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Inconsistency of a Single-Point Evaluation of Traction on a Fault

Discretized with Triangular Elements and Several Improved Methods

OHiroyuki NODA

Introduction

The boundary integral equation method (BIEM) is a
useful tool to model not only crustal deformation
caused by subsurface fault slip but also fault dynamics,
because it is semianalytic and numerically efficient.
Rectangular elements cannot express curved fault with
3-dimentional curvature, and triangular elements are
often used for modeling of natural faults. When
simulating fault motion, a fault constitutive law is
considered, and the traction on the fault. This
evaluation requires caution because of the singularity
in the elastic Green’s function. Previous studies using
triangular elements have typically adopted piecewise-
constant distributions of displacement gap across
faults; however, the discretization details sometimes
differ, while the author cannot find the mathematical
proof wvalidating these methods. In this study, by
considering a trivial problem, a critical issue in the
consistency of the triangular mesh was identified, and
several methods were proposed resolve it. Here, only
static elasticity is considered; however, the outcome is
also relevant for elastodynamics as well, as the
elastostatic field is left behind after the shear wave
radiated from the earthquake source in three-

dimensional problems.

Linearly Distributed Gap on an Infinite Fault

Here we consider a trivial problem of linearly
distributed displacement gap on an infinite planer fault,
which yields zero traction change on it. Such a problem
was discretized by a simple triangular mesh defined as

Figure 1. Note that the origin O was put at the
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Figure 1. Definition of the simple triangular mesh

(adopted from Noda 2025).

centroid of a triangle P;P,Ps3, and C; is the centroid of
neighboring elements. The traction at the evaluation
point indicated by a white circle within the triangle
P1P,P; can be expressed analytically as

3
u H;
at = _ —_4: E P! <—) , 1
z 2m= = G h,: ( )

i=1=
where p is the shear modulus, A is the displacement

gap gradient,
G(n) = mcot(mn™1),

and
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it can be shown that there is no single point in the
triangle which gives a correct estimate 7% = 0. In
addition, Eq. (1) predicts that the numerical artifact
shows element-wise oscillation whose amplitude is

proportional to the gap gradient.
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Figure 2. Convergence analysis for the centroid
evaluation of traction. |J| represents slip gradient

(adopted from Noda 2025).

Several Corrected Methods

A convergence analysis was conducted for a problem
of a circular crack with uniform stress drop. The
analytic solution for slip distribution was discretized,
and calculated traction change was compared with the
uniform distribution. Figure 2 represents the difference
between the analytic and numerical solutions for
various resolution. It converged to non-zero function of
radius, which is proportional to the slip gradient, as
predicted. The L1 error defined away from the crack tip,
where singularity exists, did not converge to zero (CTR
in Figure 3).

Since we can estimate the artefactual oscillation by
Eq. (1), it can be corrected from the centroid evaluation.
This method (CTRC) shows convergence and much
smaller numerical error than CTR.

In another approach, we can delete the artefactual
oscillation by combination of traction estimates at

multiple evaluation points. Because the third-order

tensor double-dotted with A in Eq. (1) is a linear
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Figure 3. Convergence analyses for various

methods (adopted from Noda 2025).

combination of three tensors H;P;, which depends

solely on the geometry of the mesh, we can cancel 72

using at least four estimation points. We tested two
choices (M244 and M236 in Figure 3), which showed

convergence but larger or comparable error relative to
CTR. We further linearly combine these two schemes
to propose a hybrid method (HYB), which exhibits the
best performance among the methods studied here at

high resolution.

Discussion

In this study, it was pointed out that the commonly-
used discretization with triangular dislocation elements
has a critical problem in calculation on on-fault traction.
This is the case even of the simplest problem setting of
a planer fault with uniform mash for a static problem.
Thus, the artefactual oscillation or other numerical
error may have affected the accuracy of modeling
published so far. It is an important future study if a
similar artifact exists or not for discretization of
nonplanar fault. Another possible approach is to use a
higher-order elements such as a piecewise-linear slip

distribution.



