治水事業をめぐる諸問題とこれからの治水の課題と展望

上野鉄男

要 旨
1896年河川法制定以後、20世紀の治水事業は多くの成果を上げつつも、連続堤防とダムなどによって洪水を河川内に閉じ込めめる治水方法を進めため、20世紀後半にはさまざまな問題を惹き起こしてきた。これらの問題への反省が20世紀終盤から始まったが、河川の現状においては旧態依然の方法で治水事業が進められている。本研究は、上記の諸問題とそれらに関する背景や反省点を整理、総合して、現在の発展段階に相応しい治水方策の方向を提示しようとするものである。

キーワード：河川環境、治水計画、基本高水、超洪水、治水計画

1．概 説
1896年に河川法が制定され、それ以後西洋の新しい技術を導入して治水事業が進められ、多くの成果を上げてきた。明治以来の治水方針は、連続堤防を築き、放水路や徒歩路などを開削して、洪水を河川内に閉じ込めて流下させというものであった。

ところが、このような方法による治水事業は20世紀後半にはさまざまな問題を引き起こしてきた。それらの主なものとして、治水事業に伴う河川環境の悪化、ダム建設を組み込んだ治水計画への疑問、基本高水の決定方法に関する疑問、超洪水による危険性の増大などが挙げられる。これらの問題が釈成された背景としては、我が国の河川事業の歴史の中にその要因が見出され、とりわけ20世紀の後半には河川流域の開発をするに及ばず、その後追いの治水を行ってきたことが上記の問題を深刻なものとしており、日本経済の高度成長との関わりがあると考えられる。

これらの問題への反省が20世紀終盤から始まった。流域の開発に伴って頻発してきた都市水害に対して、洪水への対応を流域全体で考え、総合的に取り組む総合治水対策が1977年に、また超洪水対策に関わる危険性の増大に対して、さらに都市型の大都市域の大河川の超洪水対策を推進する方針が1987年に河川審議会によって答申された。さらに、河川改修事业による河川環境の悪化を反省して、自然の回復をめざす「多自然型川づくり」が1991年から実施されるようになった。1997年には河川法が改正され、河川法の目的として、治水、利水に加えて、「河川環境の整備と保全」が明確に位置づけられた。また、環境の保護を基本方針を見直して、河川整備基本方針と河川整備計画に区分し、後者については住民の意見が反映されるようになった。20世紀末の2000年12月には河川審議会によって総合治水対策を一般河川へ適用する提案がなされた。ここでは土地利用を考慮して河川の特性に応じた流域対策を検討し、護岸や遊水地による洪水の氾濫も考えるというように、明治以来の治水方針の大きな転換が提起された。

しかしながら、河川の現状においては旧態依然の方法で治水事業が進められており、治水に関する科学技術において、科学が政治、経済の影響を受けて混乱している状況が認められる。本研究は、上記の諸問題とそれらに関する背景や反省点を整理、総合して、現在の発展段階に相応しい治水方策の方向を提示しようとするものである。

2．治水事業をめぐる諸問題

2.1 河川環境の悪化
概説において述べたように、明治以来の治水方針は、連続堤防を築き、放水路や徒歩路などを開削して、洪水を河川内に閉じ込めて流下させるというものであった。
た。洪水を河道から遅れるようにすることが治水の
原則であり、この方針で河川改修が問々と積み重ねら
れてきた。それによって洪水流量が増大し、この流量
を処理するために、戦後ダムが治水対策に導入される
ようになった。さらに、高度経済成長に伴う人口の都
市集中によって都市用水の需要が増大し、利水目的に
治水目的を併せた多目的のダムが建設されるようになっ
た。河川改修によって河川の人工化が進んで河川環境
が悪化し、ダムによる環境破壊も進んだ。

とりわけ、都市河川においては流域の開発が盛んに
なり、河道を拡幅するような河川改修ができないこと
から、河道をコンクリートで固めて流下能力と強度的
な安定を確保する工事が進められ、河川環境は最悪の
ものとなった。その例が寝屋川の住道の河道に見られ
る。そこでは、堤防は堤外側に鉄矢板、堤内側はコン
クリートから成る、道路からの高さ4～5mの壁ができ
ている。

ダムによる環境破壊に関しては、水質の悪化と河道
への影響が重要である。水質の悪化に関しては多くの
ことが語られているので、ここでは河道への影響につ
いて述べることにする。

ダムがない場合には、河道は浸食作用を堆積作用が
動的平衡状態を保って安定しているが、ダムができる
と土砂をせき止めるので、ダムの上下流で流砂のパラ
ンスが崩れ、ダム下流の河道に堆積する土砂が堆積し、河床が上昇して、さらにその上流側に土砂が堆
積するように背砂が成長する。この背砂現象はダム上流の河川環境を破壊するのち、水位が高く
あって水害が発生する場合もある。一方、ダム下流に
おいては、土砂の供給が遮断されるため、河床が低下し
、海岸では高潮の後退や海岸浸食が発生する。また、浸
食が進む河道では、砂州などの河床地形が消減して
河床は平坦化の方向へ向かう。すなわち、河川の生機
系にとって重要な要素である瀬と関が破壊されること
になる。

2.2 ダムに関する問題

ダムに関しては、上記のように環境に与える影響が
大きいことから、地域住民からその必要性に関する疑
問や他の治水対策で代替できないかという疑問が出さ
れ、それは治水計画に対する疑問にまで波及した。ま
た、ダムによる治水調節に加えて、とりわけ洪水の治
水の問題として、ダム操作の誤りによる異常流放に
よって下流の被害を増大させる問題や超過洪水のた
だし書き操作に基づく流放に関する問題がある。

ここでは、超過洪水時の放流に関する問題について、
川辺川ダム計画を例にとって述べることとする。全国
でダム問題が盛んに議論された1969年3月24日に開
かれた川辺川ダムに関する「第22次国技委員会」に建設省九
州地方建設局が提出した資料「川辺川の治水計画・川
辺川ダム計画について」においては、「ダムの洪水調節
は、・・・仮にダムが漏水状態となり、洪水調節が行
えない場合においても、河川の状態はダムが無いと同
じ自然状態に戻るだけであり、より大きな洪水が来る
わけではありません。」と説明されている。

上記の説明は「昭和53年4月8日川崎開発第5号
建設省川崎局長通達「計画規模を超える洪水時におけ
るただしき書き操作の運用について」（その後「昭和59
年3月24日川崎開発第6号」建設省川崎局長通達とし
て改定）に基づいていると説明される。これによると、
ただし書き操作開始水位を洪水調節の水位に相当する
相当水位とし、ただしき書き操作は、原則としてただし
書き操作開始水位から開始するものとして、サーキュラ
ジョン水位で計画高水流量を、また、設計洪水位でダム洪
水流量を流放するものとする。「設計水位とただしき
書き操作開始水位に達したら、今後さらにサーキュラジョン水
位を超えることが予測される場合は、ただしき書き操作に
移行するものとする。」と規定されており、ただしき書き
操作開始後は徐々にゲート開度を大きくしていくこ
とになる。このような操作によると、一般には超過洪
水時には計画最大放流量よりもかなり大きい流量が放
流され、最悪の場合には流入量に等しい流量が放流さ
れることになる。

上記の超過洪水時のただしき書き操作に基づく流放の
問題をFig.1に示す図示川の計画出水流量図（川辺川
工事事務所、2001）を用いて説明すると、次のように
ある。川辺川工事事務所（2001）によると、川辺川ダ
ムの洪水調節計画は、計画高水に対して流入量のピーク
期に発生するビック流量3,520㎥/secのほぼ全流量をカットし、放流量を200㎥/secに調節することになっている。
このような計画により既設の市府ダム（ダム地点の洪
水調節流量650㎥/sec）と併せて、人吉において3,000
㎥/sec、prarにおいて2,700㎥/secの洪水流量を調節し、人吉およびprarの計画高水流量をそれぞれ4,000
㎥/secおよび7,000㎥/secとすることになっている。
川辺川ダムの場合には、計画規模を超える洪水が発生
すると、計画最大放流量（200㎥/sec）よりもかなり
大きい流量（例えば、1,000〜3,000㎥/sec）が放流さ
れる可能性が大きく（最悪の場合には流入量に等しい
流量が流放される）、その場合には人吉のビック流量は
4,000㎥/secをはるかに超えることになる。ところが、
国土交通省の計画では川辺川ダムの建設を前提に川辺
改修がなされることになるから、人吉の河道の放流能
力は4,000㎥/secしか保証されていない。このような
場合に非常に危険な状態が発生することは明らかであ
る。これとは逆に、ダムによらない治水対策、例えば
掘削などによる河道断面の拡大（人吉の河道の流下能力を5,500m³/secにする）と遊水地（1,500m³/secの洪水調節をする）の組み合わせによる場合には、遊水地の洪水調節も期待でき、河道の流下能力も大きくなっているので、計画規模を超える洪水が発生する場合にも洪水の危険性は小さなものに留まると考えられる。すなわち、超過洪水に対してはダムによってより治水対策が優れていることは明らかである。

また、実際の問題として、球磨川上流域にある市役所ダムにおいて過去に問題となる水理操作が行われたことが指摘（福岡、1996）されている。市役所ダムの場合、計画最大流入量を1,300m³/secとし、それが流下したときに、その半分の650m³/secをカットして650m³/secを放流することになっている。ところが、1971年8月洪水では最大流入量1,174m³/secに対し、792m³/secが放流され、1982年7月洪水では最大流入量1,019m³/secに対し、770m³/secが放流された。これらの洪水時には、人吉市街で大きな被害が発生した。

2.3 治水計画に関する問題

治水計画においては、次のようないくつかの問題がある。

一つ目は、基本高水の決定方法に関して客観性に疑問があることである。それは、降雨量や流量を計算して決定する「建設省河川防災技術基準（案）」（日本河川協会、1976年）の方法そのものからくる問題である。これに対して、過大な基本高水流量が採用されている可能性がある。この問題については、次章において述べることとする。

他一つは、ダム建設を含んでいる治水計画において、治水対策の比較検討が行われる場合が多いが、治水対策上「ダムによる洪水調節が優れている」という結論が導かれる過程で十分に検討が尽くされたかどうか、という問題がある。

例えば、球磨川の場合について述べると、「球磨川水系の治水について」（川辺川工事務所、2001）における球磨川の治水対策の議論では、4種類の治水対策案（堤防嵩上げ、河床掘削などの河川処理案、遊水地案、放水路案、川辺川ダム案）を比較検討した結果、川辺川ダムによる洪水調節が優れているとしたことである。これでは、4種類の治水対策案を別々に切り離して検討し、その内の一つを選択するという方法が基本的に採られていることが問題である。その河川谷に相応しい治水対策を考えるためには、個々の治水対策案が環境に与える影響なども考慮しながら、複数の対策を組み合わせてそれらの良いところが活かせるような形で、総合的に検討することが重要である。また、球磨川の治水計画においては過大な基本高水が設定されているという問題があり、基本高水が適切に決定されていなかったり、複数の治水対策を組み合わせて柔軟な治水対策が採用できることになる。

最後の一つは、治水計画の精緻化の問題であり、一度決定した計画は長期間経過して状況が変わても変更しないという実態がある。球磨川の場合について述べると、次のようなである。

川辺川研究会の報告「球磨川の治水と川辺川ダム」（上野、2001）によると、八代市市街部および人吉市市街部を流れる球磨川の現況の河道流下能力が、建設省によって昭和41年に策定された球磨川水系工事実施基本計画における計画高水流量（八代防災所のデータで7,000m³/sec、人吉で4,000m³/sec）より大きいということが指摘されている。検討によると、八代市市街部の予策において昭和57年7月25日のある洪水のピーク流量は7,264m³/secと推定されているが、この時の水位は計画高水位よりも1.1m低かったと述べられている。これに基づいて、現在の河道流下能力が計画高水位に対して約9,000m³/secであると推算されている。この検討に基づくと、八代市市街部における治水対策としては川辺川ダムが必要ではないことになる。
に、昭和57年7月25日の洪水のピーク流量と水位の実績から、人吉市市街部の現況の河道流量能力は計画水位に対して約4,500 m³/sec、堤防高で2,500 m³/secになるという結果が得られている。これらの検討結果に基づくと、載原および人吉の計画高水流量の変更が当然必要であり、そうすると川辺川ダムに替って水対策を考える場合に幅広い柔軟な方法が採用できることになる。国土交通省は、このような問題を考慮せず、昭和40年代に策定した計画において用いた計画高水流量を変更することなしに川辺川ダムの代替案を検討している（川辺川工事事務所、2001）。これは球磨川の治水計画に川辺川ダム計画が組み込まれており、計画高水流量の変更が川辺川ダム計画の存廃に大きな影響を与えるからであると考えられる。

2.4 超過洪水による物理的增大
1896年に河川法が制定され、それ以後西洋の新しい技術を導入して治水事業が進められてきた。明治以来の治水方針は、連続堤防の築き、放水路や排水路などを開削して、洪水を河道内に閉じ込め流下させるというものであったため、治水事業が進展するにつれて河道内の洪水流量がどんどん増大することになった。
このため、各河川において計画高水流量あるいは基本高水流量が何回も改定されてきた。さらに、戦後は河川流域の開発が盛になり、洪水流量の増大に轍をかけることになった。このような各河川における洪水流量の増大に伴って、高い堤防が築かれるようになった。一方、治水事業の進展に伴って河床に多くの住宅が建てられ、都市化されて人口が集中することになった。このような状況は計画規模を超えた洪水が押し寄せて堤防が決壊する場合の危険性が増大することを意味している。現在では、この問題に対する有効な対策はできていないと言える。

3. 基本高水の決定方法に関する問題
3.1 吉野川の基本高水の決定方法とその問題
基本高水の決定方法に関する問題を論理的に先立って、ここではまずその実例を吉野川の場合について述べることとする。「第20次河川計画に関する技術報告書 治水編」（建設省四国地方建設局、1995年）によると、吉野川の基本高水の決定方法は概説次のようなある。
吉野川水系における計画規模を1/150と設定した。計画降雨量については、大正2年から昭和51年までの64年間の実績降雨量を確率評価して定めた。ここで、計画降雨の継続時間を2日とし、基準地点前川上流域の計画降雨量を2日雨量で400mmとした。計画降雨については、上記の降雨量、降雨の地域分布および時間分布の3要素を考慮することとし、降雨の地域分布については、主要な洪水の実績降雨パターンを、それぞれの降雨量が計画降雨量に等しくなるように引き伸ばして設定した。具体的には、過去の洪水の中から基準地点前川上流域の流域平均降雨量の計画降雨量への引き伸ばし率が2.0以下の10洪水が計画対象洪水の降雨パターンとしてされた。これらの10洪水の計画対象降雨をもとに、貯留関数法による洪水流出モデルを用いてハイドログラフを求めた。このようにして求めた10洪水の計画対象降雨に対するハイドログラフの中から、基準地点前川における計算ピーク流量が最大となる昭和49年9月の降雨パターンに対するハイドログラフを吉野川の基本高水とした。この場合の基本高水のピーク流量は24,000m³/secとなった。

ここで、「計画降雨」の3要素の一つである「計画降雨」に関しては確率論が適用されているが、最終の段階で理論的な根拠なく基本洪水が決定されている。
計算ピーク流量が最大となる昭和49年9月の降雨パターンに対するハイドログラフを採用したことは、基本高水を過大に設定したことになる。このような軽視により、10洪水の計画対象降雨に対するハイドログラフの中から計算ピーク流量を平均値とする降雨パターンに対するハイドログラフが計画規模1/150の洪水になるからである。後述するように、このような問題は全国の諸河川において同様に起こっている。

2.2 基本高水の決定方法の変遷
ここでは、基本高水の決定方法の変遷について述べるが、基本高水の決定方法は「建設省河川砂防技術基準」（日本河川協会、1958）および「建設省河川砂防技術基準（案）」（日本河川協会、1976）において示されている。
基本高水の決定方法は、概要的には「建設省河川砂防技術基準」の策定および改定を契機にして変わってきたと言える。すなわち、概要的には「建設省河川砂防技術基準」（日本河川協会、1958）が策定される1958年以降は既往最大洪水を基にして基本高水が決定され、それ以後それが「建設省河川砂防技術基準（案）」（日本河川協会、1976）として改定される1976年までの間はピーク流量の年超過確率、そして、1976年以後は降雨量の年超過確率に基づく計画降雨（実際には1976年以前にもこの方法が採用されていた）を基準にして基本高水が決定されてきたと言える。
それでは、なぜ1976年以後計画降雨を基準にするようになったのか。「建設省河川砂防技術基準（案）」においては、「基本高水を設定する方法としては種々の手法があるが、一般には計画降雨を定め、これにより求めること
を標準とする。」
と述べられており、その理由に関しては、
「洪水防衛計画において、河道による洪水の流下のみを考慮すればよい場合には洪水のピーク流量のみを対
象として計画を策定すれば十分であるが、近年多くの
例を見るようにダム等による洪水調節が採用される場
合には、洪水のハイドログラフを設定する必要があ
る。」
「基本高水、及びハイドログラフで表現される規模
の洪水の起こり易さ、つまり生起確率によって評価さ
れ、それがこの洪水防御計画の目標としている安全の
度合、ならびに治水安定度を表すこととなる。
しかし、洪水のハイドログラフそれ自体は、その生
起確率の計算等の対象としては必ずしも便利ではなく、
そのピーク流量又は総ボリューム等を知って統計解析
するには、多くの場合計算が複雑になり又は資料
不足のため十分な精度が得られないなどの難点がある。
したがって、その取り扱いが簡単である一方の
人々にとって理解し易いことから、その洪水の生因と
なる降雨の着目して、所定の治水安定度に対する超
過確率を持つ計画降雨を定め、この計画降雨から一定
の手法でハイドログラフを設定する方法を標準とした
ものであるが、これ以外でよりその河川に適した方
法を採用することは無理差し支えない」
と説明されている。

3.3 基本高水の決定方法の概要
「建設省河川砂防技術基準（案）」（日本河川協会、
1976）において示されている基本高水の決定方法の概
要（以下「」内は上記の文献からの引用）は次の
ようである。
① 計画の規模の決定
② 計画降雨量の決定
③ 計画降雨の時間分布及び地域分布の決定
「計画降雨の降雨量が与えられた場合には、残りの
2個の要素、すなわち、その時間分布及び地域分布を
定めて、計画降雨を作成しなければならない。
この場合の考え方としては大別して次の二つの方法
がある。

一つは、これら3個の要素、すなわち、降雨量、時
間分布及び地域分布相互間の統計的若しくは気象学的
な関係を明らかにして、降雨量が与えられた場合の時
間分布及び地域分布をその関係に基づいて定める方法
である。

他の一つの方法は、降雨量を定めた後、過去に生起
した幾つかの降雨パターンをそのまま伸縮して時間分布
と地域分布を作成し、それらがこれら要因間の統計
的な関係からみて特に生起し難いものであると判定さ
れない限り採用するという方法である。

通常後者を用いるほうが単純でありやすいので、
ここではこれを用いることとしたが、・・・・・選定す
べき降雨の数はデータの存在期間の長短に応じて変化
するが、通常10降雨以上とし、その引き延ばし率は2
倍程度に定めることが望ましい。」

④ 基本高水の決定
「基本高水、は、（上記の方法によって定められた）計
画降雨について、適当な洪水流出モデルを用いて洪水
のハイドログラフを求め、これを基に既往洪水、計画
対象施設の性質等を総合的に考慮して決定する。」

「計画降雨が既に定められているので、適当な洪水
流出モデルを用いて洪水のハイドログラフを計算する
ことは容易であるが、このハイドログラフを既に基本
高水を決めるかについては慎重な検討が必要である。
・・・・（基本高水の決定の）過程は次のようにな
る。・・・・

1. ハイドログラフをピーク流量の大きさの順に
並べる。
2. このハイドログラフ群の中から既往の主要洪水
を中心に降雨の地域分布を考慮して1個または
数個のハイドログラフを計画として採用す
る・・・・
3. これら諸検討の結果を総合的に考慮して基本高
水を決定する。この場合ピーク流量が1のハ
イドログラフ群のそれをどの程度充足するかを
検討する必要がある。この充足度を一般にカバー
率と言う。このカバー率は、ほぼ同一の条件の河
川においては全国的にバランスがとれているこ
とが望ましい。

上述の方法によればこのカバー率は50％以上と
なるが、1級水系の主要区間を対象とする計画に
おいては、この値が60～80％程度となった例が
多い。

このほか、基本高水決定方法としては、降雨の
地域分布及び時間分布を多くの資料から確率評価
する等により計画の規模をピーク流量において定
める方法等がある。」

3.4 基本高水の決定方法の問題
（1）基本高水の決定方法の客観性について
わが国の河川においては、多くの場合に上述のカバー
率を用いる方法で基本高水が決定されているよう
である。この方法によると、既往の主要な洪水の実績降
雨パターンから得られる計画対象洪水の内、どのハイ
ドログラフを基に基本高水を決めるかが問題となる。
ここでは、「カバー率」という考えを導入することによ
り、「カバー率50%以上」の計画対象洪水の中から、著
検討の結果を総合的に考慮して基本高水を決定することになっている。しかし、実際には個々の河川の特性に応じてなされるべき総合的な考慮の際は認められず、客観的な根拠なしに基本高水が決定されている。

(2)「カバー率 50%以上」の意味について

先に、概略的には1976年よりは洪水のピーク流量の年超過確率に基づいて基本高水を決定（以後の記述を簡略にするため、A の方法と称する）しており、その場合には、「洪水のハイドログラフそれぞれを、その生起確率の計算等の対象としては必要とされず、そのピーク流量は単独によりに着目して統計解析するには、多くの場合計算が複雑になるため又は資料不足のため十分な精度が得られないなどの難点がある」ことについて触れた。この方法において、「生起確率の計算等における不便」、「計算の複雑さ」、「資料不足」などの問題を解消することにより、半分で基本高水が決定されるようにする場合には、この方法によって求められる結果を、降雨量の年超過確率に基づく計画降雨を基準にして得られる結果とはどのような関係にあるかを考察することとする。

先述のように、後者の方法においては「計画降雨の時間分布及び地域分布の決定」に際してと二つの考え方があることが示されている。一つは、上記のカバー率を用いる方法（B の方法と称する）であり、他的一つは、現状において用いられていない方法、すなわち、「降雨量、時間分布及び地域分布相互間の統計的関係は、気象学的な関係を明らかにして、降雨量が与えられた場合の時間分布及び地域分布をその関係に基づいて定める方法」（C の方法と称する）である。

B の方法においては、すでに所定の降雨量の年超過確率が設定されているので、その計算結果を用いて得られる計画対象高水のピーク流量の内「カバー率 50%」に相当する計画対象高水のピーク流量が、A の方法における所定の年超過確率に対するピーク流量に理論上一致すると考えられる。さらに、その方法が確立される場合には、その方法によって得られる結果もまた、B の方法による「カバー率 50%」に相当する計画対象高水のピーク流量と理論上一致するであろう。

したがって、「カバー率 50%以上」というのは、「年超過確率」という安全性を規定する概念で求められた結果に、さらに客観的な意味を持たない安全性を付加することを意味している。

(3) 基本高水の決定方法の問題点

このような問題が生じる背景には、次のような事情があると推察される。

先述のように、概略1976年を境に洪水のピーク流量の年超過確率に基づいて基本高水を決定する方法から、降雨量の年超過確率に基づく計画降雨を基準にして基本高水を決定する方法への変更が行われたが、その際には、本来は上記のC の方法を追求すべきであった。ところが、実際には、降雨量の地域分布および時間分布に関して統計的に取り扱えるだけの十分な雨量データが得られておらず、また、気象学的関係を明らかにするだけの十分な研究も進んでいないため、便宜的にカバー率を用いる方法を採用することになったものと思われる。

上述のように、現状において広く用いられているカバー率を用いる方法は、過渡的な段階の便宜的な方法であり、多くの問題を含んでいると言える。そのため、この方法によって理論上得られる結果に、さらに客観的な意味を持たない安全性を付加することになるのである。このような安全率は、B の方法の理論上の不完全さとその適用上の問題に対して考慮されたものと考えられる。このような結果を引き起こす原因は、計画降雨の時間分布と地域分布の採用の仕方の問題に帰着する。

以上から、降雨量の年超過確率に基づく計画降雨を基準にして基本高水を決定する方法は将来的には有望な方法であるが、現状では未完成であり、それを補足するための便宜的な取り扱いによって基本高水が決定されており、この便宜的な手法による場合には基本高水を客観的に決定することができない、と結論づける。

このことに関連して、「建設省河川局計画局基準（案）」において冒頭の「改定条項」に関する記述の中で、「4. 今回の改定作業の過程における主要な検討事項を列挙すれば次のとおりである。

(6) 計画編の洪水防御計画の基本では、洪水防御計画を定める種々の標準手法のうちから、計画降雨により基本高水を定める手法を探りあげて基準化したが、この手法の秘を基準とすべき理由はないとの強い意見があった。」

と、述べられていることが注目される。

3.5 滋賀川の基本高水の実態

吉野川のカバー率と10洪水の計画対象降雨に対するハイドログラフのピーク流量との関係をFig.2に示す。この場合、カバー率が50%の値（17,037㎥/s）が計画規模に対する基本高水流量の理論的な値と考えてもよい。ところが、実際に採用された吉野川の基本高水流量は、10回の降雨パターンの内最大の基本高水流量を与える降水量パターンに対する降雨量（24,000 m³/s）であった。この場合のカバー率は92.9%である。図において、カバー率と基本高水流量との関係はそこで
描かれている直線によって近似できることがわかる。この関係を用いて、上記の「建設省河川砂防技術指針（案）」で例が多いとされている60～80%程度の平均の70%のカバー率に対する流量を求めると、それは20,162m^3/sec となり、実際に採用された吉野川の基本高水流量24,000 m^3/secとの差は、3,838 m^3/secにもなる。技術指針に基づいて基本高水流量として20,162 m^3/secを採用すると、流量に関する問題としては第10条の改正が必要がないことになる。

同様にして、ダム計画の問題で注目されている諸河川の基本高水流量に関する実証を示すと "Fig. 1" のようになる。表に示した諸河川において、九頭竜川と安威川を除く河川では、約 10 倍の降雨パターンの内最大の基本高水流量を与える降雨パターンに対するハイドログラフが基本高水として採用されている。九頭竜川の場合は第3番目の流量を与える降雨パターンが採用され、安威川の場合は第1番目よりも大きい流量を与える人工降雨に対するハイドログラフが採用されている。ここでは、A/B は実際の基本高水流量とカバー率50%の流量との比を、A/C は実際の基本高水流量とカバー率70%の流量との比を計算したものである。前者の平均は約1.5、後者の平均は1.2 以上になっている。このように、諸河川の基本高水流量は理学的に考えられる流量よりも約50%大きく、技術指針に基づく流量よりも約20%以上大きくなっており、かなり過大な値が採用されていることが指摘される。

「建設省河川砂防技術指針（案）」において、なぜ計画規模に対する理論的な基本高水流量であるカバー率50%の値を採用せずに、「60～80%程度となった例が多い」としているのかという理由は、現状では降雨パターンに関するデータが十分に得られていなめ、现状においてカバー率50%の値を採用すると、計画規模に対応する真の流量よりも小さい流量になる可能性があるので危険であるからである。この危険を避けるために、「建設省河川砂防技術指針（案）」においては「60～80%程度となった例が多い」としているのである。しかし、他方ではカバー率50%の値を採用しても真の計画規模の流量よりも大きい流量になる可能性もあるのである。このような場合に、「60～80%程度」の値を採用すると、かなり無駄な工事をすることになる。さらに、このように、これよりも20%以上も大きい基本高水流量を採用することは、膨大な無駄をすることにつながるということに注意する必要がある。

4. 問題が提出された背景

4.1 我が国の河川事業の変遷

我が国の河川事業の歴史の中冬先行の諸問題を提起した要因が見出される。

わが国で大規模な河川事業が行われたのは戦国時代以降である。武田信玄や加藤清正などの大名が農業生産を高めるために積極的に治水事業に乗り出した。武田信玄の信玄堤（錦堤）や加藤清正のたんたん落し（越流堤）は有名であり、それらの堤や越流堤の周辺に遊水池を配置して洪水をうまく分散させ、被害を最小限に食い止めようとする治水方法であった。

江戸時代には、伊奈忠治や伊沢為助などの専門的な技術者が現れ、優れた河川事業を行った。伊奈氏は三
<table>
<thead>
<tr>
<th>ラバー</th>
<th>ピークディッシュレード設計流量 A (m³/sec)</th>
<th>コーブラート A</th>
<th>ディッシュレード設計流量 50% B (m³/sec)</th>
<th>ディッシュレード設計流量 70% C (m³/sec)</th>
<th>A/B</th>
<th>A/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Yoshino</td>
<td>24,000</td>
<td>92.9</td>
<td>17,037</td>
<td>20,162</td>
<td>1.409</td>
<td>1.190</td>
</tr>
<tr>
<td>R. Kinokawa</td>
<td>16,000</td>
<td>90.0</td>
<td>11,113</td>
<td>13,336</td>
<td>1.440</td>
<td>1.200</td>
</tr>
<tr>
<td>R. Kuzuryuu</td>
<td>12,500</td>
<td>79.6</td>
<td>9,726</td>
<td>11,767</td>
<td>1.285</td>
<td>1.062</td>
</tr>
<tr>
<td>R. Nakagawa</td>
<td>11,200</td>
<td>94.0</td>
<td>7,379</td>
<td>9,088</td>
<td>1.518</td>
<td>1.232</td>
</tr>
<tr>
<td>R. Mukogawa</td>
<td>4,800</td>
<td>93.5</td>
<td>2,915</td>
<td>3,661</td>
<td>1.647</td>
<td>1.311</td>
</tr>
<tr>
<td>R. Karasu</td>
<td>2,790</td>
<td>92.9</td>
<td>1,894</td>
<td>2,274</td>
<td>1.473</td>
<td>1.227</td>
</tr>
<tr>
<td>R. Aigawa</td>
<td>1,750</td>
<td>92.9</td>
<td>1,120</td>
<td>1,382</td>
<td>1.563</td>
<td>1.266</td>
</tr>
<tr>
<td>R. Asakawa</td>
<td>450</td>
<td>92.9</td>
<td>321</td>
<td>370</td>
<td>1.402</td>
<td>1.216</td>
</tr>
<tr>
<td>R. Togawa</td>
<td>280</td>
<td>95.5</td>
<td>165</td>
<td>207</td>
<td>1.687</td>
<td>1.353</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.491</td>
<td>1.229</td>
</tr>
</tbody>
</table>

代にわたって荒川（1621年）や利根川（1629年）の付替を行い、関東平野の農業開発と舟運の通便を図った。伊沢為水は伊奈氏が進めた事業を引き継いだ。この時代の治水工法の特徴は乗り越し堤（越流堤）を用いて洪水を池水地へ氾濫させるものであった。

明治には、デフレーションが明治6年から36年まで甚大し、西洋技術に基づきながらも、日本の河川をよく研究し、個々の川河の特性を重視して治山治水事業を進めたようだ。一方、西欧留学から帰国した治水技術者の多くは、西欧の新しい技術を導入して多くの成果を上げたが、他方では過去の日本において培われてきた治水方針を軽視した。明治以降、治水方針は、連続堤防を築き、放水路や速水路を開削して、洪水を河道から溢れさせずに流下させという方向へと変更された。

寺田信彦は、明治以前の日本の近代化に関して「日本の自然観」（寺田、1961）において、次のような指摘（要約）をしている。

「わが国の自然は豊かで変化に富んでいる。しかし、その一方で厳しい面があり、地震や火山による災害、台風や梅雨の集中豪雨による水害があることを絶対に。日本人は満載された自然を有効に利用するとともに、厳しい自然に対してはその厳しさをよく認識してうまく対応してきた。ところが、明治以後においては、ヨーロッパの科学を輸入して日本の近代化が計られた際に、それまでに養われてきた日本人の自然認識とそれに対する適応手法はすっかり置き去りにされてしまった。ヨーロッパにおいては、台風も地震も知らない国が多く、ヨーロッパ人は自然を恐れることなしに自然を克服しようとして科学を発達させた。また、ヨーロッパの自然条件の単純さは自然に対する認識を普遍化する上で好都合であったと考えられる。自然条件の全く異なるヨーロッパの進んだ科学が輸入されて以後は、わが国でそれ以前に蓄積されてきた自然認識とそれへの対応、それはそれぞれの土地に刻まれた科学と言いたいものであるが、それが軽視され、科学技术の世界から遠ざけられていた。」

寺田による上記の指摘は、科学技術がいかに影響を及ぼしたかを示すものであるが、河川に関する問題に即し即と当てはまることは特筆される。

戦後、大水害が続いたが、原因は戦争による国土の荒廃にあるが、連続堤防を築いて決水を河道内に閉じ込め明治以来採用されてきた治水方式により流量を増加させたためであると考えられてよい。これ、明治以来の治水方式の破壊とも言えるが、治水方針について反省せずに、洪水調節を主目的にする多目的ダムの建設によってこれに対処しようとした。戦後の治水事業においては、ダム建設や河川改修における施工技術が発展し、治水施設の中の治水方式に偏った事業が進められた。それとは裏腹に、過去の日本において培われてきた治水方式が軽視され続けてきた。各河川の現場では町村の実施が事業が進められている場合が多く、現在の河川工学においては治水思想と河川そのものに関する科学が欠如していると言える。

このような方法による治水事業が、河川環境の恶化や洪水流量の増大を招き、超洪水による危険性を大きくしたと言える。

4.2 流域の開発を制限しない後追いの治水

戦後の我が国の経済の発展はめざましく、それと並行して河川流域の開発も急激に進んだ。1955年から「高度経済成長」政策が始まり、「所得倍増計画」が出され、その後驚異的な経済の発展が続いた。GDPの変化を1955年を1.0として5年ごとに
に1995年まで続いて、1970年代の石油ショックによって「高度経済成長」政策が破綻し、1990年代に入りとパブル経済が崩壊してGDPの伸び率が小さくなるが、全体として経済は激激な拡大を続けてきたと言える。このような経済の発展に伴って河川流域の開発も激激に進んだが、河川行政としては何か効果的規模をもたらず、結果的に河川ストックの開発をするに至らなかった。その結果、河川環境の悪化や洪水流量の増大を招き、とりわけ都市河川に問題が集中するようになった。1970年代には都市河川の水害が頻発するようになり、裁判まで行われるようになった。このような状況は、治水を基本に計画された都市計画、地域開発が必要であることを示している。

4.3 日本経済との関わり

先に、戦後の治水事業においては、ダム建設や河川改修における施工技術が発展し、治水施設中心の治水方法に偏った事業が進められ、他方で過去の日本において由来してきた治水方式の軽視されてきたという指摘をしたが、著者はこのような状況を生み出した背景には経済的な事情があると考える。


日本経済の成長の過程を遡ると、1960年代の「高度経済成長」は産業の設備投資が作り出した経済成長であった。ところが、1973年の秋には石油ショックによって「高度経済成長」政策が破綻して、1974年には一時的にマイナス成長にまで経済が落ち込んだ。これを契機に設備投資が後退し、これに代わって輸出と公共事業が日本経済を支えるようになった。1980年代に入り、輸出に大きく依存した経済構造とななるが、このため貿易摩擦が深刻になった。80年代後半からは景気の回復し、再び設備投資が急増することになる。この期に投機によるパブル経済が形成された。1990年代には、パブル経済が崩壊し、設備投資も減少し、輸出も振わなくなった。こうして、この不況期を回復して次のような好景気が来るまでに模様を形作って公共事業に関わることはなくなった。

このように、公共事業は不況期においては経済の救世主としての役割を果たされ、こうした動きは経済を退歩させると、好況、不況を問わず、公共事業は常に拡大され続けてきたと言える。

最近の公共事業をめぐってはもう一つ重要なことがある。すなわち、経済構造の問題とともに、1989年の目次構造協議において日本は内需拡大を公約し、それに基づいて10年間で430兆円の公共投資を行う「公共投資基本計画」を策定した。さらに1994年には、クリントン大統領の要請を受け入れ、その額は630兆円に修正された。1990年代にこの公約を実行するため、行政が危機的な状態にあるにもかかわらず、大規模な公共事業が実施され続けてきた。

このような背景のもとで、公共事業関係費の13～14%を占める治水事業が行われており、このような状況においては、治水施設中心の治水方法に偏った事業が進められるのは必然のように思われる。

5．20世紀の治水事業に対する反省

以上において、治水事業をめぐる諸問題とそれらが惹き起こされた背景について述べたが、これらの問題への反省が20世紀終盤から始まった。ここでは、このような反省に基づく新しい取り組みについて述べることとする。

5.1都市河川に対する総合治水対策

1955年から「高度経済成長」政策が始まり、その後新たな経済の発展が続けた。このような経済の発展に伴って河川流域の開発も急速に進んだが、1970年代には都市河川の水害が頻発するようになり、裁判まで行われるようになった。

このような状況のもとで、1977年には河川審議会が開催に伴って頻発する都市水害を防止し、河川開発工事にのみ依存するのではなく、洪水への対策を流域全体で考え、流域貯留や水害に安全な土地利用方式の設
定、洪水および土砂災に対する危険区域の公表、被害者救済制度の確立などを織り込んで総合的に取り組むことにより、水害による被害を最小限にとどめるべきであるとする答申に出した。ここでは、「関係住民の理解と協力が得られるよう極力努力すること」と述べられているが、流域住民の協力なしには総合治水対策を成功させることができないからである。

この答申に基づき、特定の都市河川を対象として総合治水対策が実施されてきたが、このような方針は都市河川に限られているとはいえ、長期的であるといえる。高橋（1990）は「総合的治水は原則的にはどの河川流域にも当てはまるべきものであろうが、差し込もう急要を要し、その効果を発揮しやすい都市河川にまず適用されたと考えられる。」と述べているが、総合治水対策を一般河川へ適用する提案は、後述するように2000年12月になる。

5.2 超過洪水対策

連続堤防方式によって洪水を遮断する治水方法が採られた結果、洪水流量が増大し、治水事業の進展とは裏腹に、超過洪水による危険性が大きくなっていた。これに対する対策は次第に改細されることとなり、1987年に河川法に改定されて以来、大阪、名古屋などの大都市域の大河川の超過洪水対策を推進することが答申される。主な内容は次のようである。

①高規格堤防（スーパー堤防）を強力に推進することとし、親水空間、防災空間等の機能をあわせて総合的な効果を発揮させる。

②水害対象地域の設定を行い、住宅の新築、かさ上げ等に配慮、助成等の施策の検討を進めること。

③閉鎖型氾濫地域における土地利用および建築方式の設定、氾濫流の抑制および警戒避難体制の強化について研究し、その実施を極力推進する。

④超過洪水対策および関連する情報の周知徹底に努める。

しかし、これまでの治水方法の延長線上で対応するだけでは目的を達成することが難しい面もあり、個々の河川の現場では有効な超過洪水対策をはてていない。

5.3 「多自然型川づくり」

河川改修事業による河川の人工化に伴って河川環境が悪化したことを反省し、自然の回復をめざす川づくりが行われるようにになった。その象徴的な施策が1991年頃から始められた「多自然型川づくり」である。

「多自然型川づくり」は当初はパイロット事業として進められ、全国の多くの河川で実施された。中尾（1995）によると、1993年までの3年間に実施総数は延べ3,200箇所に近いと報告されている。「野鳥の人工営果を配慮した生物環境型川づくり」や「ホタルの生息に配慮した多自然型川づくり」、「魚ののびやすい川づくり」などをテーマにして実施されたり、災害復旧が「多自然型川づくり」によって行われたりした。「多自然型川づくり」の実施に伴って伝統的な河川工法も見直されるようになった。これと関連して、1990年度からは「河川水辺の国策調査」も実施されてきた。

また、「多自然型川づくりシンポジウム」や「自然型川河川工法研究討論会」、建設省が催す「全国多自然型川づくり担当者会議」なども開催され、雑誌「河川」を中心に「多自然型川づくりに関する多くの論文や報告が掲載されている。玉井（1996）は「多自然型川づくり」に関する技術基準を取入れる際の必要となる基本的な考え方を提示することを目的として、哲学的考察から、川づくりは「持続可能な開発」を内容とする「潜在自然型川づくり」とするべきであると提案した。論文において、河道上展開されているのは、洪水を規定されたダイナミックに変化している生態系である。「洪水の対策の方法により、水辺のものが出来上がることを構想し、それを活用することが重要である。」「生物の多様性を多様な水辺の空間を含む整備のためには、河川技術者は生態学の基本的、応用が必要である。」という指摘が注目される。河川の生態学に関しては、最近水野ら（1993）の「河川の生態学」および水野（1995）の「魚にやさしい川のかたち」などの著書が注目されている。

1997年には河川法が改正されて「河川環境の整備と保全」が盛り込まれることになったが、1997年度を初年度とする第9次治水事業五年計画においては、「これまでパイロット事業として進めている多自然型川づくりを、すべての河川を対象とした取り組みに換し、自然を生かした川を目指す」として「多自然型川づくり」が普通なものとされた。

5.4 河川法の改正

1997年に河川法が改正された。これは、1999年6月に答申された河川審議会答申「21世紀の社会を展望した今後の河川整備の基本方針について」および同年12月の河川審議会の提言「社会経済の変化を踏まえた今後の河川制度のあり方について」に基づいて行われた。河川法の改正の主要な内容のうち治水に関するものを挙げると、次のようにある。

①河川法の目的として、治水、利水に加えて、河川環境の整備と保全を明確に位置づけた。

②従来の工事実施基本計画を見直し、河川整備の基本となるべき方針に関する事項（河川整備基本方針）と、具体的な河川整備に関する事項（河川整備計画）に区分し、後者については地方公共団体の長,
関係住民の意見を反映する手続きを導入した。
3．河川堤防造の河畔林には治水上の効果があり、ダム湖周辺の河畔林には治水、利水上の効果があることから、河川管理施設として樹林帯を整備または保全できるようになった。

上記の内容は、河川環境問題の解決においても、河川事業に関係住民の意見を反映する上で重要な改正であると言える。また、河川堤防造の河畔林の保全は、総合的な治水対策を進める上で重要である。

5.5 流域治水
20世紀の最後の月、1980年12月に河川審議会答申「流域での対応を含む効果的な治水のあり方」が出された。この答申においては、「これまで、河川改修とあわせて流域対策を進める観点から、流域の治水の対策として、総合治水対策が進めてきたが、流域の改善が必ずしも著しくない流域で、地形や土地利用の状況等から河川改修のみでは不充分な事例が多くないので、これらの点について見直すことに加え、新たに発生している課題に対応していくことが必要となっている。このため、河川の状況や流域の特性に配慮し、土地利用との関係について検討をさらに深め、今後全ての河川で流域対策を検討することを基本として洪水対策を進めることが求められている。」

と述べられており、これまで特定の都市河川を対象として実施されてきた総合治水対策を全ての河川で検討する提案がなされた。また、河川の状況や流域の特性に配慮し、土地利用との関係について検討をさらに深めると述べられていることが注目される。

答申においては、河川流域を「雨水の流通域」「洪水の氾濫域」「都市水害の防御域」の三地域に区分して、それぞれの地域ごとの課題を明確にした上で、それぞれに対する治水対策を提案している。これらの中で、とりわけ「洪水の氾濫域での対策」が注目される。ここでは、拡散型氾濫域での対策として、「拡散型氾濫域では、氾濫の被害が広範囲に及ぶため、根幹的な生活基盤や生産基盤を守るための連続的対策等の河川整備を行うことが基本である。」としながらも、続けて「しかし、堤防や道路等についても、治水上の効果を適切に評価し、積極的に活用すべきである。」と述べており、これまでの総合治水対策では触れていなかった農業や道路等による洪水の氾濫も考慮されるように、明治以来の治水方針の大きな転換が提起されている。また、「徹底的に健全な実績洪水が発生した対策」として、「実績洪水に対して人命や建物への被害を最小化するため、土地利用方策を組み合わせた対策が必要である。」

と述べられていることが注目される。

6. これからの治水に関する課題と展望

6.1 治水に関する問題解決の観点
これまで、治水事業をめぐる諸問題、問題が顕著化された背景および20世紀の治水事業に対する反省について述べたが、「あなたと同じことは多くの人が考えているよう」、あるいは「あなたより多くのことを知っているよう」という人がいる。それでは、「問題が解決されたか」、あるいは「問題が解決されようとしているか」と考えると、必ずしもそのような方向は見えない。これは現在の科学が複雑化されていることにも原因があり、21世紀の治水に関する課題と展望を論じる際には、哲学的な考察が必要である。多くの人々が問題の解決を期待している一方、問題に内なる矛盾を明確にして、根本的な問題解決の方向を示すことが重要であると考える。

治水事業をめぐる問題とその背景、20世紀の治水事業に対する反省などを整理した結果に基づいて、治水に関する問題を解決するための観点を示すと、次のようである。

（1）治水における主要な矛盾
問題を解決する上で最も重要なことは、治水における主要な矛盾を明らかにすることである。著者は、「連続治水を築いて洪水を氾濫させない治水を進めてきたこと」と「超洪水時の危険性が増大したこと」という観点が、今日の治水において主要な矛盾が存在することを考える。

（2）総合治水対策と超洪水対策の相互関係
上記の治水における主要な矛盾を解決する方向は、20世紀の治水事業に対する反省から出た総合治水対策と超洪水対策の中に見出す。これは、市民の幸せを治水方式の創出に役立つかどうかの問題である。

（3）基本の決定方法の問題をどうするか
基本的決定方法の問題において、今日の治水において重要な役割を果たすことは、治水の基礎にあることができる。決定方法の課題をめぐっては、治水方針の選択基準は明確である。これにより、治水の役割をどのように位置づけるか、問題を解決する上で避けて通れない
課題である。
（5）「多自然型川づくり」は自然を回復させるか
河川の自然を真に回復させるという意味では、多自然型川づくりには疑問がある。河川改修は最小限にとどめるべきである。そのような治水工法を編み出さなければならない。

（6）治水の歴史をどう見るか
治水事業はその時代の社会条件の制約を受けながら発展してきた。治水事業と我が国の経済は相互に作用を及ぼし合いながら発展し、20世紀の治水事業は経済発展に寄与してきた。しかし、その積み重ねが、今日の治水における矛盾を生み出し大きくなった。現在では経済発展が治水事業の矛盾をいつそう大きくしている。現在の社会条件に相応しい治水方式に転換する必要がある。

上記の内容について、以下において議論を進めることとする。

6.2 連続堤防方式と超過洪水時の危険性の増大
1896年の河川法の制定以来、連続堤防を築き、洪水を河道内に閉じ込んで制御させるという治水方式を採用したため、治水事業が進展すればほど洪水流量が増大した。さらに、戦後は流域の開発による洪水流量の増大が加わって、高い堤防が築かれるようになった。一方、治水事業の進展に伴って氾濫原に多くの住宅が建てられ、市街化されて人口が集中することになった。このことは超過洪水時の堤防が決壊する場合の水害の危険性が増大することを意味している。すなわち、治水事業を進めれば進めるとほど水害の危険性が増大するのである。これが、治水における主要な矛盾であると考える。

このような矛盾に関して、高橋（1971）、木村（1977）および宇田（1977）は早くからそれを指摘している。その解決策に関しては、高橋は「治水事業の価値は、未曾有といわれる大洪水時にいかに流れ住民の生命財産を保護したか否かによって判定される。」「流域内のある部分は氾濫を絶対に許さない治水方針をとるとともに、流域内に、人工の貯水池よりはむしろ、自然条件の中で浸水や貯水を許容する部分を考慮することで、治水計画者の重要な組み立てでなくてはならない。」「氾濫を考慮に入れなければ、氾濫の際に、被害が最も大きいような方策、特に住民をできるだけ少数にする手段を講じるところ、治水の戦略では最も重要なことである。」と述べている。木村は、「現代の水政策計画は利水、治水、自然環境保全の順位でな行なわれているが、これを逆転することが長期的広域的にはより治水、利水に有利なのである。」「（防災計画に関して）計画の範囲を拡げその内容を総合化、ソフト化することが現代の防災に課せられた問題であろう。そしてこのような柔軟な対策を効果的に実施するためには、長年にわたって住民の知識と経験が必要である。」「元来、住民本位の開発計画にあっては、開発と防災は対立関係にあるべきものではなく、防災計画は開発計画と不可分一体のものと考えなければならない。」と述べている。
ないような対策を採るによって総合的な安全性を追求することが重要である。総合治水対策は、土地利用計画を適正に組み込むことが不可欠である。
総合治水対策は流域の自然環境および社会環境を重視し、それらを保全する治水方法である。このような意味において、総合治水は21世紀の治水の必要であると言える。
ただし、河川審議会によって答申された、現在の「総合治水対策」は「超過洪水対策」が中心なのであり、その趣旨を生かしつつ、これらを改善しながら、総合的治水対策を進めていく必要がある。
まず、河川審議会によって2000年に答申された「総合治水対策」について述べると、「洪水の流出域での対策」は大きく2つであると言える。ここでは、調整池による対策が重要視されている。調整池が過大対策による対策には限界がある。特に、流域の計算上の都市河川の場合には、雨水の流出域（山地あるいは丘陵地が対象であると考えられる）での開発に対して調整池の設置が効果的である。ところが、一般的の河川においては、雨水の流出域は山地の奥深いところまで網掛けており、これに対して開発される場所は洪水の氾濫域や都市水系の防御域に近いことが多い。このような場合には、調整池は洪水のピーク流量を抑制するが、その一方で、流出による水準の低下により、調整池がない場合よりも大きくなる。このために、調整池がある場合に、調整池がない場合よりも洪水のピーク流量が大きくなる。開発しても、調整池を造ればそれでよしという考え方には問題があると言える。したがって、雨水の流出域での対策としては、流出域における開発を可能な限り規制することが最も重要であり、開発する場合には開発地において雨水の浸透を促進するような処置がなされるべきであると考えられる。さらに、水源涵養林などによる治山についての対策も検討する必要がある。
超過洪水対策に関して述べると、超過洪水対策は総合治水対策と結びつける場合に有効な対策であると考えられが、ごく最近まで一般の河川においては総合治水対策を実施する方針は出されていなかった。したがって、このような段階で出されたスーパーテフリによる対策は治水における矛盾の解決にはほとんど役立たないのではないかと考える。今求められているのは、氾濫を許容する総合治水対策によって洪水流量そのものを減少させることであり、流量が減少すると必要な堤防の強化も比較的容易になり、破壊する場合でも被害が小さくなるので、スーパー堤防を必要としなくなるのではないかと考えられる。超過洪水対策と総合治水対策との結びつける場合に有効な超過洪水対策を具体的に検討することが重要である。これに関しては、現在、1998年8月に発生した余留川の超過洪水による災害の実態を調査、検討し、総合的な治水現象を見直し、実際的に検討する研究を進めようとしている。

6.4 基本高水の決定方法の問題をどうするか
基本高水の決定方法の問題にあり、決定された諸河川の基本高水が過大なものでなく、一般に過大な基本高水が採用されていることは多くの識者が認識するようになった。この問題は、明治時代以来、連続堤防築造、洪水を河川内に閉じ込め流下させるという治水方式を採用したことに関連している。というのは、洪水を河川内に閉じ込め流下せば氾濫させることはならない治水方式の場合には、超過洪水が発生しても破壊したときの被害が顕著なものとなるから、基本高水を可能限り大きく設定して、安全な治水計画にしておくという意識が強く働くことからである。十分な超過洪水対策が確立されていない時点では、これは当然のすることである。しかし、超過洪水に対して被害が最小になるような方策を実施できるようになると、基本高水を必要以上に大きく設定することは、無駄な治水事業を実施することにつながらるので、逆に問題になるのである。したがって、前節において述べたような治水方式の転換と基本高水の適正化の課題を相互に関連させて総合的に解決していく必要がある。
1997年に河川法が改正されて、従来の工事実施基本計画を換して、それを河川整備基本方針と河川整備計画に区分することに前後し、個々の河川では変化が見られる。最近、改正された河川法に基づいて河川整備計画を策定する動きが出てきた。これは、過大な基本高水流量を設定してそれに応じた治水事業を実現することが困難な河川で進められているようである。この場合には、基本高水流量は変更せず、実現可能な整備計画目標流量を設定し、それにに基づいて当面（20〜30年ほど）の治水事業を進めようとしている。
「水資源開発問題国際連絡会」の調査によると、整備計画目標流量を設定した河川は、畑楽川（基本高水流量1,300 m³/sec、整備計画目標流量1,650 m³/sec）、多摩川（以下同様に8,700 m³/sec、4,500 m³/sec）、大野川（11,000 m³/sec、9,500 m³/sec）、藤川（7,100 m³/sec、4,650 m³/sec）、由良川（6,500 m³/sec、3,700 m³/sec）である。これからのうち、多摩川および由良川は整備計画目標流量が基本高水流量よりも大幅に小さくなっていることが注目される。
一方、球磨川のように昭和41年に設定した、過大と
思われる基本水を守って、ダム（川辺川ダム）を建設しようとしている河川もある。このような動きは我が国の経済情勢と関連しているものと考えられ、21世紀の治水を展望するためには、矛盾を深めつつある我が国の経済情勢から離れ、治水を考慮する必要がある。

6.5 治水におけるダムの位置づけ
21世紀において述べたように、ダムは水質の悪化を招き、河川や海岸にまで大きな影響を及ぼす。また、貯水池周辺の動物や植物もさまざまな影響を受ける。方針で、改正された川河法には、治水法の目的として「河川環境の整備」が盛り込まれ、それと前後して1991年からパイロット事業として進められてきた「多自然型川づくり」を、すべての川河を対象とし、取組みを実施し、自然を生かした川を目指す。そして、河川環境を重視する治水事業は進められている。大规模な環境破壊をもたらすダムと河川環境を重視する方針との間には決定的な矛盾が存在すると言える。

越境治水時にダムからの計画最大放流量よりも大きいかなり大きい流量が放流水の可能性が大きく、最終の場合には流下に等しい流が放流されることになるため、治水法によるよりも、流下で大きな被害を発生させることになることを21世紀において指摘した。一方、1987年河川整備法によって、山口ホルムが河川の治水対策を推進することが全国的に相次いで報告されている。越境治水時に流下で大きな被害を発生させるダムなどが越境治水対策を推し進む方針との間には決定的な矛盾が存在すると言える。

以上から、治水対策を立てることは、ダム整備は最後の手段とするべきである。まずダムによる治水対策を徹底的に考え、他にどうしようもない場合にダム計画を採用し、その場合にもダムの規模をできるだけ小さいものにすることが重要であると言う。

6.6 「多自然型川づくり」は自然を回復させるか
1997年には河川法が改正されて「河川環境の整備と保全」が盛り込まれると同時に、1991年からパイロット事業として進められてきた「多自然型川づくり」をすべての河川を対象として行うことになった。しかし、河川の自然を真に回復させるという意味では、「多自然型川づくり」には課題がある。というのは、従来の治水方法は河川そのものについての十分な理解に基づいて実施されてきたと言えない側面を持っているからである。河川そのものの理解なしに「多自然型川づくり」が進められる場合には、それは「自然に見せかける川づくり」となり、「多自然型川づくり」による河川改修が多分の自然を破壊することになる。これで重要

6.7 治水の歴史をどう見るか
治水事業と我が国の経済は相互に作用を及ぼし合いながら発展してきた。
戦後戦時には、内閣府や加藤清正などの大名が農業を高めるために、積極的に治水事業に乗り出した。戦後には、治水に関する専門的な技術者が現れ、優れた河川事業を行った。彼らは農業開発に加えて、農産物などを運搬するために舟運の整備も進めた。これにより、それぞれの時代において経済的発展の基礎となるものであった。
明治時代になると、西欧の進んだ科学技術が外国人技術者や西欧留学から帰国した技術者によってもたらされた。1896年には河川法が制定され、西欧技術を用
伝統的な治水工法は、先人が創造した「土地に刻まれた科学」であると言える。このような意味を持つ伝統的な治水工法を活用する方法も検討する必要があると考える。この場合に、単なる機械的な適用ではなく、現在までの治水技術の発展、治水水準の高度化、社会の発展などの諸条件の変化を十分に考慮して、伝統的な治水工法を活用する必要があると考える。

7. 結 語
治水事業をめぐる諸問題と課題が醸成された背景を整理し、20世紀の治水事業に対する反省として出された対策や河川法の改正について述べた。これらを総合して、現在の発展段階に相応しい治水方策の方向を提示した。

本論文においては、総論を提起することに重点をおいており、各論については議論を凝めている項目と問題提起だけに終わっている項目があり、全体としては釣り合いが取れる形にはなっていない。このような段階で取えて本論文をまとめたのは、著者が今後どのように方向で研究を進めるべきかを整理しようとしたためである。本論文において十分に議論がなされていない項目については今後の検討課題とした。

今後、治水事業と日本経済との関わり、治水の歴史をどう見るかに関して研究を深めていきたいと考える。また、過去治水対策と総合治水対策を結び合せて、今後の課題を解決するための方策についても、水理実験も含め研究を深めたいと考える。さらに、「自然を生かす川づくり」を目指し、その基礎になる河川の自然そのものに関する研究とその成果を河川工学や実際の河川事業に取り入れるための研究を進めたと考える。

参考文献
上野鉄男（2001）：絵巻川の治水と川辺ダム、川辺川研究会、79pp。
上野鉄男・宇久正・木下良作・鈴木雄・佐近裕之・山崎隆洋・三和茂利名・奈恵光（1999）：斐伊川における洪水時の流砂量計算の試み、水工学論文集、第43卷、pp.707-712。
宇久正（1977）：川と水害、法律時報、臨時増刊、pp.293-298。
宇久正・上野鉄男（1994）：写真画像処理による洪水流解析、土木学会論文報告集、No.503，pp.1-17。
宇久正・上野鉄男・木下良作・松本直也・室元孝之（1994）：斐伊川における洪水流況と河床形状の同時計測、水工学論文集、第38巻、pp.739-746。
川辺川工事事務所（2001）：豚鹿川水系の治水について，国土交通省九州地方整備局 川辺川工事事務所，182pp.
木下良作（1967）：航空写真による洪水流の解析，写真測量，No. 1, pp. 1-17.
木下良作（1984）：航空写真による洪水流解析の現状と今後の課題，土木学会論文集，No. 345／II-1, pp. 1-19.
木下良作（1992）：砂洲・砂堆など河床波の洪水時形態変動，「種々のスケールにおける流れと流砂運動の同時計測による土砂輸送・河床変動機構の解明」，平成3年度科学研究費補助金 総合研究（A）研究成果報告書 （代表 芦田和男），pp. 85-93.
木下良作・三輪 弋（1974）：砂れき堆の位置が安定化する流路形状，新砂防，No. 94, pp. 12-17.
高橋 裕（1971）：国土の変貌と水害，岩波書店，216pp.
高橋 裕（1990）：河川工学，東京大学出版会，311pp.
玉井信行（1996）：沿岸自然型河川づくりの体系化に向けて，河川，No. 598, pp. 61-66.
寺田貞彦（1961）：寺田貞彦全集 第10巻，岩波書店，pp. 200-231.
中尾忠彦（1985）：多自然型河川改修の現況，河川，No. 584, pp. 6-11.

On Some Problems in River Administration and Flood Control Measures Fitting in the Twenty-first Century

Tetsuo UENO

Synopsis

Since the establishment of the River Law in 1896, flood control measures have been carried out with anticipated fruits. On the other hand, serious problems have been occurred. They are the worst of Fluvial environment by river improvement and dam, the problem in determination methods of design flood and the defect in measures for the flooding that exceeds design flood. We can find the cause in the history of flood control in Japan. Recently, the River Council submitted the reports on comprehensive flood control measures (1977, 2000) and measures for the flooding beyond design flood (1987), and the role of traditional flood control measures have been discussed. A partial amendment of the River Law was made on fluvial environment (1997). In this paper, the flood control measures fitting in the twenty-first century are discussed in accordance with above-mentioned subjects.

Keywords: fluvial environment; flood control project; design flood; flooding beyond design flood; comprehensive flood control measures