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Introduction 

Studies over the past two decades have demonstrated 

that the impacts of climate change on hydrological 

extremes exhibit high spatiotemporal variability and 

are associated with significant uncertainty and 

complexity[1]. A crucial step in these studies to reduce 

uncertainty is applying bias correction to climate model 

simulations using high-quality observations. 

However, in regions lacking high-quality 

observations, researchers must resort to reanalysis data, 

which inevitably degrades the accuracy of the results 

due to the bias present in these datasets.  

This challenge is evident in Central America, where 

previous studies have been (1) using mostly reanalysis 

data to bias-correct future precipitation, (2) have been 

limited to a coarse spatial and temporal scale analysis 

and/or (3) have lacked a specific emphasis on El 

Salvador. In addition, the impact of climate change on 

regional flood risk remains severely understudied[2]. 

To address this research gap, a study was conceived 

to assess the impact of climate change on flooding risk 

and evacuation time during extreme rainfall events in 

the slums of San Salvador, El Salvador, under different 

warming scenarios. The bias correction results 

presented here are the first phase of said study.  

Study Basin 

The study area is a section of the upper Acelhuate 

River basin, with an approximate area of 217 km2, 

where the Metropolitan Area of San Salvador (MASS) 

is located. The MASS is home to 1.7 million people, 

32% of whom live in slums[3], many of which are in the 

Acelhuate River floodplains or inside its river channels. 

Reanalysis Datasets 

To evaluate the performance of the available 

reanalysis datasets over the MASS, three datasets with 

hourly time steps were chosen: ERA5[4] (30 km grid), 

MERRA2[5] (56 x 70 km grid), and CMORPH[6] (8 km 

grid).  

Observed data were obtained from 10 gauges within 

the study basin, provided by the Ministry of 

Environment and Natural Resources of El Salvador 

(MARN). These records span 6 to 20 years, with data 

completeness ranging from 47% to 91%. The datasets 

were cleaned to remove errors. The clean data was used 

to generate three hourly Area Mean Precipitation 

(AMP) grids matching the reanalysis resolutions. 

The following evaluation metrics were calculated to 

evaluate the bias in the reanalysis datasets in the rainy 

season: Peak Error (PE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Percentage of 

Bias (PBIAS), and Pearson’s Correlation Coefficient 

(R). The results are shown in Table 1.  

Table 1. Datasets Evaluation Metrics 

Metric CMORPH MERRA2 ERA5 

PE 0.49 0.68 0.28 

RMSE 2.0 2.18 1.52 

MAE 0.43 0.68 0.43 

PBIAS -25.38 98.93 -2.19 

R 0.04 0.03 0.11 

Although ERA5 exhibits low percent bias, none of the 

reanalysis datasets proved to be viable substitutes for 

observations, primarily due to weak correlations (R) 

and a systematic underestimation of precipitation 

intensities (PE). Consequently, we selected the 

observed dataset. Despite its limitations, it preserves 



genuine extreme precipitation events, which are 

indispensable for effective bias correction. 

Bias Correction Methodology 

The d4PDF dataset[7] was selected due to its large 

ensemble size and hourly temporal resolution, features 

that are essential for the analysis of extreme events. It 

consists of 2,000 years of past climate simulations 

(HPB) and future projections (HFB) under the 4K, 2K, 

and 1.5K warming scenarios, comprising 5,490, 3,294, 

and 1,782 years of data, respectively. 

A hybrid Empirical Quantile Mapping (EQM) 

approach was chosen for its computational efficiency, 

as the study focuses on applying data to flood impacts 

rather than refining downscaling methods. EQM is a 

proven tool for bias correction both globally and within 

Central America[8]. The methodology can be 

summarized in the following steps: 

(1) Clean the 10-gauge data. 

(2) Interpolate the d4PDF ensemble datasets from a 60 

km grid to a 1 km grid using the Second Inverse 

Distance Method. 

(3) Extract 1 km grid cell coordinates covering the 

study basin from the d4PDF interpolated dataset. 

(4) Resample the 10-gauge data into an AMP dataset 

spanning from 2005 to 2024 (20 years) with the 

same 1 km grid coordinates as d4PDF. 

(5) Cut the last 20 years (1992-2011) in the HPB 

ensembles. 

(6) Get the empirical distributions of the HPB / HFB 

ensembles and observed datasets. 

(7) Using the HPB and observed empirical 

distributions, calculate the correction rules 

between them using a hybrid approach: if d4PDF = 

0, the correction = observed – d4PDF; if d4PDF > 

0, the correction = observed / d4PDF. 

(8) Transfer the correction using the bias correction 

rules from Observed – Historical d4PDF to each 

value in the HPB / HFB empirical distributions. 

(9) Reassemble the corrected time series to its original 

time steps to get the final BC datasets. 

Results 

Figure 1 illustrates the efficacy of the bias correction 

by comparing the raw simulated data (60 km 

resolution) to the corrected ensemble (1 km resolution). 

The results of calculating PBIAS at the observed grid 

cell in the basin with the highest historical precipitation 

intensity improved from -50.86 (raw HPB) to 0.15 (BC 

HPB). This demonstrates that the methodology 

successfully eliminates the original model bias while 

effectively downscaling the data to the observed spatial 

scale.   

Figure 1. Bias Correction Results. 

Limitations 

This method assumes bias stationarity and 

acknowledges that independent grid corrections do not 

preserve spatial coherence. 
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