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Fig. 1 The principal mode of the empirical orthogo-
nal function analysis by the covariance matrix
which is made for the variation of the zonal
mean zonal wind in the height-latitude sec-
tion. Variations are beforehand 10-day low-
pass filtered and weighted for the zonal length
of the area and the uneven spacing of each
pressure level. The percent variance explained
and the sampling error according to the North
et al. (1982) test is given at top. Solid con-
tours indicate positive values, and dashed con-
tours negative one. The contour interval is
0.002. The zero contours are omitted. The

areas with positive values are shaded.
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are drawn by marks and a thick line. Devel-
opments of low-frequency 500-hPa geopoten-
tial height from lag —10 day to lag +4 day are
analyzed by average-linkage-clustering. Thin

line is an approximate exponential function.

NO . DATE C listerNO
1 27/6/1980 1
2 2/7/12982 1
3 19/6/1983 1
4 21/8/1983 1
5 10/6/1986 2
S 14/7/1986 1
7 19/8/1986 1
8 23/6,/1987 2
= 26/7/1987 1

10 14/8/1988 1
11 24/8/1989 1
12 5/7/1990 2
13 28/8/1990 1
14 11/6/1991 1
15 14/8/1991 1
16 5/8/1993 1
17 9/6/1994 1
18 7/6/1995 1
12 24/6/1996 1
20 30/7/1996 3
21 22/8/1996 1
22 17/6/1997 1
23 15/8/1998 3
24 16/7/1999 1
25 8/8/1999 3

Table 1 The key-days of equatorward transition

events are listed in the middle column. Clus-
ter number of each event is shown in the

right column.
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Al

(e) 4 June 1991 (f) 5 June 1991

Fig. 3 Synoptic maps of quasi-geostrophic potential vorticities and horizontal wind vectors (ms™"; scaled as at
the bottom of the first figure) at 300-hPa surface during (a) 31 May 1991 to (1) 11 June 1991. Contour
interval is 5-107° s~*. Please see text for more details.
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Fig. 4 Development of zonal mean quasi-geostrophic potential vorticities (1058_1) during a case of transition
event, whose key day is 11 June 1991. Y-axis is lag day from 8 June 1991.
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Fig. 5 Contours indicate the averaged time evolution of the 300-hPa horizontal wind velocity during the equa-
torward transitions. The wind velocity field is averaged over each 5 days that are staggered equally by 2
days from (a) lag —6 day to (f) lag +4 day. The contour interval is 5 ms™*, and the contours less than 25
ms ™! are omitted. Areas shaded lightly (heavily) indicate where the differences from climatology exceed

positive (negative) significant level with the 90% confidence.
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Fig. 6 The averaged time evolution of the 300-hPa geopotential height anomalies during the equatorward tran-
sitions. The geopotential height field is averaged over each 5 days that are staggered equally by 2 days
from (a) lag —6 day to (f) lag +4 day. Solid contours indicate positive anomaly, and dashed contours
represent negative one. The contour interval is 25 m, and the zero contour is omitted. Areas of shading
indicate significant with the 90% confidence level.

-2 ¢
1991 6 8
' 3-4
9
, Hoskins
and Ambrizzi (1993) PC1> 1991 6 8
1 ( 10) 50°5
60°S
) 11
0.075 0.1
, 60°S
(e.g.,

' Sinclair, 1996), 11 2



(a) —6 day, 500 hPa (b) —2 day, 500 hPa

(c) +2 day, 500 hPa

(d) —6 day, 850 hPa (e) —2 day, 850 hPa

(f) +2 day, 850 hPa

Fig. 7 Same as fig. 6 except for at 500-hPa surface from (a) —6 day to (c) +2 day and at 850-hPa surface from

(d) -6 day to (f) +2 day.
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Fig. 8 The time evolution of 300 hPa geopotentianl hight tendency anomalies (mday_l) induced by high-
frequency transients during the equatorward transition. The tendencies are evaluated over each 5 days
that are staggered equally by 2 days from (a) lag —6 day to (f) lag +4 day during the poleward transi-
tion events. Light (heavy) shading represents positive (negative) tendency anomalies. The contours of
geopotential height anomalies (same as Fig. 6) are superimposed as reference.
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Fig. 9 Vectors display the time evolution of Takaya and Nakamura (1997, 2001) wave activity flux anomalies

(mzs_2

poleward transition events. We assume that the wave phase speed is 0 ms™

; scaled as at the bottom of second figure) associated with low-frequency transients during the

1 and the basic state is the

climatological ambient flow. The flux are evaluated over each 5 days that are staggered equally by 2 days

from (a) lag —6 day to (f) lag +4 day. Contours show the 300-hPa geopotential height anomalies that are

the same as that shown in Fig. 6.
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Equatorward transition processes of the Southern Annular Mode are examined. Positive height
anomalies appear south of Australia at the first half period of the transition events. They are associated
with large incidence of blocking anticyclone at there for then. They emit new quasi-stationary Rossby
wave trains, whose wavelength are about 7000 km, eastward across the Pacific Ocean. Absolute values
of potential vorticity above Antarctica are decrease and the equatorward transition processes are carried
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out as these Rossby wave trains growth and break.
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