCS 実験では,モデル領域で平均した風の分布以外 (温度の鉛直分布など)は,標準実験とほとんど同じであっ た.この実験において,600 hPa と 400 hPa のデトレイ メントの極大は,CNTRL 実験よりは弱くなったものの, やはり存在していた (not shown).このことから,水平 風の鉛直シアーは 600 hPa と 400 hPa のデトレイメン ト極大を作り出している,主要因ではないことが分かる.

MLTH 実験では,400 hPa の極大はほとんど変化ない ものの, 600 hPa のデトレイメントの極大は, CNTRL よりも弱くなっている (図 8(a)). さらに MLT0 実験で は, 400 hPa の極大はやはり存在するものの, 600 hPa のデトレイメントの極大は、全く見えなくなっている(図 9(a)).この結果は、融解に伴う冷却過程が、600 hPa に おけるデトレイメント極大に重要であることを示唆して いる.しかし,融解過程は,デトレイメント極大を作り出 す二つの要素を持っている.1つ目は,氷から水への相変 化に伴う冷却によって rotor circulations を駆動すること である (これをここでは,直接効果と呼ぶ). これは,前 にも述べたように, Scala et al. (1990) によって研究さ れたものである.2つ目は,氷から水への相変化に伴う 冷却によって 500 hPa 付近の安定度を高くし,先ほどみ たようにデトレイメントを促進するいう影響である (これ をここでは間接効果と呼ぶ).実際,感度実験 CNTRL, MLTH, MLT0 において, 融解過程による影響が少ない 実験ほど 500 hPa の安定層の強さが幾分小さくなってい る (図 6(b),図 8(b),図 9(b) 参照). それゆえ,感度実 験 MLTH と MLT0 の結果を元に, 600 hPa のデトレイ メントの極大は, 融解過程に伴う冷却によって駆動され た rotor circulations が原因 (直接効果) であるとは結論 づけることができない.そのため,融解によって駆動さ れる rotor circulations のデトレイメントに対する影響 をより直接的に評価するために,もうひとつ実験を行っ た.この実験では、図5でみた対流システムが発達する 直前から,融解過程を含まずに計算を行った.即ちこの 実験では, CNTRL 実験の12月22日の16 UTC を初 期値にして,融解過程を含まない,計算を行ったもので ある.図10(a)から(d)は,この実験において計算され たトレーサ T3 の輸送の様子である.対流システムの発 達の初期段階においては,T3の分布(図10a,10b)は, 図 5a, 5b にそれぞれ良く似ている.しかしながら,対 流システムの成熟期において, 4.5 km 付近には, あまり トレーサ T₃ が輸送されていないことが分かる (図 10d). これは,図 5d の様子とかなり異なっている.図.11 か ら分かる通り, 融解過程を含んでいる場合, よりたくさ んのトレーサが 4.5 km に運ばれており, 3 km に運ば れているものは少ない.6 km より高高度では,違いは

ほとんど見られない.温度分布は,二つの実験において は、ほとんど同じであることから、このトレーサの分布 の違いは, 融解過程の直接効果によってもたらされたと 考えることができる.図 12a と 図 12b は,それぞれ図 5d と 図 10d の時点での圧力の水平平均からのずれを高 度 3.2 km と 5.0 km で平均したものの水平分布である. 図 12a では, 融解過程を含んでおり, 低圧部が 480 km のところのリーディングエッジの部分で見られる、一方 融解過程を含めなかった場合には、そのような低圧部は 見られない (図.12b). 更に, 仮温位で同じように水平平 均からのずれを高度 3.2 km と 5.0 km で平均したものの 水平分布を調べると,融解過程を含んだ場合,480 kmの ところのリーディングエッジの部分で極大値 (約 1.3 K), その後面で極小値(約0.8K)が見られた.一方,その ような極小値は, 融解過程を含めなかった場合見られな かった.これらから,融解過程は,安定層を 500 hPa 付 近に生成するだけでなく (Johnson et al. 1996), rotor circulations を駆動することで,600 hPa 付近のデトレ イメントを促進していることが分かる.

トレーサ T_2 のデトレイメントは, 150 hPa, 400 hPa, 600 hPa の高度に極大が存在し (図 6(a)), そのうち最も 顕著なものは,150 hPa のものであった,これは最も発達 した積雲対流の雲頂高度に対応していた.この 150 hPa という値自体は,あまり意味のあるものではない.なぜな らモデル内で雲頂は,様々な物理プロセス,計算プロセス を通して決定される(放射過程のパラメタリゼーション, 雲微物理のパラメタリゼーション,計算スキームなど) ため, 150 hPa という高度自体は, この研究と異なった 数値モデルを使用すれば , 例え同じ期間をシミュレート しても変わってくる可能性があるからである.一方,600 hPa という高度は,他の数値モデルを使用しても,他の 物理パラメタリゼーションを使用しても,その高度での デトレイメントの強さは変化することはあっても,高度 自体が変わることはないと考えられる.なぜなら融解過 程に伴う冷却過程は,必ず 0°C という特定の高度付近 で起こるからである.

図 13 から分かる通り, トレーサ T_3 は, 150 hPa, 400 hPa, 600 hPa の高度に良く運ばれている.一方で, 700 hPa には,あまり運ばれていない.これは, T_2 のデトレ イメント分布と同じく 700 hPa の安定度が弱いためであ ると考えられる. T_3 の分布は,トレーサ T_2 のデトレイ メントの分布と良い一致を見せている.このことは,メ ソスケールの運動や、もう一度エントレインされた対流 性の上昇流による輸送は,トレーサの分布にとって重要 ではなく,積雲対流が地表付近の物質をどこの高度に輸 送するかの指標として,雲からのデトレイメントの鉛直 分布を調べることの妥当性が証明された.

NS 実験では 500 hPa 付近の安定層がずっと弱く,トレーサ T_3 の 24 時間後の濃度は,地表から 550 hPa まで徐々に減って,そこから 150 hPa にかけて徐々に増えていく分布をしており,中層に分布の極大値は存在しなかった(図 14).また MLT0 実験での,24 時間後の濃度分布も,NS 実験と同じように中層に分布の極大値は存在しなかった.

5. 結論

2 次元の雲解像モデル (ARPS) を用いて 1992 年 12 月 19 日から 27 日までの TOGA COARE IFA 領域におけ る対流活動をシミュレーションした.この時期,500 hPa 付近に安定層がしばしば観測されていた.モデルは,IFA 領域における降水や温度構造を良く再現していた.積雲 対流による輸送過程を調べるために,化学反応は起こさな い仮想的なオイラートレーサを3種類使用した (T_1, T_2, T_3) .2種類のトレーサ (T_1, T_2) を利用することで,境 界層から運ばれてきた空気が最初にどこでデトレイメン トするかを正確に評価することができた.もう1つのト レーサ (T_3) は,対流システムのトータルの輸送を評価す るために使用した.

境界層を起源とするトレーサ (T_2) のデトレイメント の鉛直分布は,150 hPa,400 hPa,600 hPa の高度に極 大が存在していた.そのうち最も顕著なものは,150 hPa で,これは500 hPa辺りの安定層が弱いときの,最も活 発な積雲の雲頂に対応していた.400 hPa の極大は弱く, 500 hPa 付近の安定層がその極大に重要であることが分 かった.

幾つかの感度実験を通して,500 hPa 付近の安定層と 氷から水への融解過程に伴う冷却が,共に 600 hPa の 極大に重要であることが分かった.また水平風の鉛直シ アーはあまり重要でないことが分かった.Scalar et al. (1990)は,融解過程に伴う冷却の重要性だけは言及して いたが,我々の実験では,融解過程に伴う冷却だけを含 めていても,500 hPa 付近に安定層がないと 600 hPa の デトレイメントの極大を作り出すことはできなかった.

境界層を起源とするトレーサ (T₃)の鉛直分布においては,デトレイメントの強いところで高濃度が見られた. 幾つかの感度実験を通して,最終的なトレーサの鉛直分 布においても,融解過程に伴う冷却と 500 hPa 付近の安 定層は,大きな影響を与えていることが分かった.

融解過程に伴う冷却は,デトレイメント極大を作り出 す二つの要素を持っている.即ち rotor circulations を駆 動する効果と,500 hPa 付近の安定度を高くする効果で ある.そのためこの研究では,融解過程に伴う冷却は,化 学物質の分布において,最も重要な過程であるというこ とが分かった.

謝辞

参考文献

- Bretherton, C.S., and P.K. Smolarkiewics, 1989: Gravity Waves, Compensating Subsidence and Detrainment around Cumulus Clouds, J. Atmos. Sci., 46, 740-759
- Dahm, W.J.A., C.M. Scheil and G. Tryggvason, 1989: Dynamics of vortex interaction with a density interface, J. Fluid. Mech., 205, 1-43
- Grabowski, W.W., X. Wu, and M.W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I:Two-dimensional experiments. J. Atmos. Sci., 53, 3684-3709
- Grabowski, W.W., X. Wu, and M.W. Moncrieff, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II:Effects of Resolution and the Third Spatial Dimension, J. Atmos. Sci., 55, 3264-3282
- Houze, R.A.Jr., 1996: Cloud Dynamics, Academic Press, New York, 573 pp

- Johnson, R.H., P.E. Ciesielski, and K.A. Hart, 1996: Tropical Inversions near the $0^{\circ}C$ Level, J. Atmos. Sci.,53, 1838-1855
- Johnson, R.H., T.M. Rickenbach, S.A. Rutledge, P.E. Ciesielski, and W.H. Schubert, 1999: Trimodal Characteristics of Tropical Convection, J. Climate, 12, 2397-2418
- Lin, Y-L., R.D. Farley, and H.D. Orville, 1983: Bulk Parameterization of the Snow Field in a Cloud Model, J. Climate. Appl. Meteor., 22, 1065-1092
- Lin, X. and R.H. Johnson, 1996: Heating, moistening and rainfall over the western Pacific during TOGA COARE. J. Atmos. Sci.,53, 3367-3383
- Lu, R., C. Lin, R. Turco, and A. Arakawa, 2000: Cumulus transport of chemical tracers: 1.Cloudresolving model simulations, J. Geophys. Res., 105, 10001-10021
- Mapes, B.E., and R.A. Houze, Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems., J. Atmos. Sci., 52, 1807-1828
- Mapes, B.E., 2001: Water's two height scales: the moist adiabat and the radiative troposphere, Q.J.R.Meteor.Soc., 127, 2353-2366
- McCumber, M., W.K. Tao, J. Simpson, R. Penc, and S.T. Soong, 1991: Copparison of Ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., **30**, 985-1004
- Raymond, D.J., and A.M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds, J. Atmos. Sci.,49, 1968-1983
- Richards, J.M., 1961: Experiments on the penetration of an interface by buoyant thermals, J. Fluid. Mech., 11, 369-384
- Rutledge, S.A., and P.V. Hobbs, 1983: The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the "Seeder-Feeder" Process in Warm-Frontal Rainbands, J. Atmos. Sci.,40, 1185-1206
- Scala, J.R., M. Garstang, W.K. Tao, K.E. Pickering, A.M. Thompson, J. Simpson, V.W.J.H. Kirchhoff, E.V. Browell, G.W. Sachse, A.L. Torres, G.L. Gregory, R.A. Rasmussen, and M.A.K. Khalil, 1990: Cloud Draft Structure and Trace Gas Transport, J. Geophys. Res., 95, 17015-17030
- Su, H., S.S. Chen, and C.S. Bretherton, 1999: Three-dimensional week-long simulations of TOGA COARE convective systems using the MM5 mesoscale model. J. Atmos. Sci., 56, 2326-2344
- Tao, W.K., S. Lang, J. Simpson, W.S. Olson, D. Johnson, B. Ferrier, C, Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval of TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78, 333-355

Figure 1 1992 年 12 月 19 日から 27 日にかけて, TOGA COARE IFA 領域において観測された温度減率の時間変化. 5 K·km⁻¹ より小さい値が段階的に色塗りしてある.

番号	名称	説明
0	CNTRL	標準実験
1	NS	安定層なし
2	UCS	12km 以下の高度で一定の水平風鉛直シアー (約 -1 m/s/km)
3	MLTH	メルティング効率を半分
4	MLT0	メルティングを除去

Table 1 感度実験の名称と簡単な説明

- Xue, M., K.K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)
 - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. *Meteor. Atmos. Physics.*, 75, 161-193
- Xue, M., K.K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D.-

H. Wang, 2001: The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. *Meteor. Atmos. Physics.*,**76**, 134-165

Zuidema, P., 1998: The 600-800-mb Minimum in Tropical Cloudiness Observed during TOGA COARE, J. Atmos. Sci.,55, 2220-2228

Figure 2 1992 年 12 月 19 日から 27 日にかけての TOGA COARE IFA 領域における降水率の時間変化.実線は,モデルによって算出された降水率.破線は,IFA における水蒸気収支から計算された降水率(Lin and Johnson 1996).

Figure 3 1992 年 12 月 19 日から 27 日にかけての, モデル領域で水平平均した温度減率の時間変化.5 K·km⁻¹ より 小さい値が段階的に色塗りしてある.

Figure 4 領域平均したトレーサ T_2 のデトレイメント量の鉛直分布の時間変化.期間は, 12 月 19 日 ~ 27 日.デトレイメント量は, 10 分間のトータル量 $.1.0 \times 10^{-3} \text{ kg} \cdot \text{kg}^{-1} \cdot 10 \text{min}^{-1}$ 毎に色を塗り分けている.

Figure 5 モデル内で計算されたトレーサ T_3 の積雲対流による上方輸送の様子.それぞれの図の時間間隔は 30 分である. 色の塗りわけは,トレーサ混合比 0.1 kg·kg⁻¹ 毎に行っている.実線のコンターは, 1.5 m·s⁻¹ の上昇流を示す. 破線のコンターは, 0.5 m·s⁻¹ の下降流を示す.

Figure 6 (a) 領域平均したトレーサ T₂ のデトレイメント量の鉛直分布の 12 月 21 日- 22 日にかけての変化. (b) 領域 平均した温度減率の鉛直分布の 12 月 21 日- 22 日にかけての変化. (a), (b) ともに CNTL の結果.

Figure 7 (a) 領域平均したトレーサ T₂ のデトレイメント量の鉛直分布の 12 月 21 日- 22 日にかけての変化. (b) 領域 平均した温度減率の鉛直分布の 12 月 21 日- 22 日にかけての変化. (a), (b) ともに NS の結果.

Figure 8 (a) 領域平均したトレーサ T₂ のデトレイメント量の鉛直分布の 12 月 21 日- 22 日にかけての変化. (b) 領域 平均した温度減率の鉛直分布の 12 月 21 日- 22 日にかけての変化. (a), (b) ともに MLTH の結果.

Figure 9 (a) 領域平均したトレーサ T₂ のデトレイメント量の鉛直分布の 12 月 21 日- 22 日にかけての変化. (b) 領域 平均した温度減率の鉛直分布の 12 月 21 日- 22 日にかけての変化. (a), (b) ともに MLT0 の結果.

Figure 10 モデル内で計算されたトレーサ T_3 の積雲対流による上方輸送の様子.それぞれの図の時間間隔は 30 分である. 色の塗りわけは,トレーサ混合比 0.1 kg·kg⁻¹毎に行っている.実線のコンターは, 1.5 m·s⁻¹の上昇流を示す. 破線のコンターは, m·s-1の下降流を示す. 温度プロファイルは,図5の時とほとんど同じ.

Figure 11 トレーサ T_3 の鉛直分布図.実線と破線は、それぞれ図 5(d) と 図 10(d) で、示された対流システムによって運ばれたトレーサの混合比を表す.この計算時に、鉛直流の絶対値が、 $0.5 \text{ m} \cdot \text{s}^{-1}$ を越えるグリットは、除外した.

Figure 12 圧力の水平平均からのずれを高度 3.2 km と 5.0 km で平均した水平分布図.(a) と(b) はそれぞれ,図 5(d) と 図 10(d) にの対流システムに対応している.

Figure 13 CNTL 実験におけるモデル領域で水平平均した 12 月 21 日 ~ 22 日のトレーサ T₃ の時間高度断面図.

Figure 14 NS 実験におけるモデル領域で水平平均した 12 月 21 日 ~ 22 日のトレーサ T₃ の時間高度断面図.

A numerical study of the vertical transport of tracers by cumulus convection

Kazuaki YASUNAGA, Hideji KIDA, Takehiko SATOMURA, and Noriyuki NISHI

*Graduate School of Science, Kyoto University

Synopisis

Intense convective systems were simulated for the period 19-27 December 1992, over the TOGA COARE Intensive Flux Array(IFA), making use of a cloud resolving model (ARPS), in order to investigate where the boundary layer air mass was detrained from convective systems over tropical oceans. Inert Euler tracers originating in the surface boundary layer were used to evaluate the detrainment amounts from the convective systems.

Three peak detrainment amounts of the tracer were found around the 150 hPa, 400 hPa, and 600 hPa levels. The 150 hPa level corresponded to the top heights of the most intense clouds. Sensitivity tests demonstrated that detrainment peaks at the 600 hPa level were controlled by both the stable layers around 500 hPa, which were often observed during the simulated period, and the melting process from ice to water. Detrainment peaks around the 400 hPa level were much weaker than the others, and also influenced by the stable layers around 500 hPa, while the melting process had no effect.

Kewords: cumuls convection, tracer transport, tracer circulation