
P59 

 

Inconsistency of a Single-Point Evaluation of Traction on a Fault  

Discretized with Triangular Elements and Several Improved Methods 

 

〇Hiroyuki NODA 

 

 

Introduction 

The boundary integral equation method (BIEM) is a 

useful tool to model not only crustal deformation 

caused by subsurface fault slip but also fault dynamics, 

because it is semianalytic and numerically efficient. 

Rectangular elements cannot express curved fault with 

3-dimentional curvature, and triangular elements are 

often used for modeling of natural faults. When 

simulating fault motion, a fault constitutive law is 

considered, and the traction on the fault. This 

evaluation requires caution because of the singularity 

in the elastic Green’s function. Previous studies using 

triangular elements have typically adopted piecewise-

constant distributions of displacement gap across 

faults; however, the discretization details sometimes 

differ, while the author cannot find the mathematical 

proof validating these methods. In this study, by 

considering a trivial problem, a critical issue in the 

consistency of the triangular mesh was identified, and 

several methods were proposed resolve it. Here, only 

static elasticity is considered; however, the outcome is 

also relevant for elastodynamics as well, as the 

elastostatic field is left behind after the shear wave 

radiated from the earthquake source in three-

dimensional problems.  

 

Linearly Distributed Gap on an Infinite Fault 

Here we consider a trivial problem of linearly 

distributed displacement gap on an infinite planer fault, 

which yields zero traction change on it. Such a problem 

was discretized by a simple triangular mesh defined as 

Figure 1. Note that the origin O was put at the  

Figure 1. Definition of the simple triangular mesh 

(adopted from Noda 2025).  

centroid of a triangle P1P2P3, and Ci is the centroid of 

neighboring elements. The traction at the evaluation 

point indicated by a white circle within the triangle 

P1P2P3 can be expressed analytically as 
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where 𝜇 is the shear modulus, 𝐴 is the displacement 

gap gradient,  

𝐺(𝜂) = 𝜋 cot(π𝜂−1) , 

and  

𝑃𝑖
′ =

𝑃𝑖

𝐻𝑖
(𝑚𝑖𝑚𝑖 + 𝛾𝑛𝑖𝑛𝑖 + 𝛾𝑙 𝑙) . (2) 

Because of a geometrical constraint 
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it can be shown that there is no single point in the 

triangle which gives a correct estimate 𝜏art = 0 . In 

addition, Eq. (1) predicts that the numerical artifact 

shows element-wise oscillation whose amplitude is 

proportional to the gap gradient.  



Figure 2. Convergence analysis for the centroid 

evaluation of traction. |J| represents slip gradient 

(adopted from Noda 2025). 

 

Several Corrected Methods 

A convergence analysis was conducted for a problem 

of a circular crack with uniform stress drop. The 

analytic solution for slip distribution was discretized, 

and calculated traction change was compared with the 

uniform distribution. Figure 2 represents the difference 

between the analytic and numerical solutions for 

various resolution. It converged to non-zero function of 

radius, which is proportional to the slip gradient, as 

predicted. The L1 error defined away from the crack tip, 

where singularity exists, did not converge to zero (CTR 

in Figure 3).  

Since we can estimate the artefactual oscillation by 

Eq. (1), it can be corrected from the centroid evaluation. 

This method (CTRC) shows convergence and much 

smaller numerical error than CTR. 

In another approach, we can delete the artefactual 

oscillation by combination of traction estimates at 

multiple evaluation points. Because the third-order 

tensor double-dotted with 𝐴 in Eq. (1) is a linear  

 

Figure 3. Convergence analyses for various 

methods (adopted from Noda 2025). 

combination of three tensors 𝐻𝑖𝑃𝑖
′ , which depends 

solely on the geometry of the mesh, we can cancel 𝜏art 

using at least four estimation points. We tested two 

choices (M244 and M236 in Figure 3), which showed  

convergence but larger or comparable error relative to 

CTR. We further linearly combine these two schemes 

to propose a hybrid method (HYB), which exhibits the 

best performance among the methods studied here at 

high resolution.  

 

Discussion 

In this study, it was pointed out that the commonly-

used discretization with triangular dislocation elements 

has a critical problem in calculation on on-fault traction. 

This is the case even of the simplest problem setting of 

a planer fault with uniform mash for a static problem. 

Thus, the artefactual oscillation or other numerical 

error may have affected the accuracy of modeling 

published so far. It is an important future study if a 

similar artifact exists or not for discretization of 

nonplanar fault. Another possible approach is to use a 

higher-order elements such as a piecewise-linear slip 

distribution.  

  


