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Comparative Assessment of Meteorological, Hydrological, and Field-Scale Water Supply-Demand
Drought Indices for Evaluating Paddy Rice Yield Losses
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Water scarcity has repeatedly affected paddy-rice production in Japan, and water stress around heading can elevate

yield-loss risk through irreversible spikelet sterility. Effective countermeasures therefore require early prediction of

drought-related yield losses before impacts become evident. This study tested the hypothesis that, beyond

meteorological and hydrological drought conditions, field-scale supply-demand imbalance provides additional

explanatory power for early identification of yield-loss years. We extracted 104 irrigated areas nationwide from

attribute-rich GIS data and grouped them by regional setting and system characteristics. After quality control, daily

drought indices were computed from the Agro-Meteorological Grid Square Data, dam releases, and streamflow

observations. In parallel, an integrated crop-growth framework incorporating rice irrigation operations and

conveyance from intake to fields estimated daily water demand and supply, from which water-balance indices were

derived. Daily series were then aggregated into growth-stage-based annual drought scores and evaluated against
annual yield metrics using PR-AUC and ROC-AUC (148 words).
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