移流モデルによる予測降雨場の誤差構造 のモデル化と降雨場の発生

立川康人・小松良光*・宝 馨

* 京都大学大学院工学研究科土木工学専攻

要旨

移流モデルによる実時間予測降雨場の予測誤差構造をモデル化し,それに従う模擬的 な降雨を発生させるアルゴリズムを開発した。発生する可能性のある降雨を多数模擬発 生させることができれば,分布型洪水流出モデルを介して任意の地点での河川流量を, モンテカルロシミュレーション的に確率的に評価することが可能となる。降雨場の予測 誤差の統計的な特性を調査したところ,予測相対誤差は距離によって定まる空間相関構 造をもつ対数正規確率場としてモデル化できることが分かった。そこで,共分散行列の 平方根分解手法を用いた対数正規確率場の発生法を用い,模擬的な予測降雨場を多数発 生させる手法を実現した。

キーワード:流出予測,短時間降雨予測,移流モデル,予測誤差構造,確率場

1. はじめに

本研究では,短時間降雨予測モデルによる予測降 雨場の誤差構造をモデル化し、それによって模擬的 な降雨場を発生させるアルゴリズムを開発すること を目的としている。降雨の実時間予測値が得られ、 かつその予測誤差の統計的な特性をモデル化するこ とができれば,その統計的特性に従う予測誤差を有 する降雨場を多数発生させることが可能となる。こ うして発生させた多数の降雨場を分布型洪水流出モ デルに入力すれば,任意の地点において多数のハイ ドログラフを得ることができるため,それぞれの地 点において河川流量の最確値とその予測誤差分散を 得ることが可能となる。すなわち,時間空間分布す る降雨の実時間予測値をもとに起こり得ると考えら れる降雨場を多数発生させ,多数の流出シミュレー ションを行うことにより,任意の地点での河川流量 を実時間で確率的に予測することが可能と考える。

短時間降雨予測モデルとしては椎葉らの提案する 移流モデル(椎葉ら,1984)を採用し,国土交通省所 管の深山レーダー雨量計による雨量強度データを用 いて降雨予測モデルの予測誤差を調査した。その結 果,予測相対誤差は距離によって定まる空間相関構 造をもつ対数正規確率場としてモデル化できること が分かった。そこで,立川・椎葉(2000)の提案する 共分散行列の平方根分解による対数正規確率場の発 生法を用い,予測降雨場を模擬発生させる手法を実 現した。

2. レーダー雨量データと移流モデルの概要

2.1 レーダー雨量データ

建設省が京都府と大阪府との県境に設置した深 山レーダー雨量計のレーダーデータを用いる。この レーダー観測システムは昭和56年3月に建設が完 了し,昭和57年7月より運用が開始された。本研 究では,この観測システムのうちレーダービームの 仰角を固定した仰角固定観測による雨量観測データ を用いる。定量観測域の観測範囲はFig.1(1)に示 す半径120kmの範囲内であり,受信電力値はレー ダーサイトを中心とする半径120km以内を方位方向 に128等分,120kmから198kmまでを256等分,距

(2)

Fig. 1 (1) Quantitative measurement area by the Miyama precipitation radar (120km radius). (2) Observed rainfall by the Miyama radar at 0:15pm, September 5 in 1989. (3) 15 minute ahead rainfall prediction by the transration model (predicted at 0:00pm, September 5 in 1989). (4) Prediction error calculated as

離方向には 3km ごとの同心円で区切られた放射状 メッシュ区画単位で得られる。この極座標系で表現 される放射状メッシュ区画ごとに得られる受信電力 値を,中北にならい 3km×3km の矩形セルを単位と する 240km×240km (80×80 個)の正方形メッシュ区 画直交座標系に変換した。5分間隔ごとにこうした 面的な受信電力値が得られ,建設省によって同定さ れたレーダー定数を用いて受信電力値を降雨強度に 変換した。

(3)

observed minus predicted value.

2.2 移流モデル

降雨予測手法として移流モデル(椎葉ら, 1984)

$$\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = w \tag{1}$$

を用いる。*z* は降雨強度面,*u*,*v* は移流ベクトル,*w* は発達衰弱項,*x*,*y* は空間軸,*t* は時間を表す。ここで,*u*,*v*,*w* は空間座標による一次式として

 $u = c_1 x + c_2 y + c_3$ $v = c_4 x + c_5 y + c_6$ $w = c_7 x + c_8 y + c_9$

と表現できるものとする。 $c_1 ~ c_9$ は推定されるべき パラメータである。u, v, w を位置座標の一次式とす ることにより, パラメータ $c_1 ~ c_9$ の決定は線形最 小二乗推定問題として定式化できるようになり, 逐 次観測データが得られるごとにオペレーショナルに パラメータを同定し予測値を得ることを可能として いる。ここでは,現在時刻を含めて過去15分間に5 分間ごとに得られるレーダー雨量データを用いてパ ラメータ $c_1 ~ c_9$ を決定し,将来時刻の降雨強度面 を得た。発達衰弱項 w の値は常にゼロとした。

Fig. 1(2)(3) に 1989 年 9 月 5 日午後 0 時 15 分の観 測降雨画像と 1989 年 9 月 5 日午後 0 時に移流モデル を用いて予測した 15 分先予測降雨画像を示す。黒い 部分は降雨強度が 0mm/hr の部分であり, 白い部分 (*R* = 30mm/hr) になるほど大きな降雨強度であるこ とを示す。なお, Fig. 1(3) の図の上部の黒い部分は, 推定された移流ベクトルによって外部から雨域が移 動してくる部分であり, 降雨強度を評価することが できない領域を示している。Fig. 1(4) は観測降雨か ら予測降雨を減じて得た予測誤差である。

2.3 レーダーデータの加工

空間分解能 3km×3km,時間分解能 5 分間のデー タを基本とし,このデータを時間的,空間的に平均 化して時間分解能,空間分解能の異なるデータを作 成して予測降雨誤差の統計的特性を分析する。空間 分解能は 3km,6km,12km の3 通り,時間分解能は 5 分,15分,30分,60分の4通りを考え,それらの組み 合わせで合計 12 種類のデータを作成した。以降,こ こでは 1989 年 9 月 5 日午前 10 時から 9 月 6 日午前 6 時の間の前線性降雨によるデータを分析した。

3. 予測誤差構造のモデル化とその評価

3.1 予測誤差構造のモデル化

予測降雨の誤差構造をモデル化するために,深山 レーダー雨量計から得られた観測降雨場 R_oから移 流モデルによる予測降雨場 R_pの値を差し引いた予 測誤差

$$E_a = R_o - R_p \tag{2}$$

およびこの観測誤差を予測降雨で正規化した相対予 測誤差

$$E_r = (R_o - R_p)/R_p \tag{3}$$

を考える。ここで上記の計算は,対応する各格子ご とに上記の演算を作用させ,二次元的な予測誤差の 場 *E_a*,*E_r*を求める意味で用いている。Fig. 1(4) に 観測降雨から予測降雨を減じて求めた予測誤差を画 像表示する。青い部分は無降雨の領域であり,赤色 (10*mm/hr*) になるほど正の方向に誤差が大きくな り,水色(-10mm/hr) になるほど負の方向に誤差が 大きくなることを示している。

こうした誤差の評価式が,ある確率分布モデルあるいは確率場モデルに従うならば,それらのモデル に従う *Ea* または *Er* を多数シミュレーション発生させることが可能となる。こうして発生させた *Ea*,*Ep* と流移モデルによる降雨予測値 *Rp* とを用いて

$$R_o = R_p + E_a \tag{4}$$

あるいは

$$R_o = R_p \times E_r + R_p \tag{5}$$

とすることで,降雨場を模擬発生させることができ る。ここで発生させた降雨場を分布型流出モデルに 入力することにより,予測流量を確率的に評価する ことが可能となる。以下,*E*_a,*E*_rの統計的な性質 を分析する。

3.2 予測誤差 *E*_a の統計的性質

ー例として、5分先予測値を対象として(2)式に示 す予測誤差 E_a (mm/hr)を計算し、降雨強度別にそ の頻度分布を示した図を Fig. 2 に示す。頻度分布図 を作成するに当たっては、予測降雨強度が 0 mm/hr となる領域を除いて計算した。これは、Fig. 1 を見て も分かるように、無降雨の領域が全対象領域の大部 分を占めるため、ヒストグラムの形状に大きく影響 をおよぼすからである。図中、(1) は $R_p \ge 0$ の領域で の予測誤差のヒストグラム、(2) は 10mm/hr $\ge R_p \ge$ 5mm/hr の領域での予測誤差のヒストグラム、(3) は 15mm/hr $\ge R_p \ge 10$ mm/hr の領域での予測誤差の ヒストグラム、(4) は 20mm/hr $\ge R_p \ge 15$ mm/hr の 領域での予測誤差のヒストグラムである。

(1) に示す全体の *E_a*のヒストグラムと,(2)から(3)に示す予測降雨強度毎に階層化したヒストグラムとを比べると,(1)は0付近にピークを持つ正規分布に近い形状を示しているが,(2)から(4)のヒストグラムは(1)とは形状が異なり,正規分布よりも対数正規分布に近い分布形状を示している。また,(2)(3)(4)の分布形状はそれぞれ異なり,予測降雨強度ごとに予測誤差は異なった分布を示すことが分かる。

予測誤差の空間相関がまったく無いか,または極 めて小さい場合は,降雨強度ごとに予測誤差の確率 分布関数を定めて予測誤差を発生させることは容易 だが,実際には予測誤差は空間的にランダムではな い。Fig. 1(4)に示すように,予測誤差が正または負 の値を取る領域は空間的にランダムではなく,ある 程度まとまった領域に正または負の値を示す領域が 存在する。Fig. 3 は,5分先予測値と60分先予測値 を例に取って予測誤差の空間相関係数を示したもの である。10km 程度の距離内では正の相関が存在す ることが分かる。

以上,予測誤差 *E*a は降雨強度ごとに異なった分 布形状を示し,かつ空間的な相関も有することが分 かった。こうした誤差構造をモデル化し,その統計 的な性質を有する誤差場を発生させることは容易で はない。そこで,次に予測相対誤差に関する統計的 特性を調査することにする。

3.3 予測相対誤差 *E_r* の統計的性質

5 分先予測値を対象として (3) 式に示す予測相対 $誤差 <math>E_r$ を計算し,降雨強度別にその頻度分布を示 した図を Fig. 4 に示す。頻度分布図を作成するに 当たっては, E_a の場合と同様に予測降雨強度が 0 mm/hr となる領域は除いて計算した。図中,(1) は $R_p \ge 0$ の領域での予測相対誤差のヒストグラム,

Fig. 2 Frequency distribution of prediction error E_a for 5 minute ahead prediction. (1) Frequency distribution of E_a for cells in which predicted rainfall intensity is larger than zero. (2) Frequency distribution of E_a for cells in which predicted rainfall intensity is between 5mm/hr and 10mm/hr. (3) Frequency distribution of E_a for cells in which predicted rainfall intensity is between 10mm/hr and 15mm/hr. (4) Frequency distribution of E_a for cells in which predicted rainfall intensity is between 15mm/hr and 20mm/hr.

Fig. 3 Spatial correlation coefficient of prediction error E_a . (1) Case for 5 minute ahead predicton. (2) Case for 60 minute ahead prediction.

(2) は 10mm/hr $\geq R_p \geq 5$ mm/hr の領域での予測 相対誤差のヒストグラム, (3) は 15mm/hr $\geq R_p \geq 10$ mm/hr の領域での予測相対誤差のヒストグラム, (4) は 20mm/hr $\geq R_p \geq 15$ mm/hr の領域での予測相 対誤差のヒストグラムである。

全体の *E_r* の頻度分布 (1) と,予測降雨強度 *R_p* の 強度階層別の頻度分布 (2)(3)(4),共に *E_a* 場合とは 異なり, どれもが下限値が -1 の対数正規分布に近 い分布形状を示している。下限値が -1 となるのは, $E_r = (R_o - R_p)/R_p$ として相対予測誤差を計算して いるため,観測降雨 $R_o = 0$ のとき $E_r = -1$ となる。

この場合の空間相関係数を Fig. 5 に示す。(1) は5 分先予測値を対象とする場合,(2) は 60 分先予測を 対象とする場合の結果である。これらの図から,距

Fig. 4 Frequency distribution of relative prediction error E_r for 5 minute ahead prediction. (1) Frequency distribution of E_r for cells in which predicted rainfall intensity is larger than zero. (2) Frequency distribution of E_r for cells in which predicted rainfall intensity is between 5mm/hr and 10mm/hr. (3) Frequency distribution of E_r for cells in which predicted rainfall intensity is between 10mm/hr and 15mm/hr. (4) Frequency distribution of E_r for cells in which predicted rainfall intensity is between 15mm/hr and 20mm/hr.

Fig. 5 Spatial correlation coefficient of relative prediction error E_r . (1) Case for 5 minute ahead predicton. (2) Case for 60 minute ahead prediction.

離が 10km 以内では,予測相対誤差は正の相関を示 すことが分かる。

このように,予測相対誤差は降雨強度に関わらず, 同様の分布形状を示した。この場合は,予測相対誤 差を空間相関構造を有する対数正規確率場としてモ デル化できるために,非常に都合がよい。そこで, 空間分解能 3km×3km,時間分解能 5 分間のデータ を基本とし,このデータを時間的,空間的に平均化 して作成した分解能の異なるデータを含めて予測相 対誤差の統計的特性を分析した。

分析の対象としたのは,空間分解能 3km, 6km, 12km の3通り,時間分解能 5分, 15分, 30分, 60

(3) Case for 12km×12km spatial resolution

Fig. 6 Mean and standard deviation of relative prediction error for 60 minute ahead 5 minute mean prediction.

分の4通りで,それらを組み合わせた合計12種類の データである。なお,降雨予測値は常に移流モデル を用いて3km分解能,5分単位の計算値を作成し, それを時間空間的に平均化して上記のデータを作成 した。

60分先の5分間予測値を対象として,予測降雨強 度別に *E_r*の平均値と分散を示した図を Fig. 6 に示 す。この図では,横軸に予測降雨 *R_p* (mm/hr),縦軸 に *E_r*をとり,平均値を中心として標準偏差を平均値

(1) Case for $3km \times 3km$ spatial resolution

(2) Case for $6 \text{km} \times 6 \text{km}$ spatial resolution

(3) Case for 12km×12km spatial resolution

Fig. 7 Mean and standard deviation of relative prediction error for 60 minute ahead 60 minute mean prediction.

の上下に示しており,空間分解能を3km,6km,12km とした場合を示している。これらの図から,空間分 解能を3kmとした場合は,降雨強度別に平均値,分 散ともに異なることが分かる。空間的に平均化した 場合,分散の変動は多少小さくなるが,各階層ごと に同じ分布を示すとは言い難い。

次に,60分先までの平均60分降雨を対象として, 予測降雨強度別に *E_r*の平均値と分散を示した図を Fig.7に示す。これは,予測リードタイムが短いほ

rainfall data	cell size	5min ahead	15min ahead	30min ahead	45min ahead	60min ahead
	$3 \text{km} \times 3 \text{km}$	0	\bigcirc	×	×	×
5min mean	$6 \mathrm{km} \times 6 \mathrm{km}$	\bigcirc	\bigcirc	\bigcirc	×	×
intensity	$12 \mathrm{km} \times 12 \mathrm{km}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	×
	$3 \mathrm{km} \times 3 \mathrm{km}$	-	\bigcirc	×	×	×
$15 \mathrm{min} \mathrm{mean}$	$6 \mathrm{km} \times 6 \mathrm{km}$	-	\bigcirc	\bigcirc	×	×
intensity	$12 \rm km {\times} 12 \rm km$	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$3 \mathrm{km} \times 3 \mathrm{km}$	-	-	×	-	×
30min mean	$6 \text{km} \times 6 \text{km}$	-	-	×	-	×
intensity	$12 \mathrm{km} \times 12 \mathrm{km}$	-	-	\bigcirc	-	\bigcirc
	3km×3km	-	_	-	_	0
$60 \mathrm{min} \mathrm{mean}$	$6 \mathrm{km} \times 6 \mathrm{km}$	-	-	-	-	\bigcirc
intensity	$12 \mathrm{km} \times 12 \mathrm{km}$	-	-	-	-	\bigcirc

Table 1 Results of Kolmogorov-Smirnov-test of fit for relative prediction error to lognormal distribution. The significance level is 5 %.

ど,降雨強度によらず予測相対誤差の分布が同様の 形状を示す傾向にあるため,短いリードタイムの予 測値を含んだ60分平均予測値を用いた場合に好ま しい分布特性を示す可能性があると考えたからであ る。想像通り,60分先の5分間予測値を対象とした 場合と比べると,降雨強度別に分布特性は大きく変 化していないことがわかる。

3.4 分布の代表性の適合度検定

前節までで,予測相対誤差は降雨強度に関わらず, 同様の分布形状を示す傾向にあることが分かった。 もし,予測相対誤差が降雨強度に関わらず,同様の 確率分布を持つとすることができるならば,予測相 対誤差を空間相関構造を有する対数正規確率場とし てモデル化できるために,非常に都合がよい。そこ で,本節では異なる時間空間平均データに対して, 降雨強度に関わらず予測相対誤差が同様の確率分布 関数に当てはまるとしてよいかをコルモゴロフ・ス ミルノフ検定を用いて検定する。

(1) 検定手法

降雨強度を,弱降雨(~4mm/hr),中降雨(4mm/hr ~10mm/hr),強降雨(10mm/hr~)に分け,それぞれ の階層で得られる予測相対誤差の確率分布関数と階 層に分けない場合の分布関数との適合度を考える。 適合度の判定基準には,χ二乗検定,コルモゴロフス ミルノフ検定がしばしば用いられるが,χ二乗検定 は検定結果がデータのサンプル数に依存するため, 本研究ではコルモゴロフスミルノフ検定の有意水準 5%を判定基準として用いる。弱降雨,中降雨,強降 雨の全ての階層の相対誤差の分布関数が,全体の分 布関数に適合していると判定されたとき,全体の分 布関数が降雨全体の相対誤差を代表しているとみな すことにする。検定の手順は以下のようである。 step 1 降雨全体を対象とする相対誤差分布を最尤

法により対数正規分布関数にあてはめる。

- step 2 弱降雨の予測相対誤差の累積頻度分布と step 1 で得られたと対数正規分布関数との適合度を 調べる。
- step 3 中降雨の予測相対誤差の累積頻度分布と step 1 で得られたと対数正規分布関数との適合度を 調べる。
- step 4 強降雨の予測相対誤差の累積頻度分布と step 1 で得られたと対数正規分布関数との適合度を 調べる。
- step 5 弱降雨,中降雨,強降雨のすべてにおいて 5% 有意水準を満たしているときに,step 1 で 求めた対数正規分布が予測相対誤差の分布を代 表していると判断する。
- (2) 検定結果

上記の手順に従って相対予測誤差の代表性を検定 した結果を Table 1 にまとめる。〇 は降雨全体を対 象として得た予測相対誤差の分布関数が,降雨強度 によらず適合すると判断できる場合を示している。

降雨データを時間平均せず5分データのまま用い た場合,3km 空間分解能の場合は15分先予測まで は,全体の降雨によって得られた相対予測誤差の分 布関数が降雨強度によらず,代表性を持つことが分 かる。予測のリードタイムを長くしようとすると, 時間空間的に平均化したデータを用いれば,代表性 を確保することができることがわかる。

(1) Case for 5 minute ahead prediction

(2) Case for 60 minute ahead prediction

Fig. 8 Time variation of mean and standard deviation of relative prediction E_r .

3.5 相対予測誤差 Er の統計的性質の持続性

今, *E_r* の分布関数と空間相関構造から降雨場を 発生させることを考えているので,それらの特性の 時間的持続性が重要となる。もし,時々刻々,誤差構 造の特性が変化するならば,実時間で降雨を予測し たとしてもその時点での *E_r* の特性を知ることはで きないが,一雨を通して同様な統計的特性を保持し ているならば,直前の予測時刻での統計的特性を使 うことができて都合がよい。

(1) 分布特性の持続性

1989年9月5日午前10時から午後7時までの降雨 データを用いて,毎時最尤法を用いて予測相対誤差 を対数正規分布に当てはめる。Fig.8に5分先予測 値(3km分解能)および60分平均雨量予測値(3km分 解能)に対して毎時,対数正規分布を当てはめた場 合の予測相対誤差の平均値と標準偏差を示す。

これらの図を見ると,予測時間が長くなるほど, *E_r*の平均値,標準偏差とも時々刻々変化することが 分かる。ただし,その変動は毎時まったく異なる値 を示すわけではないので,予測する時点から5時間

Fig. 9 Time variation of correlation length a.

程度遡ったデータをもとに *E_r*の分布を定めること が考えられる。

(2) 空間相関構造の持続性

各時間の予測相対誤差 *E_r* の空間相関係数 *ρ* を最 小二乗法によって次式の Gauss 関数

$$\rho(h) = \exp(-\frac{h^2}{a^2})$$

に当てはめて相関長さaを求めその持続性を調べた。ここで, $\rho(h)$ は空間相関係数,hは地点間距離(km),aは相関長さ(km)である。Fig. 9 に1989年9月5日午前10時から9月6日午前6時までの20時間分について5分間データを用いた場合の5分先予測値,30分先予測値,60分先予測値に対する毎時の相関長さaの値を示す。相関長さの時間変動は非常に小さく,ほぼ一定の値を示すことが分かる。

 4. 共分散行列の平方根分解をもとにした対数正規 確率場の発生法

前章までの予測誤差構造の解析により,予測相対 誤差に関しては

- 頻度分布を対数正規分布関数で近似することが できること
- 空間相関を相関長さをパラメータとした Gauss
 関数で近似できること
- 頻度分布のパラメータ,相関長さ、ともに一雨
 程度ならばその値は持続性を持ちそうである

ということが分かった。そこでこの章では,こうし た特性を有する確率場を発生させるシミュレーショ ン手法を概説する。詳しくは立川・椎葉 (2000)を参 照されたい。

4.1 正規確率場の発生法

N × N 次元の共分散行列 R を N × N 次元の対称 行列 S の積

$$R = SS \tag{6}$$

に分解することを考える。もし,この行列Sを求めることができれば,Sにランダムベクトルwを乗じてできるベクトルy = Swが求めるべき確率場となる。なぜならば

$$E[yy^{T}] = E[Sww^{T}S^{T}]$$
$$= SE[ww^{T}]S^{T}$$
$$= SS^{T}$$
$$= SS$$
$$= R$$

となって,yの共分散行列はRとなるからである。

共分散行列 R は対称行列であり,かつ非負正定 値行列なので,次のように固有値分解することがで きる。

 $R = Q\Lambda Q^T$

ここで Q は $N \times N$ 次元の直交行列, Λ は $N \times N$ 次元の対角行列であり, $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$ で あって, 対角成分には R の固有値が並ぶ。R は非負 正定値行列なので, すべての固有値は 0 以上の値を 取る。したがって,

 $\Lambda^{1/2} = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_N})$

という行列を設定することができ,Sを

$$S = Q\Lambda^{1/2}Q^T \tag{7}$$

とすれば,*S*は次式によって式(6)を満たしていることがわかる。

$$SS = Q\Lambda^{1/2}Q^{T}Q\Lambda^{1/2}Q^{T}$$
$$= Q\Lambda^{1/2}\Lambda^{1/2}Q^{T}$$
$$= Q\Lambda Q^{T}$$
$$= R$$

以上のように,共分散行列Rに対する平方根行列Sは常に存在する。問題はSをどのように求めるか, または近似するかということになる。直接,共分散 行列を固有値分解することは,LU分解すること以 上に計算負荷が大きくなるために採用できない。そ こで,式(7)の対角行列 $\Lambda^{1/2}$ をChebyshev多項式を 用いて展開し,近似的にSを求める手法を採用す る。求めたい正規確率場は得られたSにN次元の 互いに無相関の正規乱数ベクトルwを乗じること によって得ることができる。

4.2 対数正規確率場

次に,対数正規分布に従う確率場を発生させるこ とを考える。今,正規分布に従う二つの確率変数を

$$X_1 \sim N(m_{X_1}, \sigma_{X_1}^2), \quad X_2 \sim N(m_{X_2}, \sigma_{X_2}^2)$$

とし, $Y_1 = e^{X_1}$, $Y_2 = e^{X_2}$ の共分散 C_{Y_1,Y_2} を考える。

$$m_{Y_i} = \exp\left(m_{X_i} + \frac{\sigma_{X_i}^2}{2}\right), \ i = 1, 2 \tag{8}$$

$$\sigma_{Y_i}^2 = m_{Y_i}^2 \{ \exp(\sigma_{X_i}^2) - 1 \}, \ i = 1, 2$$
(9)

という関係式と, X_1 と X_2 との共分散を C_{X_1,X_2} として

$$X_1 + X_2$$

~ $N(m_{X_1} + m_{X_2}, \sigma_{X_1}^2 + \sigma_{X_2}^2 + 2C_{X_1, X_2})$

であることを用いると

$$C_{Y_1,Y_2}$$

$$= E[Y_1Y_2] - E[Y_1]E[Y_2]$$

$$= \exp\{m_{X_1} + m_{X_2} + \frac{1}{2}(\sigma_{X_1}^2 + \sigma_{X_2}^2 + 2C_{X_1,X_2})\}$$

$$-m_{Y_1}m_{Y_2}$$

$$= m_{Y_1}m_{Y_2}\{\exp(C_{X_1,X_2}) - 1\}$$

となる。ここで,Xは共分散の値が距離hのみに よって決まる等方性を持つ確率場であるとする。Xの共分散関数を $C_X(h)$ とすると,Yの共分散関数 $C_Y(h)$ は上式より

$$C_Y(h) = m_Y^2 \{ \exp(C_X(h)) - 1 \}$$
(10)

となる。以上をもとに, m_Y , σ_Y^2 , $C_Y(h)$ を与えて等 方性を持つ対数正規分布に従う確率場を発生させる 手順は次のようになる。

- 1) 式 (9) より σ_X^2 を求める。
- 2) 式 (8) より m_X を求める。
- 3) 式 (10) より *C*_X(*h*) を決定する。
- 4) m_X, σ²_X, C_X(h) に従う正規確率場 X を発生さ せる。
- 5) $Y = e^X$ によって発生させた $X \in Y$ に変換する。

共分散関数 $C_Y(h)$ を Gauss 関数

$$C_Y(h) = C_Y(0) \exp\left(-\frac{h^2}{a^2}\right)$$

で与えると,式(10)より

$$C_X(h) = \ln\left\{\frac{C_Y(0)}{m_Y^2}\exp\left(-\frac{h^2}{a^2}\right) + 1\right\}$$

となる。

Fig. 10 Observed 60min mean precipitation (2) and generated 60min mean predicted precipitation (3)–(7).

5. 降雨場の発生

5.1 降雨場の発生の流れ

以上の準備をもとに,共分散行列の平方根分解を もとにした対数正規確率場の発生法を用いて,予測 降雨場を模擬発生させる。具体的な発生手順は以下 のとおりである。

- step 1 深山レーダー雨量計から $t = t_1$ までの降雨 強度データを得る。
- step 2 移流モデルを用いて t = t₂ での予測降雨場 R_p を計算する。
- step 3 *t* = *t*₁ 以前の数時間分のデータを用いて予 測相対誤差 *E_r* の分布を対数正規分布に当ては める。
- step 4 E_r の空間相関構造を Gauss 関数に当ては める。

- step 5 共分散行列の平方根分解をもとにした確率 場の発生法を用いて step 3,4 で得た確率場特 性に従う確率場を発生させる。
- step 6 移流モデルから計算した予測降雨場 R_p と発 生させた確率場 E_r とから $R = R_p \times E_r + R_p$ に よって降雨場を多数模擬発生させる。

こうして多数の発生し得る降雨場を得ることがで きれば,それらを分布型流出モデルに入力すること により,任意の地点での河川流量を確率的に評価で きることになる。

5.2 降雨場の発生例

この手順に従って発生させた降雨場の一例を Fig. 10 に示す。1989年9月5日12時の時点において,移 流モデルを用いて1時間先までの1時間平均値の降 雨場を予測した場合を想定し,7つの降雨場を発生 させた。ここで,相対予測誤差の発生例として空間 分解能は3km×3km,時間分解能は60分平均の場合 を考えた。図中の黒い部分は降雨強度が0mm/hrの 領域を表し,白色(*R* = 30mm/hr)になるにしたがっ て降雨強度は大きくなることを示している。

6. 結論と今後の課題

本研究では,深山レーダー雨量計から得られた降 雨強度データを用いて,移流モデルによる予測降雨 場の誤差構造を分析した。その結果,予測相対誤差 は降雨強度によらず対数正規確率分布に従うとして もよいことがわかった。また,予測相対誤差は10km 以内では正の相関を持つことが分かった。そこで,予 測相対誤差を空間相関構造を持つ正規確率場として モデル化し,降雨を模擬発生させた。模擬発生させ る際には,空間相関構造はGauss 関数で表現し,共 分散行列の平方根分解をもとにした対数正規確率場 の発生法を利用した。

また,予測相対誤差の統計的特性を分析するに当 たって,空間分解能,時間分解能の異なるデータを 用い,それぞれの特性を評価した。その結果,1時 間先の予測を念頭に置き降雨場を多数発生させるた めには,60分間の平均降雨強度を対象とする必要が あり,また,場合によっては空間平均した上で降雨 場を発生させる必要があることも示唆された。

今後の課題として,予測降雨が0の場合のアルゴ リズムを考える必要がある。本研究では予測相対誤 差を発生させる場合に,予測降雨が0の場合を考慮 できていない。これは,本研究で設定した予測相対 誤差式の分母に予測降雨があるために,予測降雨が 0の場合,予測相対誤差を評価することができなく なるからである。これは予測降雨が0だが,実際に は降雨が存在する場合を無視するという危険側を見 逃していることになる。これを改良する必要がある。

また,数百km²以上の流域において流出計算を行 う場合,少なくても1時間以上の予測が必要となる が,本研究では1時間先予測までの予測相対誤差し か分析していない。より長いリードタイムを設定し た場合の予測誤差構造を分析する必要がある。

予測相対誤差の確率分布・空間相関の持続性,適 合性は相対的な基準で判断している。何らかの客観 的な基準を考える必要がある。

最後に,ここで発生させた降雨場を分布型流出モ デルに入力し,河川流量を確率的に評価する必要が ある。

謝辞:本研究で用いたレーダー雨量データは国土交 通省淀川ダム統合管理事務所より提供していただき ました。移流モデルのプログラムは京都大学工学研 究科の中北助教授より提供頂き助言を得ました。ま た,(財)河川情報センターより援助をいただきまし た。ここに謝意を表します。

参考文献

- 椎葉充晴・高棹琢馬・中北英一:移流モデルによる短 時間降雨予測手法の検討,第28回水理講演会論文 集,第28巻, pp. 423-428, 1984.
- 立川康人・椎葉充晴:共分散行列の平方根分解をもと にした正規確率場および対数正規確率場の発生法, 土木学会論文集, No. 656/II-52, pp. 39-46, 2000.

MODELING OF ERROR STRUCTURE OF REAL-TIME PREDICTED RAINFALL BY A TRANSLATION MODEL AND RAINFALL FIELD GENERATION

TACHIKAWA Yasuto, KOMATSU Yoshimitsu^{*} and TAKARA Kaoru *Graduate School of Civil Engineering, Kyoto University

Synopsis

An error structure in real-time rainfall prediction by a translation model is modeled and rainfall fields are simulated according to the characteristics of the error structure. The simulated rainfall fields will be used to evaluate the uncertainty of real-time river discharge predictions on a Monte Calro simulation framework. The investigaton of statistical characteristics of real-time rainfall prediction error by a translation model shows that a relative prediction error is modeled as lognormal random field. Then a method to generate rainfall fields with the characteristics of the random field is developed based on a matrix factrization technique of a covariance matrix decomposition into its squre root matrix approximately by using the Chebyshev polynomials.

Keywords: runoff prediction, short-term rainfall prediction, translation model, prediction error structure, random field