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Site amplification factors (SAFs) directly influence ground motions and building damage. Generally, SAF is 

estimated through subsurface structure exploration. Previous research has employed deep neural network (DNN) to 

directly estimate SAFs from the microtremor Horizontal-to-Vertical spectral Ratios (MHVRs). This study 

constructed a DNN model to directly estimate SAFs from microtremor time history records. The input data consists 

of time segments obtained from microtremor records measured at 124 stations of K-NET and KiK-net, and the 

MHVR averaged from the time segments. The target SAFs for machine learning were obtained by Nakano et al. 

(2023), which were estimated by Generalized Inversion Technique. The attention mechanism is used for learning 

between segments within the same time frame (Self-Attention) and for learning the output of the self-attention and 

the MHVR (Cross-Attention). Our DNN model effectively reproduced training and validation data, successfully 

estimating the SAF for test data. 

 

１．はじめに 

 サイト増幅特性(SAF)は周波数ごとの地盤増幅

率を指し、建物の被害に直接的に影響を与える特

性である。観測記録から地盤構造を求め、その地

盤構造から SAF を求めることも多いが、観測記録

から直接的に SAF を求めることができれば、地盤

構造同定に関連する不確実性を除いた推定が可能

となる。本研究では、単点微動観測記録から簡便

かつ直接的に SAF を推定することを目的とした

機械学習モデルの構築を行った。 

 

２．データ概要  

入力データはK-NETおよびKiK-netで観測した

124 地点(図 1)の微動記録から作成する。まず微動

記録から 20.48 秒の小区間を 1 秒ずつずらしなが

ら切りだし、小区間を 3 成分の振幅二乗和が小さ

い順かつ 75％以上の時間の重複がないようにタ

イムセグメントを抽出する。得られたタイムセグ

メントに上側遮断周波数 28.28 Hz、下側遮断周波

数 0.07 Hz の 4 次のバタワーズフィルターによる

フィルター処理を行い、各タイムセグメントの 3

成分の絶対振幅の最大値で正規化する。正規化し

た各タイムセグメントで 3 成分合成波形から変動

係数を計算し、変動係数の小さい 50 区間を機械学

習のための入力データとする。微動水平上下スペ

クトル比（MHVR）の計算には上述の 50 区間を用

い、タイムセグメントの前後 1 秒にコサインテー

パーをかけ、高速フーリエ変換をし、バンド幅 0.1 

Hz の Parzen ウィンドウで平滑化した上で幾何平

均を求める。機械学習のターゲットには、Nakano 

et al. (2023)でスペクトルインバージョン解析（GIT）

により推定された SAFを使用する。MHVR と SAF

の対象周波数範囲は 0.1～20 Hz、データ数を 200

点とし、周波数が対数スケールで等間隔となるよ

うにリサンプリングする。また MHVR と SAF の

振幅は常用対数値とする。以上の条件で作成した

データセットに対し、観測点単位で k=10 の kfold

交差検証を行うために、各分割（観測点）が 1 度

ずつテストセットになるように 10 組のデータセ

ットを作成した。各 fold において、テストセット

を除いた観測点の全タイムセグメントを観測点の

区別なく 9：1 に分割しトレーニングセットとバリ

デーションセットを作成する。 

 

３．モデル概要 

本研究で提案する機械学習モデルの概要図を図

2 に示す。Self-Attention と Cross-Attention は Multi-

Head-Attention と呼ばれる Attention 機構から構成

される。Attention 機構は入力の全系列を内積と

Softmax 関数により一括で処理することで長距離

依存性を解決したモデルである。 

モデルサイズについて埋め込み次元 d=128、ヘ



ッド数 h=4 とする。学習率は 0.001、バッチサイズ

は 8、エポック数は 200 とする。損失関数は平均

二乗誤差（MSE）、最適化アルゴリズムには

AdamW を使用する。 

 

４．解析結果 

 kfold 交差検証を行いつつ機械学習を行った。全

fold を比べたときに、トレーニングやバリデーシ

ョン、テストの MSE はそれぞれ fold 間で同程度

となるようなモデルを作成できた。バリデーショ

ンセットのMSEが全 foldで最小となった fold6の

学習結果を図 3 に示す。トレーニングセットに合

わせてバリデーションセットの損失関数の値は減

少しており、汎化性能の高いモデルであることが

わかる。図 4 で示す SAF の予測結果からも、異な

るタイムセグメントの入力でも正しい出力となっ

ていることが確認できる。図 5 のテストセットの

結果から、学習データに含まれない観測点でも学

習済モデルを用いて SAF を予測できることが確

認できる。fold6 のテストセットにおけるターゲッ

トと予測結果間の MSE と相関係数は、テストセ

ット 12 観測点平均で MSE は 0.066、相関係数は

0.74 となった。 

５．まとめ 

 本研究では、Attention 機構を用いた機械学習モ

デルを作成し、単点の常時微動記録からサイト増

幅特性を推定した。10 個の fold 全てにおいてトレ

ーニングやバリデーションのデータを再現できる

モデルを作成でき、テストセットも 7割程度の観

測点で特徴を再現することができた。 
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図 4 fold6 におけるトレーニング（緑線）・バリデーションセット（青線）の学習・予測結果 

      

図 5 fold6 におけるテストセットの予測結果（赤：GIT、黒：予測） 

図１ 観測点概要 図 3 fold6 の学習曲線 

図 2 機械学習モデルフロー図 


