

## An Agent-Based Model Integrating Demographic and Household Dynamics for Counterfactual Regional Exposure

○Shi FENG, Tomohiro TANAKA, Kensuke OTSUYAMA, Saki YOTSUI, Y. C. Ethan YANG

### Introduction

Flood impact studies often infer disaster effects by comparing outcomes before and after the event. However, identifying a credible no-disaster baseline, noted as the counterfactual trajectory that would have occurred without the event, remain challenging.

This study aims to develop an agent-based model (ABM) framework to generate a no-flood counterfactual population distribution for 2020 in the Kuma River Basin. We diagnose event-period deviation by comparing the counterfactual to the observed 2020 census (after the 2020 flood), and analyze these deviations across municipalities, flood/non-flood zones, demographic and household subgroups. Results indicate that the proposed framework can plausibly capture normal demographic dynamics and provides a useful baseline for diagnosing flood-consistent redistribution patterns.

### Study Area and Materials

The study area is located in central Kyushu, western Japan. The Kuma River is approximately 115 km long and drains an area of 1880 km<sup>2</sup>. This study integrates multiple geospatial and statistical datasets to support micro-scale agent-based simulations.

Populations datasets for 2000, 2005, 2010, 2015 and 2020 were obtained from include ESRI Demographics (down to the third-level administrative scale) and official statistics from e-Stat for the 11 target municipalities in Kuma River region (Figure 1). In addition, night-time population data for 2005 were utilized for mesh-scale processing.



Figure 1 11 target municipalities in Kuma River Basin

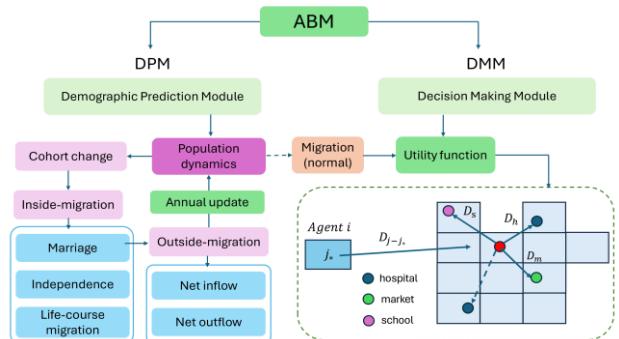



Figure 2 Agent-based model composition

To represent local amenities, geospatial layers for markets, hospitals and schools were compiled. Land-use data were also employed to define migration candidate sets under different development assumptions. These geospatial datasets were obtained from Geospatial Information Authority of Japan.

### Methodology

Agent-based models simulate interactions between agents (here, households) and the environment (living area). In this study, household relocation is parameterized using a utility function that incorporates amenity accessibility and place attachment. The model is calibrated using the 2010-2015 period, validated on

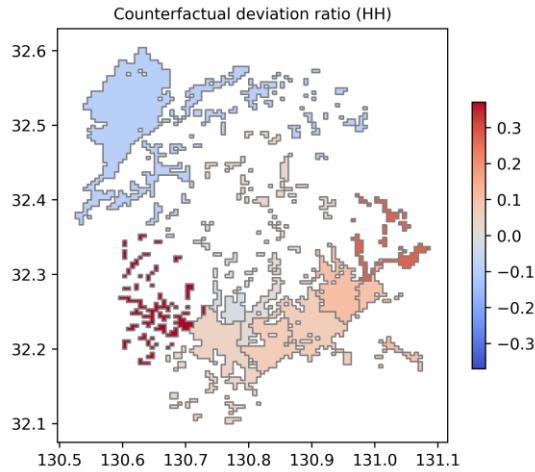



Figure 3 Relative deviation of reality from the 2020 counterfactual baseline

an independent period 2000-2005, and then applied to generate a 2020 no-flood counterfactual.

### (1) Agent-based Model

The proposed ABM (Figure 2) is mainly composed by a Demographic Prediction Module (DPM) and a Decision-Making Module (DMM). The population dynamics are represented using cohort analysis. Household spatial distribution evolves through life-course events (e.g., marriage and independence) and migrations processes (e.g., in-out flow). Migration destinations are selected through a utility function related to amenity distances and place attachment, expressed as:

$$U_{i,j} = N_l^{-\alpha_y \cdot \delta(j-j_s)} \cdot D_{j-j_s}^{-\alpha_D} \cdot D_s^{-\alpha_{ds}} \cdot D_h^{-\alpha_{dh}} \cdot D_m^{-\alpha_{dm}}$$

### (2) Calibration and Validation

Utility parameters were calibrated to reproduce normal-period redistribution using 2010-2015 census data via grid search, shown in Table 1.

Table 1 Calibrated utility parameters

| Para. | $\alpha_y$ | $\alpha_{ds}$ | $\alpha_{dh}$ | $\alpha_{dm}$ | $\alpha_D$ | $\alpha_{dh_e}$ | $\alpha_{D_f}$ |
|-------|------------|---------------|---------------|---------------|------------|-----------------|----------------|
| Value | 0.5        | 0.3           | 0.8           | 0.4           | 0.7        | 0.75            | 0.8            |

The calibrated parameter set was then evaluated on 2000-2005 period. Model performance was assessed using relative error (RE) denoted as  $RE = (P - O)/O$ , at the municipal scale (e.g., Table 2 shows the result in terms of total household).

Table 2 Validation results in municipal

| Muni. | 1 | 2 | 3 | 4 | 5 | 6 |
|-------|---|---|---|---|---|---|
|-------|---|---|---|---|---|---|

| RE    | -0.04 | 0.10 | 0.17 | 0.15 | 0.11 | 0.25 |
|-------|-------|------|------|------|------|------|
| Muni. | 7     | 8    | 9    | 10   | 11   |      |
| RE    | 0.03  | 0.04 | 0.00 | 0.04 | 0.10 |      |

### (3) Application for 2020 counterfactual

Using the 2015 census as the input, the 2020 no-flood counterfactual population distribution was generated. The relative deviation between the counterfactual baseline and the observed outcome is shown in Figure 3.

Table 3 Simulation evaluation on four scenarios

| Scenario  | S0   | S1   | S2   | S3   |
|-----------|------|------|------|------|
| Children  | 0.40 | 0.38 | 0.37 | 0.37 |
| Elder     | 0.48 | 0.34 | 0.31 | 0.35 |
| Agri. HH. | 0.57 | 0.79 | 0.58 | 0.51 |

### Analysis and Conclusion

#### (1) Calibrated utility parameters

The calibrated parameters suggest that households exhibit relatively weaker dependence to school and market accessibility, but stronger dependence to hospital accessibility. Households generally show a preference for relocating closer to their current residence, and this place-attachment tendency is stronger for agriculture-related households.

#### (2) Regional exposure changes across groups

Exposure changes for specific groups are quantified at multiple scales (e.g., municipality level and flood/non-flood zones), showing that flood-related responses vary across both space and social groups.

#### (3) Land-Use and residential preferences

Four land-availability scenarios were examined (Table 3): S0, all meshes are available; S1, Urban meshes only; S2, Urban and Paddy; and S3, Urban, Paddy and Cropland meshes. The results evaluated by RRMSE indicate that households generally tend to be more concentrated in urban-related areas, while agriculture-related households show a stronger preference for agriculture-dominated areas.

**Acknowledgement:** This study was supported by JST SICORP Grant Number JPMJSC2312, Japan.