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Initial condition sensitivity analysis is essential for improving numerical weather prediction and 
climate forecasts by identifying regions where initial errors strongly influence future states. Adjoint 
sensitivity analysis provides an efficient linear framework; however, in strongly nonlinear and 
chaotic systems, sensitivities spread spatially with increasing forecast time, obscuring dominant 
sensitive regions. To address this issue, we propose “Sliding Window Method (SWM)”, in which the 
total forecast period is divided into multiple time windows and adjoint sensitivity analysis is applied 
separately within each window to suppress excessive sensitivity spreading. The method is evaluated 
using the storm-track Lorenz–96 model, which exhibits spatially varying dynamical regimes from 
stable to highly chaotic flows. Numerical experiments show that SWM effectively captures localized 
high-sensitivity regions in chaotic regimes and for long forecast periods, while the conventional 
adjoint method performs better in stable regimes. These results demonstrate that SWM is a useful 
approach for identifying dynamically relevant sensitive regions in strongly nonlinear systems.  
 

１．はじめに 

数値天気予報や気候予測の高精度化において、

初期値の不確実性が予測精度に与える影響を評価

する初期値感度解析は、重要な研究課題である。

特に、初期条件に与えた微小な摂動が予測時間と

ともに増幅・伝播するカオス的な力学系では、ど

の地点の誤差が将来の予測誤差に直結するかを特

定することが、観測戦略や予測精度向上に寄与す

る[1]。本研究では、線形理論に基づき、効率的に感

度を算出できる随伴感度解析[2]を用いる。しかし、

この手法は線形近似を仮定しているため、予測時

間が長くなり系の非線形性が強まると、算出した

感度が空間的に広がりすぎてしまい、将来の予測

値に最も影響を与える領域（高感度領域）が不明

瞭になるという課題がある[3]。そこで本研究では、

全体の予測時間を複数の時間幅に分割し、その時

間幅ごとに随伴感度解析を行い高感度領域を抽出

することで、感度の広がりを抑える Sliding 
Window Method (SWM) を提案する(Fig.1)。この

提案手法が非線形性の強い場で適切に感度の広が

りを抑え、高感度領域を適切に捉える解析手法と

しての有効性をトイモデルである storm-track 
Lorenz-96 モデル(stL96)[4]を用いて評価するこ

とを目的として数値実験を行った。 

 

Fig.1: Schematic comparison of the adjoint 
sensitivity calculation processes using the 
conventional method and SWM. 
 
２．手法 

stL96 はストームトラック（低気圧の通り道）

の特性を模しており，80 地点の変数(J = 80) を持

ち、場所によって安定な流れから激しいカオス状

態まで多様な動的特性を示すモデルである(Fig.2)。
時間刻み幅は気象予測の標準的な時間スケール

（dt=0.05、実時間で約 6 時間に相当）に準拠し、

強制力 F=8.0 に設定した。基本場はスピンアップ



後のある時点を初期時刻とした。 
随伴感度解析では、特定の検証時刻における特

定の地点の変動の大きさを予測指標とし、その指

標の初期値に対する勾配（感度）を、随伴方程式

を時間逆方向に積分することで求める。 
全予測時間を複数のウィンドウに分け、各ウィ

ンドウで最大感度地点を抽出・正規化する SWM 
により、非線形性による感度の広がりを抑えつつ

重要な摂動方向を特定した。得られた初期摂動を

非線形モデルで発展させ、最終時刻における予測

指標の変化を評価することで最適ウィンドウサイ

ズを決定した。検証期間、基本場を変えて繰り返

し評価し、手法の有効性を検証した。 

 
Fig.2: Spatiotemporal evolution of the stL96 
model. The vertical axis represents time steps 
(progressing from bottom to top), and the 
horizontal axis represents grid point indices. 
 
３．結果 

Fig.3 に示すように、カオス領域（中心付近）

や、検証期間が長い場合には、 SWM による感度

解析が特に有効であることが確認された。SWM 
は感度を局所的に追跡することで、非線形性によ

って急速に広がる感度のうち高感度領域を適切に

捉えることができる。一方、安定領域（両端）で

は感度の伝播が遅く、SWM により局在化すると

高感度領域の移動を過剰に制約するため、従来手

法の方が感度の力学的な広がりを捉えることが多

い。これらの結果から、SWM は非線形性が強く

長期間の予測において高感度領域を的確に特定す

る手法として有効であると考えられる。 

 

 

Fig.3: Optimal selection ratios for each window 
size (WS). The blue lines indicate the 
conventional method, while the red-toned lines 
indicate SWM. The horizontal axis represents 
grid point indices, and the vertical axis 
represents the optimal selection ratio.  
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