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Extreme rainfall events have been intensified under climate change, increasing the need for effective mitigation 

strategies. Cloud seeding has been proposed as a possible method for heavy-rain control. However, its effectiveness 

depends on uncertain atmospheric conditions, making the timing of intervention a key challenge. This study 

formulates heavy-rain control as a real-time decision-making problem and applies a Least-Squares Monte Carlo 

(LSM) approach. To improve computational efficiency in evaluating rare events, an importance sampling technique 

is incorporated. A simplified cloud-seeding case study shows that the proposed method achieves comparable 

accuracy with less than one-tenth of the simulation trials required by conventional LSM, demonstrating its potential 

for efficient real-time decision support (109 words). 

 

１． はじめに 

 近年、地球温暖化の影響により世界各地で極端

現象の発生頻度および強度が増加していることが

報告されている[1]。このような気候変動に対して、

従来の防災対策に加え、気象現象そのものを制御

する技術への関心が高まっている[2]。例えば、雲

にシーディング粒子を散布して降水過程に影響を

与えるクラウドシーディングが挙げられる[3]。こ

の技術は本来、降雨促進を目的として開発された

技術であるが、近年では豪雨を制御する手段とし

ても期待されている。一方で、クラウドシーディ

ングによる効果は大気の状態の不確実性に依存す

るため、「いつどこでシーディングを実施すべきか」

という場所とタイミングの選択が重要となる。豪

雨制御における意思決定者は、時々刻々と変化す

る気象条件のもと、入手可能な観測データと予測

に基づいてリアルタイムに判断する必要がある。   

本研究では、クラウドシーディングによる豪雨

制御をリアルタイム意思決定問題と捉え、意思決

定問題を解くためのアルゴリズムを開発する。 
 
２． リアルタイム意思決定問題の定式化 

豪雨制御のリアルタイム意思決定問題では、意

思決定者の行動が豪雨の時間的進展に影響を与え

る。また、現在時刻における意思決定は、将来時

点で選択できる行動を踏まえて判断するべきであ

る。豪雨制御のリアルタイム意思決定問題は以下

の式(1)に示す最大化問題において現在時刻𝑡 = 0

における最適な行動を求めることに相当する[4]。 

𝑚𝑎𝑥
𝑎∈𝐴𝑡

𝐸[𝑈(𝑋; 𝑎)|𝑒𝑡] (𝑡 = 0,1,… , 𝑇) (1) 

𝑋は不確実な事象を表す確率変数、𝑈(. )は目的

関数、𝐴𝑡は時刻𝑡に意思決定者が選択できる行動の

集合、𝑒𝑡は時刻𝑡までに観測で得られた情報、𝑇は

意思決定者が行動を選択できる最終時刻である。

簡単のため式(1)では制約条件の表記を省略した。 
 
３． 提案するアルゴリズムの効率化 

式(1)で記述される期待値の最大化問題と同じ

特徴を有するアメリカンオプションの価格推定に

対して、Longstaff and Schwartz[5]は最小二乗モ

ンテカルロ法(Least-Squares Monte Carlo; LSM)

を提案した。LSM は各時刻における継続価値がそ

の時刻の資産価値にのみ依存すると仮定し、モン

テカルロシミュレーションにより生成された資産

価格の時系列変化のパスを用いて、最小二乗法に

より継続価値を回帰するという手法である。アメ

リカンオプションの価格推定問題では意思決定者

の行動は資産価格の変化に影響を与えないが、豪

雨制御の意思決定問題では意思決定者の行動が豪

雨の時間的進展に影響を与える。この相違点を踏

まえ、著者らの既往研究[6]では LSM を基盤として

最適な行動を導出するアルゴリズムを提案した。 

しかし、通常のモンテカルロ法(Crude Monte 

Carlo; CMC)を用いた LSMでは、確率的に希少な降

雨事象を十分にサンプリングすることが難しく、

高精度な期待値推定には膨大な試行回数が必要と

なるという課題がある。アメリカンオプションの



価格推定問題においても LSM に重点サンプリング

(Importance Sampling; IS)を導入することで計

算効率が向上することが報告されている[7]。本研

究では、計算効率を向上させることを目的として、

著者らの既往研究[6]で提案したアルゴリズムにIS

を導入する。本研究では LSMとは独立に、ISにお

ける提案分布を決定するため、元の確率分布に従

うモンテカルロシミュレーションを事前に実行す

る。この事前のシミュレーションの結果に従って、

提案分布を特徴付けるパラメータ𝜃を分散最小化

法[8]により推定する。事前のシミュレーションの

試行回数の増加に伴い、𝜃は希少事象が生起しや

すい領域を反映した値へと更新され、LSM におけ

る期待値推定の効率向上が期待される。 
 

４． ケーススタディによる検証 

３章で述べた手法の有効性を検証するため、ク

ラウドシーディングによる豪雨制御の意思決定問

題を単純化したケーススタディを設定し、CMC を

用いた LSMと ISを導入した LSMとの比較を行う。

本ケーススタディでは豪雨を 1 つの雨雲で表現し、

雨雲および飛行機は二次元平面の𝑥, 𝑦座標が 0 以

上 9以下の整数の格子点上を移動する。図 1 左に

雨雲および飛行機の初期状態および住宅の位置を

示す。雨雲は単位時間ごとに 1 つ隣の格子点に進

み、その遷移確率は図 1 中央に示す通りである。

図 1右に ISで用いる提案分布を示す。なお、雨雲

の移動先の格子点の𝑥, 𝑦座標のいずれかが-1 以下

または 10以上の場合、即座に雨雲が消滅するもの

とする。また、雨雲が住宅の上を通過した場合に

被害が発生するものとする。意思決定者は任意の

格子点に飛行機を移動させることができ、飛行機

が雨雲と同じ格子点に到着すると 2 単位時間後に

雨雲が消滅するものとする。ただし、飛行機は単

位時間ごとにマンハッタン距離が高々2 の格子点

へ移動することができるものとし、飛行機を飛ば

す格子点は一度決定したら変更しないものとする。

雨雲による住宅の被害および飛行機を飛ばすコス

トをそれぞれ-1,-0.1とし、これらの合計を結果𝐶

とする。意思決定者の目標は、結果𝐶の期待値を最

大化するような現在時刻𝑡 = 0における最適な行

動を決定することである。LSMに用いる回帰式は、

時刻𝑡での雨雲の座標𝑥𝑡 , 𝑦𝑡と時刻𝑡時点での結果𝐶

の値𝐶𝑡を回帰変数とする線形重回帰モデルとする。 

図 2 にケーススタディの解析結果を示す。図中

の破線は正解値を示す。ISに用いた提案分布のパ

ラメータ𝜃は事前のシミュレーションの試行回数

𝑀に依存して推定され、𝑀 = 103, 104, 105に対しそ

れぞれ0.840,0.826,0.822となった。𝑀の増加に伴

い、期待値推定における分散がより低減される𝜃

の値が推定され、IS を導入した LSMは CMCと比較

して 10%以下の試行回数で正解値に収束した。 

 
図 1 雨雲および飛行機の初期状態、住宅の位置 
および雨雲の遷移確率と IS における提案分布 

 
図 2 ケーススタディの解析結果  

５． まとめ 

本研究では豪雨制御を単純化したケーススタデ

ィを通じて、LSMにおける ISの有効性を検証した。 
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